
TCPware 6.1 Programmer’s

Guide

September 2023

This document is a guide to the programming functions of TCPware.

Operating System/Version: OpenVMS VAX V5.5-2 or later

OpenVMS Alpha V6.2 or later

OpenVMS Itanium V8.2 or later

Software Version: TCPware 6.1

Process Software

Framingham, Massachusetts

USA

The material in this document is for informational purposes only and is subject to change without

notice. It should not be construed as a commitment by Process Software. Process Software

assumes no responsibility for any errors that may appear in this document.

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in

subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS

252.227-7013.

Third-party software may be included in your distribution of TCPware, and subject to their

software license agreements. See www.process.com/products/tcpware/3rdparty.html for

complete information.

All other trademarks, service marks, registered trademarks, or registered service marks

mentioned in this document are the property of their respective holders.

TCPware is a registered trademark and Process Software and the Process Software logo are

trademarks of Process Software.

Copyright ©2021 Process Software Corporation. All rights reserved. Printed in USA.

If the examples of URLs, domain names, internet addresses, and web sites we use in this

documentation reflect any that actually exist, it is not intentional and should not to be considered

an endorsement, approval, or recommendation of the actual site, or any products or services

located at any such site by Process Software. Any resemblance or duplication is strictly

coincidental.

http://www.process.com/products/tcpware/3rdparty.html

Preface

Introducing This Guide
This guide describes the TCPware services and libraries from the programmer's perspective. It is for

network application programmers.

What You Need to Know Beforehand
Before using TCPware, you should be familiar with:

• Computer networks in general.

• HP’s OpenVMS operating system and file system.

How This Guide Is Organized
This guide has the following contents:

• PART I, Introduction to Programming - Introduces network programming and the TCPware

programming functions.

• PART II, UCX Compatibility Programming - Describes TCPware's support for the BGDRIVER

and VAXCRTL socket routines.

• PART III, QIO Programming - Describes the TCPDRIVER, UDPDRIVER, IPDRIVER, and

INETDRIVER QIO programming interfaces.

• PART IV, Programming Libraries - Describes the FTP Library, Socket Library, and TELNET

Library routines.

• PART V, Application Programming Interfaces - Describes the Simple Network Management

Protocol (SNMP) extendible agent application programming interface (API) routines, and the

Token Authentication API functions.

• PART VI, ONC RPC Programming - Describes the Remote Procedure Call (RPC) routines.

Online Help
You can use help at the DCL prompt to find the following:

• Topical help - Access TCPware help topics as follows:

$ HELP TCPWARE [topic]

The topic entry is optional. You can also enter topics and subtopics at the following prompt and

its subprompts:

TCPWARE Subtopic?

Online help is also available from within certain TCPware components: FTP client and server,

Network Control Utility (NETCU), TELNET client, NSLOOKUP, and TRACEROUTE. Use the

HELP command from within each component:

NETCU>HELP [topic]

• Error messages help - Access help for TCPware error messages as follows:

$ HELP TCPWARE MESSAGES

If the error message is included in the MESSAGES help, it identifies the TCPware component

and provides a meaning and user action. See the Instructions under MESSAGES.

Obtaining Customer Support
You can use the following customer support services for information and help about TCPware and other

Process Software products if you subscribe to our Product Support Services. (If you bought TCPware

products through an authorized TCPware reseller, contact your reseller for technical support.) Contact

Technical Support directly using the following methods:

Electronic Mail
E-mail relays your question to us quickly and allows us to respond as soon as we have information for

you. Send e-mail to support@process.com. Be sure to include your:

• Name

• Telephone number

• Company name

• Process Software product name and version number

• Operating system name and version number

• Process Software support contract number

Describe the problem in as much detail as possible. You should receive an immediate automated

response telling you that your call was logged.

Telephone
If calling within the continental United States or Canada, call Process Software Technical Support toll-

free at (800) 394-8700. If calling from outside the continental United States or Canada, dial +1 (508)

628-5074. Please be ready to provide your name, company name, Process Software support contract

number, and telephone number.

World Wide Web
There is a variety of useful technical information available on our World Wide Web home page,

http://www.process.com/

License Information
TCPware for OpenVMS includes a software license that entitles you to install and use it on one

machine. Please read and understand the Software License Agreement before installing the product. If

you want to use TCPware on more than one machine, you need to purchase additional licenses. Contact

Process Software or your distributor for details.

Maintenance Services
Process Software offers a variety of software maintenance and support services. Contact us or your

distributor for details about these services.

Documentation Set
The documentation set for TCPware consists of the following:

• Installation & Configuration Guide - For system managers and those installing the software.

The guide provides installation and configuration instructions for the TCPware products.

• Management Guide - For system managers. This guide contains information on functions not

normally available to the general network end user. It also includes implementation notes and

troubleshooting information.

• Network Control Utility (NETCU) Command Reference - For users and system managers. This

reference covers all the commands available with the Network Control Utility (NETCU) and

contains troubleshooting information.

• Programmer's Guide - For network application programmers. This guide gives application

programmers information on the callable interfaces between TCPware and application programs.

• Release Notes for the current version of TCPware - For all users, system managers, and

application programmers. The Release Notes are available online on your TCPware media and

are accessible before or after software installation.

• User's Guide - For all users. This guide includes an introduction to TCPware products as well as

a reference for the user functions arranged alphabetically by product, utility, or service.

Conventions Used

Convention Meaning

host Any computer system on the network. The local host is your computer. A remote host

is any other computer.

monospaced

type
System output or user input. User input is in reversed bold type.

Example: Is this configuration correct? YES

Monospaced type also indicates user input where the case of the entry should be

preserved.

italic type Variable value in commands and examples. For example, username indicates that you

must substitute your actual username. Italic text also identifies documentation

references.

[directory] Directory name in an OpenVMS file specification. Include the brackets in the

specification.

[optional-text] (Italicized text and square brackets) Enclosed information is optional. Do not include

the brackets when entering the information.

Example: START/IP line address [info]

This command indicates that the info parameter is optional.

{value | value} Denotes that you should use only one of the given values. Do not include the braces

or vertical bars when entering the value.

Note Information that follows is particularly noteworthy.

Caution Information that follows is critical in preventing a system interruption or security

breach.

key Press the specified key on your keyboard.

Ctrl+key Press the control key and the other specified key simultaneously.

Return Press the Return or Enter key on your keyboard.

1. Network Programming
Overview

Introduction
This chapter introduces TCP/IP network programming. It describes TCP/IP programming generally and

outlines areas where TCPware provides added functions or has specific requirements. This chapter

includes sample client and server programs and describes the following:

• TCP/IP programming concepts

• Data representation and exchange

• Programming services options

• Network programming with sockets

• Multicasting

• Sample application programs

For details on TCP/IP network programming, see the list of reference texts in the User's Guide and the

following books:

• Comer, Douglas E. & David L. Stevens [1993], Internetworking with TCP/IP, Volume III:

Client-Server Programming and Applications (BSD Socket Version), Prentice-Hall

• Stevens, W. Richard [1990], UNIX Network Programming, Prentice-Hall

This chapter is designed for an audience of experienced programmers who need information specific to

TCPware programming.

TCP/IP Programming Concepts
TCP/IP programming requires determining the following:

• Whether to use a connection-oriented (TCP) or connectionless (UDP) networking service

• Creating sockets

• Naming the communication endpoints (internet addresses and port numbers)

Connection-Oriented Services and TCP
Connection-oriented services and protocols support applications that send multiple messages between

peer applications. These services and protocols require that applications establish a logical connection

(virtual circuit) between them before they can exchange data. They provide data transfer that is reliable,

ordered, full duplex, and flow controlled. They:

• Verify receipt of data.

• Compute checksums.

• Provide sequence numbers to ensure correct segment order.

• Retransmit lost segments.

• Inform users of dropped network connections. TCP is such a connection-oriented protocol,

designed for applications that need reliable data delivery between similar and dissimilar systems.

Examples of applications that use TCP are:

o FTP

o TELNET

o SMTP

Since these services and protocols are more complex than connectionless services, they have higher

overhead. In a connection-oriented service:

• The source and destination uniquely identify each connection.

• You can multiplex connections across the network to paired host processes.

• Data streams break into portions encapsulated with control information, such as addresses.

Encapsulated pieces pass through the network to the peer host.

With TCP, the number of blocks and size (in number of bytes) of a send operation need not equal that of

a receive operation. The protocol may bundle several sends into one receive: a receive operation can

receive more or fewer bytes than in a single send operation.

For example, if you do five send operations, you may not need five receive operations to get all the data.

If a client application sends five 10-byte blocks of data (five send operations) over the network and the

server program initiates a 100-byte read operation, the program can receive all 50 bytes at one time.

TCP (unlike DECnet) does not support the concept of messages. TCP is a byte-stream protocol that does

not distinguish record or read/write boundaries. The individual applications have to perform messaging

as needed. The client and server have to agree on a message protocol and implement it. Here are three

possible strategies:

Messages of fixed

length

Data acquisition applications are examples of this type of strategy. When you

use this strategy, make sure the application reads a complete message-length of

data from the network. After the read, the application must go back and process

any residual data left over from the last complete message. For example, if you

issue a read for 100 bytes and do not get 100 bytes, you need to update the

pointers and the length, and go back until you read the full 100 bytes.

Messages preceded

by byte count

length

Other protocols prefix each message with a byte count. This could be a 16- or

32-bit quantity. RPC is an example of an application protocol that uses this

strategy. If you use this technique, use the conversion routines for native- and

network-byte order described in the Native Byte Order and Network Byte Order.

This guarantees that the client and server agree on the byte order sequences for

that number.

Messages

separated by a

<CR><LF>

sequence

FTP is an application that uses this type of messaging strategy. A program

receiving data searches for <CR><LF> characters and processes the data

preceding these characters as one record. If there is more data in the buffer, the

program looks for the next <CR><LF> sequence and processes the data

preceding it as a separate message.

Connectionless Services and UDP
Connectionless services present data with a destination address, and the network delivers it on a best-

effort basis. This is independent of other data exchanged between the same pair of hosts. Connectionless

services are unreliable but have lower overhead than connection-oriented services. In a connectionless

service:

• The client or server must perform data tracking and adaptive retransmission strategies.

• Applications cannot depend on the underlying transport for reliable delivery.

• Each message or portion of a message contains all delivery data.

• Operation is best in LANs since WANs can introduce more errors.

UDP is a full-duplex, connectionless datagram delivery protocol with low overhead. UDP is an excellent

choice for applications that need the highest performance and can tolerate this level of service. Examples

of applications that use UDP are:

• NFS

• DNS

• SNMP

UDP can lose, delay, or duplicate requests, or deliver them out of order. The application requesting the

service must detect and correct transmission errors. For example, an application may retransmit a

request if it does not receive a reply. Applications typically do this by enabling a short timeout period

and retransmitting the request if the application does not get a response within the timeout period.

Under UDP, a server could receive multiple requests since the reply might simply be lost. This case can

cause problems if some operations are not repeatable. Use UDP on LANs where transmission errors are

less frequent and round-trip times more predictable. UDP is also well-suited for broadcast and multicast

applications, and applications that cannot tolerate the overhead of virtual circuits.

NFS often uses UDP. Here is an example of what could happen during an NFS file deletion request:

1. The client issues a delete request.

2. The server receives and processes the request.

3. The server deletes the file and returns a reply that it deleted the file.

4. The reply gets lost.

5. Not having received a confirmation, the client reissues the original delete request.

6. The server gets the request and replies that the file no longer exists.

7. The server's reply confuses the client.

Note that you might need to add application design features if some operations are not repeatable.

Remote Procedure Calls (RPCs) that NFS uses handle this situation by keeping a cache of recent

requests and replies. In this case, if NFS receives a duplicate request, it sends the cached reply that it

successfully deleted the file.

For DNS and SNMP, these issues are not as severe. For example, DNS resolves host name and internet

addresses. It does not matter how many times you reissue a request; the response is the same and you get

the information you need.

Socket Concepts
Most TCP/IP programming uses a Berkeley System Distribution (BSD) UNIX abstraction called

sockets. Network programs use sockets to exchange data across the network. Socket programming is

synchronous: each socket deals with only one connection at a time.

Socket programming requires a socket descriptor that is analogous to the file descriptor used in file

programming. In socket programming (as in file programming), you create the socket descriptor, use it

to read or write, then destroy the descriptor by closing the connection. The operation of creating a socket

descriptor involves naming the communication endpoints.

Naming Communication Endpoints
Naming communication endpoints involves assigning:

Internet

addresses

Internet addresses uniquely identify the source and destination host interfaces. Any

exchange of information involves two addresses, one for the source and one for the

destination.

Port

numbers

Port numbers uniquely identify a source and destination port. Like DECnet object

numbers, port numbers identify the particular application or service used. The TCP

protocol specifies sockets that have a protocol port number and an IP address. This

protocol uses the AF_INET address family type.

TCP/IP programming uses well-known port numbers to contact a known service. For

example, to do a file transfer you need to open a connection to port 21. Port 21 is the

FTP server port number. Other services have specific port numbers as defined by the

current Assigned Numbers RFC. If you write an application, you need to assign a port

number. Any client that wants to use the service you create connects to that port number.

 The Assigned Numbers RFC also designates a clearinghouse for assigning port numbers. Get a unique

port number from this center when you develop a network service. However, if you are developing a

private application, you can create your own port number so long as another service does not use it.

Sockets define endpoint addresses in data structures coded in C. Most application programs use

predefined address structures, such as sockaddr_in, as defined in the BSD Socket Data Structures.

Data Representation and Exchange
This section discusses concepts about how data is formatted and exchanged between systems: data

encoding schemes and native as opposed to network byte order.

Data Encoding Schemes
Different hardware and operating system platforms represent data with different encoding schemes. For

example, representing floating point and integer values differ on various hardware platforms.

Your programs must decide on a compatible encoding scheme and perform any required conversion

between network format and local hardware representation format. Another approach is to exchange

data in ASCII instead of binary representation.

Native Byte Order and Network Byte Order
The sequence for storing binary data on a given machine is native byte order. The sequence for

transmitting binary data over the network is network byte order.

Some machines are little-endian; others are big-endian. Little-endian machines (VAX systems, for

example) store binary data with the least significant byte first.

Big-endian machines (Sun systems, for example) store and transmit binary data with the most significant

byte first. Network byte order is always in the big-endian format. Socket libraries require network

addresses in network byte order.

The below diagram shows the format for storing the decimal value 512 as a 16-bit (2 byte) quantity on

little-endian and big-endian systems.

When communicating between a client and server, both need to agree to the byte sequence for

transmitting data. Depending on what type of system you are on, the host's native byte order may not be

the same as network byte order. For example, the byte order for VAX systems is little-endian, the

opposite of network byte order.

Several routines convert between network and native byte order. Use these routines to make sure that the

data is in the right format. Always use these conversion routines, even if the local host byte order is the

same as network byte order. Doing so guarantees that the order of information is correct, and you can

port the source code.

The function htons converts a short integer (16 bits) from host native to network byte order. The

function ntohs converts a short integer from network to host native byte order. The htonl and

ntohl functions convert long integers (32 bits) between the two.

For example, if you use a messaging strategy that uses a byte count length (as described in the

"Messages preceded by byte count length" bulleted item), use these routines to encode the byte count

length field. This way the order of information is correct, whether you are communicating between a

VAX and Sun system or between two VAX systems.

Programming Services Options
This section describes the interface and services options you can use when writing TCP/IP networking

applications. It includes information on the following:

• Device drivers

• VAX C and DEC C socket libraries and UCX Compatibility

• TCPware Socket Library routines

• System Queue Input/Output (QIO) interface calls

• FTP Library routines

• TELNET Library routines

• ONC RPC Services

Use the DEC C or VAX C socket libraries with C-based applications. Note that any high-level language

that passes C-like arguments can call these routines.

Programming with sockets (rather than using the QIO interface discussed in the System Queue

Input/Output (QIO) Calls subsection) makes network programs more portable across UNIX

environments and more compatible with other socket-based TCP/IP applications. Sockets are easy to

program since they look like standard subroutine calls and hide some of the complexity of the QIO

interface system calls.

However, writing event-driven programs is much easier with the QIO interface than with sockets. This

is true since sockets do not fit the standard OpenVMS event-driven IO model. The QIO interface

provides access to the full range of TCPware functions; the socket library provides access to a subset of

the available TCPware functions.

Device Drivers
TCPware uses the standard OpenVMS network interface device drivers that operate the hardware

controller. These device drivers include DEC's Ethernet device drivers and third-party device drivers

(PNDRIVER for Proteon's proNET controller; and NADRIVER, NBDRIVER, and NCDRIVER for the

HYPERchannel driver).

Because TCPware uses these standard OpenVMS device drivers, other applications using these drivers

(such as DECnet, but not other TCP/IP implementations) can continue to run at the same time and use

the same hardware.

VAX C and DEC C Socket Library and UCX
Compatibility Services
The VAX C and DEC C socket routines are the preferred methods of network programming in that they

offer the greatest flexibility. These socket routines are available because of the TCPware UCX

Compatibility Services.

See VAX C Run Time Library Manual or DEC C Language Reference Manual for information on these

socket library routines.

The TCPware UCX Compatibility Services provides the QIO interface that the TCP/IP Services for

OpenVMS BGDRIVER support. The UCX Compatibility Services provide support for:

• Any application the UCX BGDRIVER supports.

• VMS 5.5 (or later) VAX C Run-Time Library (VAXCRTL) Socket Routines.

• OpenVMS VAX, OpenVMS Alpha and OpenVMS I64 DEC C Run-Time Library (DEC/CRTL)

Socket Routines.

If you developed an application for UCX, there is no need to modify it to make it work with TCPware.

You can take your image (compiled and linked against UCX) and run it as is.

See the TCP/IP Services for VMS Programming Manual for programming information. Then see

Chapter 2, UCX Compatibility Services, for programming information specific to TCPware's UCX

compatibility.

System Queue Input/Output (QIO) Calls
Programmers can create applications that use the system Queue Input/Output calls (QIOs) for an

interface. These calls use standard OpenVMS system services and support any high-level programming

language. QIOs support all OpenVMS asynchronous features such as Asynchronous System Traps

(ASTs) and event flags.

BGDRIVER, TCPDRIVER, UDPDRIVER, IPDRIVER, and INETDRIVER are TCPware's proprietary

QIO programming interfaces, as discussed in the following subsections.

BGDRIVER

TCPware provides BGDRIVER . The BGDRIVER is the preferred programming interface.

See Chapter 2, UCX Compatibility Services.

TCPDRIVER, UDPDRIVER, and IPDRIVER

These drivers are proprietary to Process Software and are described as follows:

IPDRIVER

implements IP and

ICMP

It uses the network device drivers to send and receive datagrams. The Address

Resolution Protocol (ARP) and Reverse ARP (RARP), which map internet

addresses and physical addresses, are also implemented within this driver.

Functions are provided to open and close a port and to transmit and receive

datagrams. (See the IPDRIVER Services chapter for programming information.)

IPDRIVER uses ports to demultiplex received datagrams. When an IP datagram is

received, IPDRIVER validates the header and searches for a port opened on the

protocol number in the datagram's internet header. IPDRIVER discards the

datagram if no port is open for that protocol or if that port has no outstanding

receive.

TCPDRIVER

implements TCP

It uses the IP device driver to send and receive TCP segments. Functions are

provided to open and close, receive and send data over, and perform special

control functions on a connection. (See the TCPDRIVER Services chapter for

programming information.)

UDPDRIVER

implements UDP

It uses the IP device driver to send and receive UDP datagrams. Functions are

provided to open and close a receive port, and to receive and send data. (See the

UDPDRIVER Services chapter for programming information.)

INETDRIVER

TCPware provides INETDRIVER, the Stanford Research Institute (SRI) QIO interface. Some vendors

of TCP/IP products (such as Process Software's MultiNet) use the SRI QIO interface as a direct socket

type interface. The INET device driver maps UNIX socket calls to OpenVMS QIO requests. It supports

stream (TCP) and datagram (UDP) services.

INETDRIVER Services provide an asynchronous I/O implementation of the UNIX socket calls within

the OpenVMS $QIO and $QIOW system services. These system services allow Asynchronous System

Trap (AST) routines and event flags to be associated with I/O requests. This allows for efficient socket

operations.

The INETDRIVER interfaces directly with the TCP and UDP protocols in the transport layers. It does

not replace the TCPDRIVER or UDPDRIVER services but provides another way to communicate with

them.

See Chapter 6, INETDRIVER Services, for programming information.

FTP Library Routines
The FTP library routines provide a programming interface to the FTP protocol. Network programmers

use the FTP library routines in applications to provide FTP capabilities.

See Chapter 7, FTP Library, for programming information.

TELNET Library Routines
The TELNET library routines provide a programming interface to the TELNET protocol. Network

programmers use the TELNET library routines in applications to provide TELNET capabilities.

See Chapter 9, TELNET Library, for programming information.

ONC RPC Services
TCPware provides Open Network Computing (ONC) Remote Procedure Call (RPC) Services. ONC

RPC Services are a set of software programming tools with which you can develop distributed

applications. These tools implement the RPC and XDR (External Data Representation) protocols.

A distributed application executes different parts of its programs on different hosts in a network.

Computers on the network share the processing workload, with each computer performing the tasks for

which it is best equipped. For example, a distributed database application might consist of a central

database running on a server and numerous client workstations. The workstations send requests to the

server. The server carries out the requests and sends the results back to the workstations. The

workstations use the results in other modules of the application.

Remote procedure calls (RPCs) allow programs to invoke procedures on remote hosts as if the

procedures were local. ONC RPC Services hide the networking details from the application. This

facilitates distributed processing because it relieves the application programmer from performing low-

level network tasks such as establishing connections, addressing sockets, and converting data from one

machine's format to another.

The XDR protocol provides a means for the local and remote host to agree on a way of representing

data. XDR is a standard that resolves differences of data representation between different operating

systems and hardware architectures.

ONC RPC Services consist of the following components:

• Shareable run-time libraries (RTLs)

• RPCGEN compiler

• Port Mapper

• RPCINFO command

The Port Mapper maps well-known RPC program numbers to UDP/TCP port numbers. The Port Mapper

helps ONC RPC client programs connect to ports the ONC RPC server uses. A Port Mapper runs on

each host that implements ONC RPC Services. The Port Mapper is part of TCPware's Network Control

Process (NETCP).

Note: You must use the TCPware Socket Library if you are using ONC RPC Services.

Network Programming with Sockets
This section provides a quick overview of socket programming. It includes information on the

following:

• Using socket calls in network programming

• Socket system calls

• Messaging over stream (TCP) connections

• BSD socket data structures

Using Socket Calls in Network Programming
The below diagram is an example of calls made by a client and server that use TCP to communicate. In

this example, the server starts and waits for new connections on a well-known port. It accepts each new

connection, processes the client's requests, and closes the connection.

In the example, the client creates a socket and uses connect to connect to the server. The client then

uses write to send requests to the server and read to receive replies from the server. The client calls

the close routine when it is finished using the connection.

The server uses a socket call to create a socket, then uses bind to specify the local well-known port

for the application. Next, the server calls listen (which prepares the socket for incoming connections)

and enters a loop. In the loop, the server calls the accept routine and waits for the next connection

request to arrive. The server uses read and write to interact with and close to end communication

with the client. The server then returns to accept and waits for the next connection request.

Servers typically use passive sockets to wait for incoming network connections. Applications (typically

clients) use active sockets to initiate a connection.

Socket System Calls
When creating a socket, you create either a stream socket or a datagram socket. Stream sockets (created

by specifying SOCK_STREAM) correspond to the TCP protocol. Datagram sockets (created by

specifying SOCK_DGRAM) correspond to the UDP protocol.

SOCK_RAW corresponds to the IP layer directly. Note that SOCK_RAW is not described in this

chapter because programming is not usually done at this level. Using TCP or UDP is far superior.

The IP layer only allows you to have 256 connections or users at the same time. TCP and UDP allow

you to have about 232 possible connections between any two hosts. A connection is uniquely identified

by the source internet address and port number, and the destination internet address and port number.

Many operating systems provide the BSD socket call interface, including OpenVMS. Most non-socket

implementations have comparable networking services. In OpenVMS, most implementations include a

BSD socket library interface as well as a QIO interface. The QIO interface can be almost a one-to-one

correspondence to the socket calls, and usually provides a greater range of functions than available

through the socket library. While the QIO interface can be a bit different from the BSD interface, it still

provides the same level of services. The below table describes typically-used socket calls.

Call Description

accept Accepts an incoming connection. accept actually blocks and waits for the

connection to come in. Typically, in the case of a server, it sits in block mode until

someone actually does a connect. Valid only for stream TCP/IP sockets.

bind Used primarily by servers to name their local endpoint of the connection. Servers are

contacted at well-known port numbers: they "bind" to that port number.

In a bind operation, you specify the internet address as well as the port number.

Most servers specify the internet address as zero (or INADDR_ANY). The servers do

not want to bind to any particular internet address, just to a particular port. If a host

has multiple internet addresses, it does not matter where the request comes from so

long as it goes to the specified port.

close Closes communication over a socket. close is similar to closing a file. close

makes sure that the data has been sent over to the peer and then does the actual close

operation.

For the Socket Library, close is called socket_close.

connect Names the remote endpoint and, in the case of TCP, establishes a connection. When

you specify connect, you also specify an internet address and port number. This

connects you actively to the remote peer, provided someone there is willing to accept

the connection. For example, when an FTP client issues an open, it does a connect

operation on the specified internet address and port 21. This establishes the connection

to the remote server.

getpeername

getsockname
Obtain the names of the communication endpoints. These calls return the internet

address and port number of either the local end of the connection or the remote end of

the connection.

The local end of the connection is the port number and internet address on which you

have done a bind operation. The remote endpoint is the system to which you

connected or that connected to you.

getsockopt

setsockopt
Obtain or set socket options. For example, you can set one option that determines if

KEEPALIVE operations are done on TCP connections.

listen Used by servers and prepares the socket for incoming connections. listen declares

that the server is willing to accept connections on this socket. Any connection going to

that bound port is eligible to be processed by that process.

read

recv

recvfrom

read, recv, and recvfrom are different forms of the same request. Use these

calls to read data. recvfrom is primarily used by UDP and returns the internet

address and port number of the sender of the datagram. Typically, you use this

information to send back a reply in a subsequent sendto.

For the Socket Library, read is called socket_read and recv is called

socket_recv.

select Performs asynchronous I/Os. The select call allows you to service many

connections from within a particular process.

There is also a timeout parameter with the select call that limits the amount of time

you can wait before it comes back to you. In this way, select allows you to wait

indefinitely, wait until timeout, or poll on a specific socket or set of sockets.

socket Comparable to opening or creating a file. Creates a socket to which you can send I/O

requests.

write

send

sendto

write, send, and sendto are different forms of the same request. Use these calls

to send data out over the network. sendto is used primarily by UDP and allows you

to specify the destination internet address and the port number. When using UDP, the

sendto request allows you to send requests to any number of hosts.

For the TCPware Socket Library, write is called socket_write and send is

called socket_send.

BSD Socket Data Structures
The BSD sockets support a group of data structures and subroutines for the socket interface that

typically are used to communicate with the socket layer. These include the sockaddr_in structure,

hostent structure, and servent structure. The following include files are used:

Include Files Description

in.h defines the sockaddr_in structure. Almost all socket operations require use of this

file.

inet.h defines address conversion subroutines, such as inet_addr(), inet_ntoa(), and

so on.

netdb.h defines network database structures including the hostent and servent structures.

socket.h defines the sockaddr structure, SOCK_STREAM, SOCK_DGRAM, AF_INET, and

other symbols used when calling the Socket Library subroutines. All socket operations

require use of this file.

See Chapter 8, Socket Library, for details on the files and the following sections.

sockaddr_in Structure

One of the more important socket data structures is the sockaddr_in structure. Use the

sockaddr_in structure in calls to name a communication endpoint. The sockaddr_in structure

communicates the internet address in the sin_addr field. It also communicates the port number in the

sin_port field.

The in.h include file defines the sockaddr_in structure as shown in the below example. In this

example:

1. sin_family is the address family (AF_INET for example)

2. sin_port is the port number (in network byte order)

3. sin_addr is the internet address (in network byte order)

4. sin_zero is the internet address where the remainder of the eight bytes are unused and should

be set to zero

Specify both the port and address in network byte order. For example, when doing a bind operation or a

connect operation, specify the sockaddr_in structure with the information filled in. When using

getsockname or getpeername, you provide the address of the structure and the subroutine then

would fill it in for you.

struct in_addr {

 unsigned long addr;

};

struct sockaddr_in {

 short sin_family;

 unsigned short sin_port;

 struct in_addr sin_addr;

 char sin_zero[8];

};

hostent Structure

The gethostbyname and gethostbyaddr routines use the hostent structure for doing host by name or host by

internet address lookups. For example, if you want to do an

FTP> open hostname

the underlying socket interface does not support use of a host name. In this case, use the

gethostbyname routine to take that name and return the corresponding internet address (among other

information).

The netdb.h include file defines the hostent structure as shown below.

struct hostent {

char *h_name; /* official host name */

char **h_aliases; /* alias list */

int h_addrtype; /* host address type */

int h_length; /* address length */

char **h_addr_list; /* list of addresses */

#define h_addr h_addr_list[0]; /* first address */

};

The hostent structure has:

• A host name field that points to the ASCII host name.

• A pointer to a list of alias names if the host has alias names.

• A pointer to a list of internet addresses. In a more complex environment, a host might have

multiple internet addresses.

• Other information, such as the address format and address family. For TCP/IP, the address is

four bytes long and the address family is AF_INET (decimal value of 2).

servent Structure

The servent structure is used when looking up services by name or port. Although you can hard-code

the name or port (such as port 21), you can use the following routines to obtain the service name and

port:

getservbyname to obtain the service port when given its name

getservbyport to obtain the service name when given its port number

Use these routines to obtain port numbers and service names. Doing so makes changing port numbers

easy; you simply edit the services definition file, TCPWARE:SERVICES.

The netdb.h include file defines the servent structure as shown below.

struct servent {

char *s_name; /* official service */

char **s_aliases; /* alias list */

int s_port; /* port number */

char *s_proto; /* protocol to use */

};

Multicasting
Multicasting, as specified in RFC 1112, Host Extensions for IP Multicasting, is the transmission of an IP

datagram to a multicast host group. A multicast host group is a set of zero or more hosts identified by a

single class D IP destination address. Using a multicast host group allows applications running on your

host to receive multicast IP datagrams destined for that host group.

TCPware implements the highest level of conformance specified in RFC 1112 – level 2 "full support for

multicasting."

The following TCPware programming interfaces support IP multicasting for network interfaces that

support multicasting (such as Ethernet, FDDI, and Token Ring):

• UDPDRIVER

• IPDRIVER

• BGDRIVER (SOCK_DGRAM sockets)

• INETDRIVER (SOCK_DGRAM sockets)

• Socket Library

Sending IP Multicast Datagrams
To send a multicast datagram, specify an IP multicast address in the range 224.0.0.0 to 239.255.255.255

as the destination address in a send request. This range covers the class D IP addresses that identify

multicast host groups. Note that 224.0.0.0 is unassigned and 224.0.0.1 is assigned to the permanent

group of all IP hosts, including gateways, used to address all multicast hosts on the directly connected

network.

Each multicast transmission is sent from a single network interface, even if the host has more than one

multicast-capable interface. The system manager establishes the default interface to use for multicasting

by defining the appropriate routes. If no route is defined for the multicast address, TCPware uses the

default gateway's interface. If you do not specify a default gateway, TCPware uses the first available

interface. An application can issue a request to explicitly set the interface to use for subsequently

transmitted multicast datagrams.

When you send a multicast datagram, TCPware by default delivers a local copy of it if the multicast

address is joined by one or more receivers. An application can issue a request to disable the local

loopback of multicast datagrams.

TCPware sends IP multicast datagrams with a time-to-live (TTL) of 1 by default, which prevents them

from being forwarded beyond a single subnetwork. An application can issue a request to specify the

TTL for subsequent multicast datagrams to be set to any value from 0 to 255, in order to control the

scope of the multicasts.

Receiving IP Multicast Datagrams
Before an application can receive IP multicast datagrams, it must become a member of one or more IP

multicast groups. The system manager can explicitly have the host join multicast groups by issuing the

NETCU ADD MULTICAST command (and the NETCU REMOVE MULTICAST command to leave a

group). Or, an application can ask the host to join (or leave) a multicast group by issuing a request.

See Multicasting Commands in the NETCU Command Reference for the multicasting commands.

The memberships requested by an application do not necessarily determine which datagrams that

application receives. The IP layer accepts incoming multicast datagrams if anyone claimed a

membership in the destination group of the datagram. However, delivery of a multicast datagram to a

particular application is based on the destination port (for UDP) or protocol type, just as with unicast and

broadcast datagrams. To receive multicast datagrams sent to a particular port/protocol, you must bind to

that local port, leaving the local address unspecified.

Every membership is associated with a single interface, and it is possible to join the same group on more

than one interface. If you do not specify a local interface's address when joining a group, TCPware uses

the default multicast interface. At present, you can have a maximum of 32 memberships per socket.

TCPware drops the memberships an application adds when you close the socket or port or the

application exits. However, more than one socket or port can claim membership in a particular group,

and the host remains a member of that group until the last claim is dropped.

Writing Application Programs
This section includes information on the following:

• Writing a stream client

• Writing a stream server

• Writing a datagram client

• Writing a datagram server

• Writing servers

Writing a Stream Client
When writing a stream client, use the following sequence, with socket library (and system QIO

equivalent) routines given:

1. Create a socket by calling the socket routine and requesting a SOCK_STREAM socket

(SYS$ASSGN).

2. Open the connection to the server by calling the connect routine (IO$_SETMODE |

IO$M_CTRL | IO$M_STARTUP).

You need to specify a sockaddr_in structure with the destination internet address and

destination port number filled in where the:

Internet address is the address of the server and can be obtained by calling gethostbyname or

inet_addr (inet_addr converts an ASCII dotted internet address to binary representation).

Port number is the well-known port for the server and can be obtained by calling

getservbyname.

3. Send and receive data as needed by calling the standard send/recv and read/write routines

(IO$_WRITEVBLK or IO$_READVBLK). When you use send/recv, you can specify flag

options, some of which allow you to:

• Send urgent data, or

• Peek at incoming data at the head of the queue to determine what to do before the data is

actually read.

4. Close the connection by calling the close routine (IO$_SETMODE | IO$M_CTRL |

IO$M_SHUTDOWN and then SYS$DASSGN).

The programs in the below table that demonstrate stream client applications are included in the

TCPWARE_ROOT:[TCPWARE.EXAMPLES] directory.

Program Description

DAYTIMED.C DAYTIME client that uses the TCPware Socket Library

DISCARD.C DISCARD client that uses the INETDRIVER

FINGER.C FINGER client that uses the TCPDRIVER

TCPSAMPLE.FOR DISCARD FORTRAN client that uses the TCPDRIVER

WHOIS.C WHOIS client that use the TCPware Socket Library

Writing a Stream Server
When writing a stream server, use the following sequence, with socket library (and system QIO

equivalent) routines given:

1. Create a socket by calling the socket routine and requesting a SOCK_STREAM socket

(SYS$ASSGN).

2. Bind the socket to the well-known port for the service by calling the bind routine

(IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP). Specify zero for the internet address. Use

the getservbyname routine to determine the required port.

3. Set the socket to accept incoming connections by calling the listen routine, which has two

parameters: the socket that you want to listen on, and a backlog parameter, a value that indicates

how many connections you can have at a given time (the range is 1 to 5).

For example, if you have a single-threaded server that processes connections serially, the server

listens, accepts a connection, and processes that connection. Meanwhile other connections can

come in on the well-known port. In this case, the connection is established and placed in a queue

waiting to be accepted. However, you can do nothing with the connection until you perform the

next step.

4. Wait for a connection (call accept), where:

• accept returns a new socket for the connection (you do the I/O on this socket).

• The original socket is still listening for more connections.

5. Receive and send data as needed to provide the service by calling read or write and send or

recv (IO$_READVBLK or IO$_WRITEVBLK).

6. Close the connection socket by calling the close routine (IO$_SETMODE | IO$M_CTRL |

IO$M_SHUTDOWN).

7. Go to step 4.

The programs in the below table that demonstrate stream server applications are included in the

TCPWARE_ROOT:[TCPWARE.EXAMPLES] directory.

Program Description

DISCARDD.C DISCARD server that uses the TCPDRIVER or Socket Library

FINGERD.C FINGER server that uses the TCPDRIVER

TCPSAMPLE.FOR DISCARD FORTRAN server that uses the TCPDRIVER

Writing a Datagram Client
Writing a datagram client consists of the same type of operations as writing a stream client. Use the

following sequence, with socket library (and system QIO equivalent) routines given:

1. Create a socket by calling the socket routine and requesting a SOCK_DGRAM socket

(SYS$ASSGN).

2. (Optionally) issue a connect call if you are only going to exchange information with a

particular remote peer (IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP).

In this case, when you issue a connect call, the process reserves internal socket fields that

identify the internet address and port number to which the data is to go. This means you can send

data using standard write and send calls instead of having to use the sendto call to specify

the destination. Note that:

• connect names the communication endpoint. There is no need to specify it with each

send.

• No connection is opened with UDP.

3. Send a request datagram calling the sendto or send routines (use send only if connected).

(IO$_WRITEVBLK.)

If you did not issue a connect call, you need to issue a sendto call that specifies the buffer

you want to send and where to send the buffer.

4. Start a timer. For example, the program might give the server five seconds to respond. If there is

no response within that time, the program reissues the request.

The program could also indicate to the user that there is a problem if, for example, the server

does not respond after five attempts to reach the server.

5. Receive a reply datagram using the call recvfrom (or recv if connected). Cancel the timer if

the proper reply was received; otherwise reissue the recvfrom or recv. (IO$_READVBLK.)

6. If the application needs to request more data, go to step 3.

7. Close the socket by calling the close routine (IO$_SETMODE | IO$M_CTRL |

IO$M_SHUTDOWN and then SYS$DASSGN).

The programs in the below table that demonstrate datagram client applications are included in the

TCPWARE_ROOT:[TCPWARE.EXAMPLES] directory.

Program Description

UDPSAMPLE.FOR DISCARD FORTRAN client that uses the UDPDRIVER

Writing a Datagram Server
Writing a datagram server consists of the same type of operations as writing a stream server, with socket

library (and system QIO equivalent) routines given:

1. Create a socket by calling the socket routine and requesting a SOCK_DGRAM socket

(SYS$ASSGN).

2. Bind the socket to the well-known port for the service by calling the bind routine

(IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP). This call says the socket is willing to

accept datagrams sent to this particular port.

3. Wait for a request to arrive using the call recvfrom (IO$_READVBLK). In this call you

specify the buffer, the length of the buffer, and the sockaddr_in structure that will be filled in

with the information about who sent you that datagram.

4. Decode and service the request.

5. Send the reply using the call sendto (IO$_WRITEVBLK.).

6. Go to step 3.

The programs in the below table that demonstrate datagram server applications are included in the

TCPWARE_ROOT:[TCPWARE.EXAMPLES] directory.

Program Description

BG_UDP_SERVER.C DISCARD server that uses the BGDRIVER

UDPDRIVER.C DISCARD server that uses the UDPDRIVER

UDPSAMPLE.FOR DISCARD FORTRAN server that uses the UDPDRIVER

UDP_SOCK_SERVER.C DISCARD server that uses the HP Socket Library

Writing Servers
Servers that need to service several connections at once are complex. They require use of multiplexing

services because they must not block waiting for any one connection. Use:

• BSD select operation (if using a socket library interface)

• ASTs or EFNs for SYS$QIO (if using a QIO interface)

Such servers also typically require a context block per connection. This block includes the socket or

channel number and other information about the state which that connection is in and any information

processing that connection requires.

You can also use a master server (such as NETCP in TCPware or inetd in UNIX) if you are writing a

server. Initiating the server with the master server allows you to:

• Avoid a separate listening process for each service.

For example, you might have several different servers, for each of which you would need a

unique detached process. A master server avoids doing this because there is one process that

listens for any of these ports. Once a connection comes in on one of these ports, the server

creates a process to service that connection. The master server process does the listen and then

the accept. When the accept has completed, it creates a detached process and that detached

process services that connection. In the meantime, the master server has gone back to waiting for

another connection to come in.

• Simplify support for multiple connections. This means you do not need to write multithreaded

servers.

When you use the master server process, you add server information to its database as to:

o Whether the application uses TCP or UDP.

o The well-known port number or port name to listen on.

o Information about the process that needs to be created (for example where the image is

located, what privileges it must run with, and so on).

The server is started automatically when a connection is established or a datagram is sent to the well-

known port. The server's input, output, and error files are assigned to the socket (or, in VMS, the device

name). This simplifies the server because it does not need to do socket, bind, listen, and

accept operations since these have been done by the master server. All the server does is service the

one connection and events occurring on it.

For details on using the TCPware master server, see Appendix A, TCPware Socket Library, of this

guide, and the ADD SERVICE command in the NETCU Command Reference.

2. UCX Compatibility
Services

Introduction
This chapter describes the UCX Compatibility Services.

The UCX Compatibility Services provide the following functions:

• BGDRIVER, the front-end QIO interface to TCPware that provides support for TCP/IP Services

for OpenVMS (formerly UCX) QIO functions.

• TCPware's master server supports BG devices (which are marked record-oriented). These

extensions should allow UCX servers activated by the UCX master server to run under

TCPware.

See the ADD SERVICE command in the NETCU Command Reference for details on setting

services in TCPware.

• Support for the VAX C Run-Time Library (VAXCRTL) Socket Routines as described in the

VAX C Run-Time Library Reference Manual.

• Support for OpenVMS Alpha and IA64 DEC C Runtime Library (DECCRTL) Socket Routines.

For documentation on the HP TCP/IP Services for OpenVMS, see the Bookreader help in the

Telecommunications and Networking library, the TCP/IP Services for OpenVMS VAX collection, and

the TCP/IP for OpenVMS Services for OpenVMS System Services and C Socket Programming book.

This includes sections on writing Internet applications, using the OpenVMS System Services (including

QIO calls) and DEC C Socket Routines (including a reference), and on-line programming examples.

Also see the TCP/IP Services for VMS Programming Manual for details on the BGDRIVER $QIO

interface.

Note: The UCX Compatibility Services are intended to be 100% compatible with HPE's

BGDRIVER.

If you discover that our BGDRIVER is not 100% compatible with the UCX BGDRIVER $QIO

interface, please send us a sample program demonstrating the incompatibility.

The following files are included as part of the UCX QIO compatibility support in the directory

TCPWARE_COMMON:[TCPWARE]:

BGDRIVER.EXE device driver that emulates the QIO functions.

UCX$INETDEF.H VAX C header file containing the UCX INET functions.

UCX$IPC.OLB transfer vectors used to resolve the socket routine references to the VAX C/DEC

C Run-Time Library.

UCX$IPC_SHR.EXE Run-Time library used by VAXCRTL/DECCTRL to support the VAX C/DEC C

Socket Routines.

If you have an application that was compiled and linked against UCX, you should be able to run that

image on TCPware with no modifications (you do not need to re-link against TCPware).

Note: If you make changes to that application and want to compile and link against TCPware,

follow the instructions under the Sample Programs section. The resulting image should run on

TCPware or UCX systems.

Multicasting
UCX Compatibility Services includes the following setsockopt and getsockopt options at the

UCX$C_IPOPT level for multicasting support:

UCX$C_IP_ADD_MEMBERSHIP and

UCX$C_IP_DROP_MEMBERSHIP

The setsockopt operation adds and drops a multicast

membership. The following structure is specified:

struct IPMREQDEF

{

 /* Multicast group address */

 unsigned long int IMR$L_MULTIADDR;

 /* Local interface address */

 unsigned long int IMR$L_INTERFACE;

};

• IMR$L_MULTIADDR contains the multicast internet

address to be added or dropped and

• IMR$L_INTERFACE contains the local interface's

internet address on which the multicast address is

added or dropped.

If IMR$L_INTERFACE is specified as INADDR_ANY (0),

the default multicast interface is used.

UCX$C_IP_MULTICAST_IF The setsockopt operation sets the interface for

subsequent multicast datagrams. The longword option value

specifies the local internet address of the interface to be

used. A getsockopt operation of this option returns the

currently set interface (or 0 if none was set).

UCX$C_IP_MULTICAST_LOOP The setsockopt operation enables or disables the local

loopback of multicast datagrams. By default, this option is

enabled. Specify a byte value of 1 to enable, 0 to disable. A

getsockopt operation of this option returns the current

multicast loopback setting.

UCX$C_IP_MULTICAST_TTL The setsockopt operation sets the time-to-live (TTL)

value for multicast datagrams. By default, this value is 1. A

getsockopt operation of this option returns the current

multicast TTL.

Logicals
TCPware defines the following logicals for UCX compatibility:

UCX$DEVICE

TCPIP$DEVICE
defined as BG:, which is the name of the UCX device drive.

UCX$INET_HOST

TCPIP$INET_HOST
defined to be the host name, which is the same setting as

TCPWARE_DOMAINNAME logical.

UCX$IPC_SHR

TCPIP$IPC_SHR
provides the linkage to the TCPware version of the UCX$IPC_SHR Run-Time

library.

Note: The VAX C/DEC C Socket Routines getnetbyname and getnetbyaddr are supported

and read the TCPWARE:NETWORKS. file.

IOCTL commands that set interface characteristics are not supported. Sensing of interfaces

(SIOCGIFCONF, SIOCGIFADDR, SIOCGIFBRDADDR, SIOCGIFDSTADDR,

SIOCGIFFLAGS, and SIOCGIFNETMASK) is supported.

Sample Programs
The following sample programs using UNIX-like sockets are included in the

TCPWARE_COMMON:[TCPWARE.EXAMPLES] directory:

• BGDRIVER_TCP_CLIENT.C

• BGDRIVER_UDP_CLIENT.C

• BGDRIVER_TCP_SERVER.C

• BGDRIVER_UDP_SERVER.C

The BGDRIVER_TCP_CLIENT.C and BGDRIVER_TCP_SERVER.C pair of programs provides a

self-declared ECHO server that sequentially accepts client connections and echoes back the client

messages. The BGDRIVER_UDP_CLIENT.C and BGDRIVER_UDP_SERVER.C pair of programs

provide a self-declared DISCARD server that can receive (and discard) datagrams from multiple clients.

These programs are functionally equivalent to the socket programs in Chapter 8, Socket Library.

To build any one of these applications using DEC C, enter:

$ CC/DECC/PREFIX=ALL/DEFINE=TCPWARE filename

$ LINK filename

To build any one of these applications using VAX C, enter:

$ CC/VAXC/DEFINE=TCPWARE filename

$ LINK filename, TCPWARE:UCX$IPC/LIB, SYS$INPUT/OPTIONS -

_$ SYS$SHARE:VAXCRTL/SHARE

You can build these programs on both TCPware and UCX systems. The /DEFINE=TCPWARE uses

code to point to a TCPware include directory for building on a TCPware system.

Debugging and Tracing
TCPware provides a call tracing facility that can be used to debug and trace the use of the sockets API

for many applications. This facility works for both the TCPware socket library and the API that the

newer versions of the C compiler work with. This does NOT log QIO operations. To enable the tracing

define the TCPWARE_SOCKET_TRACE logical name. The value of the logical name can be used in the

following ways:

• As a bit mask for types of operations to trace. Bit 0 (zero) signifies control operations, bit 1

signifies read operations and bit 2 signifies write operations. When these values are used the

information is written to SYS$OUTPUT:.

• As a partial or full file name. When used as a partial file name the default name specified to open

the file is: SYS$SCRATCH:TCPWARE_SOCKET_process_name.LOG. Control, read and

write operations are logged when logging is done to a file.

3. TCPDRIVER Services

Introduction
This chapter describes the Transmission Control Protocol (TCP) device driver (TCPDRIVER) services.

It describes the user interface of this implementation of TCP only. RFC 793 contains the full TCP

specifications. There are no implementation-specific restrictions for the Transmission Control Protocol

(TCP). The material presented here does not explain or describe the TCP protocol.

TCP is a connection-oriented, end-to-end reliable protocol. It provides reliable communication between

pairs of processes in computers attached to interconnected networks. TCP services are available through

the OpenVMS Queue I/O (SYS$QIO and SYS$QIOW) system services, which:

• Open and close a connection.

• Send and receive data over the connection.

• Perform status checks on the connection.

SYS$QIOW is the synchronous and SYS$QIO the asynchronous form of VMS system services. Use

each form depending on the requirements of your application.

See the appropriate OpenVMS documentation for more information on the OpenVMS I/O system

services and related services, such as the asynchronous system trap (AST) and event flag services.

Note: The QIO calls described in this chapter are used for direct access to the TCPDRIVER. If you

are porting an application that uses the BGDRIVER or INETDRIVER QIO interface, you may not

need to make modifications. Use TCPware's BGDRIVER (see Chapter 2) or INETDRIVER (see

Chapter 6).

Sequence of Operations
The sequence of operations to open a connection are as follows:

1. Assign an I/O channel to TCP0: with the Assign I/O Channel (SYS$ASSIGN) system service.

SYS$ASSIGN creates a new device unit and assigns to it the channel.

2. Open the connection with the IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP function of one

of the Queue I/O (SYS$QIO or SYS$QIOW) system services.

3. Perform read requests with the IO$_READVBLK function and write requests using the

IO$_WRITEVBLK function as desired.

4. Close your end of the connection with the IO$_SETMODE | IO$M_CTRL | IOM$_SHUTDOWN

function.

5. Perform additional read requests until the peer returns SS$_VCCLOSED status.

6. Deassign the I/O channel using the Deassign I/O Channel (SYS$DASSGN) system service.

Other Operations
In addition to the sequence of operations described in the preceding section, TCPDRIVER includes

other operations that:

Place a connection into listen state and specify the maximum

number of incoming connections that can be queued waiting to be

accepted, then wait for and accept an incoming connection

IO$_CREATE

Read data immediately IO$_READVBLK | IO$M_NOW

Read the received data without removing it from the received data

queue

IO$_READVBLK |

IO$M_DATACHECK

Read only completely filled data buffers IO$READVBLK | IO$M_PACKED

Send data stored in a list of buffers IO$_WRITEVBLK |

IO$M_EXTEND

Read the active connections status IO$_SENSEMODE

Read the connection characteristics for the channel IO$_SENSEMODE | IO$M_CTRL

Read the TCP counters IO$_SENSEMODE |

IO$M_RD_COUNT

Set the connection characteristics IO$_SETMODE | IO$M_CTRL

Request delivery of an attention AST IO$_SETMODE |

IO$M_ATTNAST

Abort a connection IO$_SETMODE | IO$M_CTRL |

IO$M_SHUTDOWN |

IO$M_ABORT

Cancel any pending I/O requests SYS$CANCEL

TCPDRIVER System Service Call
Format
The format for the TCPDRIVER SYS$QIO system service call is as follows:

status = SYS$QIO(u_long efn, u_int chan, u_int func, unsinged quadword

*iosb, void *astadr, u_long astprm, p1, p2, p3, p4, p5, p6)

The SYS$QIO or SYS$QIOW system calls issue TCP functions. SYS$QIO is for asynchronous service

completion. It specifies that the service return to the caller immediately after queuing the I/O request.

SYS$QIOW is for synchronous service completion. It specifies that the service place the calling process

in a wait state and only return to the caller after completing the I/O operation. The

OpenVMS IODEF module provides definitions for the SYS$QIO function codes.

Note: The vertical bar (|) used in some of the functions described in this chapter is the C bit-wise

inclusive OR operator.

TCPDRIVER System Service Call
Arguments
You invoke TCPDRIVER system service calls with the standard OpenVMS QIO mechanism.

See the appropriate OpenVMS documentation (for example, the Introduction to VMS System Services

volume) for more information on the QIO mechanism.

The following sections describe each system call argument.

efn

Number of the event flag set by completion of the I/O operation. The argument is optional.

chan

I/O channel assigned to the TCP device to which you are directing the request.

func

Device-specific function code and the modifier if appropriate for each operation. Each func is

described in the TCPDRIVER System Service Call Function Codes section.

iosb

I/O status block that receives the final completion status of the I/O operation. Structured as in the below

figure. The following table describes the status block fields in detail.

Field Name Description

Function-Specific Varies for each function code.

Status Code The SS$ status code or special error status code. If the low bit (0) of the

OpenVMS error code is clear, the network has returned an error.

Transfer Byte Count Number of bytes of data transferred in the I/O operation.

astadr

Address of the asynchronous system trap (AST) routine executed when the I/O is completed.

astprm

AST parameter to be passed to the AST routine.

p1…p6

Function-specific parameters, as described for each function.

TCPDRIVER System Service Call
Function Codes
System service call function codes specify what action the QIO performs. This section describes the

TCPDRIVER function codes.

IO$_CREATE
Provides for socket style listens and accepts.

Use the IO$_CREATE function to perform one of three operations:

ACCEPT Accept an incoming connection

ACCEPT-WAIT Wait for an incoming connection

LISTEN Place a connection into listen state and specify the maximum number of incoming

connections that can be queued waiting to be accepted

A typical flow for a program using this function might be as follows:

1. Assign a channel to the TCP: device (SYS$ASSIGN). This is the listening channel.

2. Issue an IO$_SETMODE | IO$M_CTRL function on the listening channel to specify the local

port number for the service.

3. Issue an IO$_CREATE function on the listening channel to specify a large backlog (greater

than 128 is recommended).

4. Issue an IO$_CREATE function (with all parameters set to zero) on the listening channel to

await an incoming connection. (You could alternatively use an asynchronous QIO and AST

routine). This function blocks until a connection is available.

5. Assign a channel to the TCP: device (SYS$ASSIGN) and issue an IO$_CREATE | IO$M_NOW

function on the listening channel with newchan being the newly assigned channel.

6. The newly assigned channel (step 5) has the accepted connection and should be serviced (reads

and writes).

7. Loop back to step 4 to continue accepting connections.

Ideally, steps 4 through 7 should be designed such that multiple connections can be serviced

simultaneously.

Format for LISTEN

status = SYS$QIO(efn, chan, IO$_CREATE, iosb, astadr, astprm, 0, 0, 0,

backlog, 0, 0);

Description for LISTEN

This function places the connection into a listen state. If you did not previously specify a local port

number for the channel (see the IO$_SETMODE | IO$M_CTRL function), a unique port number is

automatically assigned. The function completes execution immediately as it does not wait for an

incoming connection.

Argument for LISTEN

p4 = u_int backlog

Connection backlog, or maximum number of connections that can be queued. It is recommended that

you specify a large backlog (greater than 128) for most applications.

Status for LISTEN

SS$_DEVINACT Device not active

Contact system manager and ask why TCPware (or TCPDRIVER) not started

SS$_FILALRACC Port is busy

Only ports that are in the closed state can be used

SS$_ILLIOFUNC Invalid parameters or modifiers were specified (returned in status, not in iosb)

SS$_NORMAL Success

Connection put in listen state

Format for ACCEPT-WAIT

status = SYS$QIO(efn, chan, IO$_CREATE, iosb, astadr, astprm, 0, 0, 0, 0, 0,

0);

Description for ACCEPT-WAIT

This function waits for an incoming connection to be available on a listening connection. A listen

function as specified in the LISTEN operation above must have been previously issued. You can use the

IO$M_NOW modifier to probe if a connection is available; SS$_NODATA is returned if no connection is

available.

Status for ACCEPT-WAIT

SS$_DEVINACT Device not in listen state or not active

Contact system manager and ask why TCPware (or TCPDRIVER) not started

SS$_NODATA No connection is currently available to be accepted

Only returned if IO$_CREATE | IO$M_NOW was specified as the function code

SS$_NORMAL Success

Connection put in listen state

SS$_THIRDPARTY TCPDRIVER was shut down by a third party

Format for ACCEPT

status = SYS$QIO(efn, chan, IO$_CREATE | IO$M_NOW, iosb, astadr, astprm, 0,

0, newchan, 0, 0, 0);

Description for ACCEPT

This function accepts an incoming connection. A listen function as specified in the LISTEN operation

above must have been previously issued on the channel (chan). As this function does not block, a wait

should generally precede it for an incoming connection function, as specified in the ACCEPT-WAIT

operation above.

Arguments for ACCEPT

p3 = u_int newchan

OpenVMS channel for a newly created TCP: device. This channel should be created by using

SYS$ASSIGN to assign a new channel to the TCP0: device before issuing this function. The accepted

connection uses this channel.

Status for ACCEPT

SS$_DEVACTIVE I/O channel specified in newchan is not inactive

Only inactive channels can be used

SS$_DEVINACT Connection is not in listen state or the device is not active

Contact system manager why TCPware (or TCPDRIVER) not started

SS$_IVDEVNAM I/O channel specified in newchan is not a TCP: device

SS$_NODATA No connection is available to accept

IO$_READVBLK
Receives data, including urgent data, writing the received data to the specified user buffer.

The IO$M_DATACHECK modifier peeks at the next received data without removing it from the

received data queue.

The IO$M_NOW modifier executes the function immediately regardless of the amount of available data.

If no data is available, the function returns the SS$_NODATA status.

The IO$M_PACKED modifier requests that IO$_READVBLK return completely filled data buffers.

IO$_READVBLK completes reads with this modifier only after receiving the requested number of bytes,

unless the port closes or you specify IO$M_NOW.

Note: Use the IO$M_PACKED modifier with caution, as the read request only completes execution

after receiving the requested number of bytes, or if the connection is closed or reset by the peer.

Format

status = SYS$QIO(efn, chan, IO$_READVBLK, iosb, astadr, astprm, buffer,

size, 0, 0, 0, 0);

Arguments

p1 = byte *buffer

Address of the user's buffer that receives the data.

p2 = u_int size

User's buffer size in bytes. Specifies the maximum amount of data written to the buffer. The value

should not be greater than 64000 bytes.

Status

SS$_CANCEL Request canceled

SS$_DEVINACT Device not active

Contact system manager about why TCPware (or TCPDRIVER) not started

SS$_NODATA No data available and IO$M_NOW was specified.

SS$_NORMAL Success

Requested data was received.

SS$_PATHLOST Route to peer lost

Network or route used in communicating with peer no longer working

Connection closed

SS$_THIRDPARTY Connection broken by third party

Usually indicates that TCPware was shut down

Connection closed

SS$_TIMEOUT Connection timed-out

Connection closed

SS$_VCBROKEN Connection broken (either locally or by source) and closed

SS$_VCCLOSED Peer closed end of the connection and no more data is available, or the connection

was never opened

The number of bytes received is returned in the high-order word of the first longword of the I/O status

block. This may be less than the number of bytes requested.

The second longword of the I/O status block contains flag bits as follows:

• If bit 1 (mask value of 2) is set, there is still more data to be read before the end of the urgent

data marker. This indicates that IO$_READVBLK has not read all of the urgent data.

• If bit 2 (mask value of 4) is set, the data was delivered with the urgent data marker in advance of

the data. There may still be more data to be read before the end of the urgent data depending on

the state of bit 1. This bit is always set if bit 1 is set.

All other bits in the second longword of the I/O status block are clear (0).

IO$_SENSEMODE
Reads the active connections status and returns status information for all of the active and listening

TCPDRIVER connections.

Format

Status = SYS$QIO(efn, chan, IO$_SENSEMODE, iosb, astadr, astprm, buffer,

address, 0, 0, 0, 0);

Arguments

p1 = byte *buffer

Optional address of the 8-byte device characteristics buffer. Data returned is: the device class

(DC$_SCOM) in the first byte, the device type (0) in the second byte, and the default buffer size, which

is the maximum datagram size, in the high-order word of the first longword. IO$_SENSEMODE returns

the second longword as 0.

p2 = u_int address

Address of the descriptor for the buffer to receive the status information on the active connections.

The below diagram shows the 22 bytes of information returned for each connection.

Protocol type Word value is 2 for TCPDRIVER connections, 4 for INETDRIVER stream sockets,

and 5 for BGDRIVER stream sockets.

Unit number Word value is the TCPDRIVER, INETDRIVER, or BGDRIVER device unit number

for the connection.

Receive queue Word value is the number of bytes received from the peer waiting to be delivered to

the user through the IO$_READVBLK function.

Send queue Word value is the number of bytes waiting to be transmitted to or to be

acknowledged by the peer.

Local internet

address

Longword value is the local internet address (or 0 if the connection is not open and

no local internet address was specified for the connection).

Local port

number

Word value is the local port number.

Peer internet

address

Longword value is the peer's internet address (or 0 if the connection is not open and

no peer internet address was specified for the connection).

Peer port

number

Word value is the peer's port number, or 0 if the connection is not open and you did

not specify a peer port number for the connection.

TCP state Word value is the Transmission Control Protocol connection state mask. See the

IO$_SETMODE | IO$M_CTRL description for the mask value definitions.

Status

SS$_BUFFEROVF Buffer too small for all connections

Truncated buffer returned

SS$_DEVINACT Device not active

Contact system manager why TCPware (or TCPDRIVER) not started

SS$_NORMAL Success

Status information returned

The byte count for the status information buffer is returned in the high-order word of the first longword

of the I/O status block. This may be less than the bytes requested. See the below figure for more

information.

The size in bytes of each connection's record (22 bytes) is returned in the low order word of the second

longword of the I/O status block.

The total number of active connections is returned in the high-order word of the second longword of the

I/O status block. This can be greater than the number of reported connections if the buffer is full.

IO$_SENSEMODE | IO$M_CTRL
Reads the connection characteristics for the channel.

Format

status = SYS$QIO(efn, chan, IO$_SENSEMODE | IO$M_CTRL, iosb, astadr, astprm,

buffer, address, 0, 0, 0, 0);

Arguments

p1 = byte *buffer

Optional address of the 8-byte device characteristics buffer. Data returned is: device class (DC$_SCOM)

in the first byte, device type (0) in the second byte, and default buffer size (the maximum window size)

in the high-order word of the first longword. IO$_SENSEMODE | IO$M_CTRL returns the second

longword as 0.

p2 = u_int address

Address of the descriptor for the extended characteristics buffer to receive the characteristics.

Information returned in the buffer is formatted the same as the extended characteristics buffer used to set

the connection characteristics. See the IO$_SENSEMODE function for details.

If bit 12 (mask 4096) is set in the parameter identifier (PID), the PID is followed by a counted string. If

bit 12 is clear, the PID is followed by a longword value. While TCPware currently never returns a

counted string for a parameter, this may change in the future.

The below table shows the read connection characteristics.

PID Meaning

0 Local internet address. Internet address is returned as the longword value. Only returned if the

connection is open or a local internet address has been specified.

1 Local port number. Port number is returned in the low order word of the longword value. Local

port number is either the default port number or the last specified local port number.

2 Peer internet address. Internet address is returned as the longword value. Only returned if the

peer's internet address has been specified or the connection is open.

3 Peer port number. Port number is returned in the low order word of the longword value. Only

returned if the peer's port number has been specified or the connection is open.

4 Connection time-out value. Time-out value (in seconds) is returned as the longword value.

5 Connection window size. Window size (in bytes) is returned as the longword value.

6 TCP state. State is returned as a longword bit mask value. Mask values and states are shown in

the following table. Only one bit can be set at any time.

7 Passive open access control. Value indicating shared (non-zero) or exclusive (zero) access to the

same port number is returned as the longword value.

10 Socket options. For the values of this option, see the socket options entry in Error! Reference s

ource not found..

Note: The order in which IO$_SENSEMODE | IO$M_CTRL returns the parameters can change. It

is recommended that you search the buffer for the desired parameter.

Mask Value State Mask Value State Mask Value State

1 LISTEN 16 FIN-WAIT-1 256 LAST-ACK

2 SYN-SENT 32 FIN-WAIT-2 512 TIME-WAIT

4 SYN-RECEIVED 64 CLOSE-WAIT 1024 CLOSED

8 ESTABLISHED 128 CLOSING

Status

SS$_BUFFEROVF Buffer too small for all characteristics

Truncated characteristics buffer is returned

SS$_DEVINACT Device not active

Contact system manager why TCPware (or TCPDRIVER) not started

SS$_NORMAL Success

Characteristics returned

The byte count for the characteristics buffer is returned in the high-order word of the first longword of

the I/O status block. This may be less than the bytes requested. The number of bytes in the receive

queue is returned in the low order word of the second longword in the I/O status block. The number of

bytes in the read queue is returned in the high-order word of the second longword in the I/O status block.

The below figure shows the I/O Status Block.

Note: You can use the SYS$GETDVI system service to obtain the local port number, peer port

number, and peer internet address. The DEVDEPEND field stores the local port number (low order

word) and peer port number (high-order word). The DEVDEPEND2 field stores the peer internet

address.

IO$_SENSEMODE | IO$M_RD_COUNT
Reads the TCP counters. You can add the IO$M_CLR_COUNT modifier to this function to zero the

counters after they are read. However, you must have the OPER privilege to use this modifier.

Format

status = SYS$QIO(efn, chan, IO$_SENSEMODE | IO$M_RD_COUNT, iosb, astadr,

astprm, 0, address, 0, 0, 0, 0);

Argument

p2 = u_long address

Address of the descriptor for the buffer to receive the counters. These counters relate only to the TCP

level and are for all connections opened since the counters were last zeroed.

The counters (longword values) in the order in which they are returned:

1. Number of seconds since last zeroed

2. Number of segments transmitted (excludes retransmissions)

3. Number of segments retransmitted (includes keep-alive check transmissions)

4. Number of segments transmitted with transmission errors

5. Number of segments received

6. Number of segments received in error (invalid TCP header or checksum)

7. Number of receive data buffers concatenated (data segments are concatenated whenever

possible)

8. Number of delayed acknowledgments transmitted (included in segments transmitted count)

9. Number of window updates transmitted due to receive request completions (included in

segments transmitted count)

10. Number of out-of-sequence segments received

11. Number of transmit data buffers concatenated

12. Number of keep-alives transmitted (included in number of segments re-transmitted)

Status

SS$_BUFFEROVF Buffer too small for all counters

Truncated buffer is returned

SS$_DEVINACT Device not active

Contact system manager why TCPware (or TCPDRIVER) not started

SS$_NORMAL Success

Counters returned

The byte count for the counters buffer is returned in the high-order word of the first longword of the I/O

status block. This may be less than the bytes requested.

IO$_SETMODE | IO$M_ATTNAST
Requests the delivery of an attention AST whenever urgent data is available, or the connection is

broken.

This function enables an attention AST to be delivered only once. The function is subject to AST quotas.

After the function delivers the AST, you must issue another IO$_SETMODE | IO$M_ATTNAST to

re-enable AST delivery.

When a connection fully closes, all attention ASTs for the connection are disabled.

Note: If the existence of urgent data triggers the attention AST, and that data is not read before you

re-enable the AST, the AST triggers again immediately.

Format

status = SYS$QIO(efn, chan, IO$_SETMODE | IO$M_ATTNAST, iosb, astadr,

astprm, address, param, mode, 0, 0, 0);

Arguments

p1 = void *address

Address of an AST service routine or 0 to disable attention ASTs.

p2 = u_long param

AST parameter to be passed to the AST service routine.

p3 = u_long mode

Access mode at which to deliver the AST. The access mode is maximized with the requestor's access

mode.

Status

SS$_DEVINACT Device not active

Contact system manager why TCPware (or TCPDRIVER) not started

SS$_EXQUOTA AST quota exceeded

SS$_NORMAL Success

Attention AST enabled or previous ASTs disabled

IO$_SETMODE | IO$M_CTRL
Sets the connection characteristics.

You specify the connection characteristics in the extended characteristics buffer. The buffer consists of a

series of six-byte entries. The first word of each entry stores the parameter identifier (PID) followed by a

longword that stores one of the values associated with that parameter.

Format

status = SYS$QIO(efn, chan, IO$_SETMODE | IO$M_CTRL, iosb, astadr, astprm,

0, address, 0, 0, 0, 0);

Argument

p2 = u_int address

Address of the descriptor for the extended characteristics buffer. Counted strings consist of a word with

the size of the character string followed by the character string.

The below figure shows the format of the descriptor for the extended characteristics buffer.

The below table lists the connection characteristics you can set. These characteristics remain set, even

after you close the connection, until you change them with another IO$_SETMODE operation.

PID Meaning

0 Local internet address. Longword with the local host's internet or multicast address. If used,

must be a valid local internet or multicast address. Set this parameter only if the port is not open.

Specify in internet byte order, reversed from the normal VMS byte order. For example, internet

address 2.3.4.5 is stored as ^X05040302.

To determine if an internet address is local, issue an IO$_SETMODE | IO$M_CTRL function

specifying the address in this characteristic. If the address is not local, the function returns an

SS$_BADPARAM status.

1 Local port number. Low order word of the longword containing the port number. If omitted,

the function uses the unique port number generated when you assign the UDP device unit. Set

this parameter only if the port is not open. If you use 0, the function generates a new, unique

number. Specify in normal VMS byte order.

2 Peer internet address. Longword with the peer host's internet address. If you specify both the

peer's internet address and port number after opening the port (or when the port is opened) the

port is considered fully specified (or opened as fully specified) and all further receive requests

receive datagrams from that address and port only. Transmitted requests that do not provide a

source/destination buffer are sent to that address and port.

Specify in internet byte order, as the local internet address characteristic above. Using 0

functionally omits the address.

3 Peer port number. Low order word of the longword containing the port number. (See PID 2

above.) Specify in normal VMS byte order. Using 0 functionally omits the port number.

4 Connection time-out value. Longword specifying the connection time-out value in seconds.

You can also specify the connection time-out value as P6 in the IO$_SETMODE |

IO$M_CTRL | IO$M_STARTUP and IO$_WRITEVBLK functions. The value specified by P6

has precedence over the value specified by the extended characteristics buffer. The default value

is 5 minutes (300 seconds). The minimum is 20 seconds.

5 Connection window size. Longword specifying the connection's window size (in bytes).

Typical values for connection window sizes range from 4096 to 32768 and specify how much

data the TCP layer will buffer for the application. If omitted, the default window size configured

during network start up is used for the connection.

7 Passive open access control. Specifies whether others may (shared access) or may not

(exclusive access) use the same local port number in passive opens. To specify exclusive access

(the default), the longword value must be 0. To specify shared access (used primarily by servers),

the longword value must be non-zero. This parameter only applies to passive opens.

9 Change ownership. Longword that allows the current owner of the device unit to prepare to

pass ownership to another process. Removes the owner’s process ID from the connection. If the

value field is non-zero, specifies the new owner UIC for the connection and changes the

connection protection so that only system and owner have access (S:RWLP,O:RWLP). Changes

the following fields for the connection: owner process ID, owner UIC, and device protection.

Primarily the NETCP master server but also other programs use it.

10 Set socket options. Low order word of the longword value field containing the mask value of

the socket options to set. Specify the following options, as defined in the

TCPWARE_INCLUDE:SOCKET.H header file (with values in hexadecimal):

SO_DEBUG, with a value of 0001, enables debugging (ignored)

SO_REUSEADDR, with a value of 0004, allows reuse of local address (controllable through the

passive open access control parameter)

SO_KEEPALIVE, with a value of 0008, keeps connections alive

SO_DONTROUTE, with a value of 0010, prevents routing (ignored)

SO_BROADCAST, with a value of 0020, enables use of broadcasts (ignored)

SO_USELOOPBACK, with a value of 0040, bypasses hardware when possible (ignored)

SO_LINGER, with a value of 0080, lingers on a close

11 Clear socket options. Low order word of the longword value field containing the mask of the

socket options to clear. (See the options under PID 10 above.)

12 No delay. Determines whether TCPDRIVER delays sending data to coalesce data from several

small sends into a large packet for transmission over the network. The default is for

TCPDRIVER to delay. Most applications should not change this option since the delay is very

short and makes for better overall network performance. TCPDRIVER uses the parameter value

passed to disable the delay (if the value is non-zero) or enable the delay (if the value is 0).

13 IP options. Counted string containing the IP options to be included in datagrams.

Note: The multicasting-related parameters (14 through 20) are supported but cannot be used with

TCP (a connection-oriented protocol). Therefore, the settings are meaningless.

Status

SS$_BADPARAM Bad parameter or value specified

PID returned in low order word of second longword

SS$_DEVACTIVE Connection open on unit; local port number, peer's internet address, and peer's

port number cannot be changed

SS$_DEVINACT Device not active

Contact system manager why TCPware (or TCPDRIVER) not started

SS$_INSFMEM Insufficient memory to complete request

SS$_IVBUFLEN Extended characteristics buffer length invalid

SS$_NOPRIV Setting IP layer options (PIDs 13 through 20) requires privileges

Application must either be running under SYSTEM UIC or have SYSPRV,

BYPASS, or OPER privilege

SS$_NORMAL Successful operation

Characteristics set

SS$_UNREACHABLE Default interface for multicast group address could not be found

Specify local interface's IP address when joining multicast group

IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN
Closes your end of the connection. Lets the other end of the connection know that you completed

sending data. You cannot perform any IO$_WRITEVBLK functions after issuing IO$_SETMODE |

IO$M_CTRL | IO$M_SHUTDOWN. However, you can perform IO$_READVBLK functions on the

connection until the other end of the connection closes and you have read all the data.

Note: A connection does not close until it closes on both ends. In other words, your end of the

connection does not close until the peer has acknowledged the IO$_SETMODE | IO$M_CTRL |

IO$M_SHUTDOWN.

The recommended procedure for closing a connection is to issue IO$_SETMODE | IO$M_CTRL |

IO$M_SHUTDOWN and then read until SS$_VCCLOSED status is returned. Use the IO$_SETMODE |

IO$M_CTRL | IO$M_SHUTDOWN | IO$M_ABORT function to abort a connection. This function

returns all requests for the connection with the SS$_VCBROKEN status. If the connection is open, it is

reset.

Format

status = SYS$QIO(efn, chan, IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN, iosb,

astadr, astprm, 0, 0, 0, 0, 0, 0);

Arguments

None.

Status

SS$_DEVINACT Device not active

Contact system manager why TCPware (or TCPDRIVER) not started

SS$_NORMAL Successful operation

Connection closed

SS$_PATHLOST Route to peer lost

Network or route used in communicating with peer no longer working

Connection closed

SS$_THIRDPARTY Connection broken by third party

Usually indicates that TCPware was shut down

Connection closed

SS$_TIMEOUT Connection timed-out

Connection closed

SS$_VCBROKEN Connection broken (either locally or by source) and closed

SS$_VCCLOSED Connection already closed or in process of being closed

IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP
Opens an active connection. For an active open connection, specify the peer's internet address and port

number. If you omit the local port number, the function uses a unique port number assigned when the

unit was created.

Use the IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP function to open a passive connection.

You can omit the peer's internet address or port number. The function completes execution only after the

connection is fully established.

Format

status = SYS$QIO(efn, chan, IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP, iosb,

astadr, astprm, 0, address, 0, 0, 0, time);

Arguments

p2 = u_int address

Address of the descriptor for the extended characteristics buffer. See the IO$_SENSEMODE |

IO$M_CTRL description for details on this buffer.

p6 = u_long time

Optional connection time-out value in seconds. The default is the value specified in the extended

characteristics buffer (or 5 minutes, if none was specified). The minimum value is 20 seconds.

Status

SS$_BADPARAM Bad parameter or value specified

SS$_CANCEL Request canceled

SS$_DEVACTIVE Connection open on unit

SS$_DUPUNIT Connection not unique

Check local port number, peer's internet address, and peer's port number

SS$_IVBUFLEN Buffer length invalid

SS$_NORMAL Successful operation

Connection open

Use write and read requests to send or receive data

SS$_NOPRIV Insufficient privilege

Tried to open passive connection on port number below 1024 without BYPASS or

SYSPRIV privilege

SS$_PATHLOST Route to peer lost

Network or route used in communicating with peer no longer working

Connection closed

SS$_THIRDPARTY Connection broken by third party

Connection closed

SS$_TIMEOUT Connection timed-out and closed

Active open not completed within connection timeout

SS$_VCBROKEN Connection broken (either locally or by peer) and closed

Active open returns if peer refused connection

IO$_WRITEVBLK
Sends data stored in the specified user buffer. Completes execution after queuing the data for

transmission.

You can use the IO$M_OUTBAND modifier with IO$_WRITEVBLK to transmit urgent data.

Format

status = SYS$QIO(efn, chan, IO$_WRITEVBLK, iosb, astadr, astprm, buffer,

size, 0, 0, 0, time);

Arguments

p1 = byte *buffer

Address of the user's buffer. The user's buffer stores the data to be sent.

p2 = u_int size

User's buffer size in bytes. Amount of data that the user is sending. If 0, the IO$_WRITEVBLK

completes execution after transmitting all previously written data to the peer. However, the peer has not

necessarily received this data yet. The value should not be greater than 64000 bytes.

p6 = u_long time

Optional new-connection timeout value (in seconds).

Status

SS$_BADPARAM Bad parameter or value specified

If P6 is not zero, value specified is not acceptable; if IO$M_EXTEND modifier

specified, P2 is not 24 (size of msghdr structure)

SS$_DEVINACT Device not active

Contact system manager why TCPware (or TCPDRIVER) not started

SS$_IVBUFLEN Extended characteristics buffer length invalid

SS$_NORMAL Successful operation

Data queued for sending to destination

SS$_PATHLOST Route to peer lost

Network or route used in communicating with peer no longer working

Connection closed

SS$_THIRDPARTY Connection broken by third party

Usually indicates that TCPware was shut down

Connection closed

SS$_TIMEOUT Connection timed-out and fully closed

Data could not be delivered to destination within connection time-out

SS$_VCBROKEN Connection broken (either locally or by source) and fully closed

SS$_VCCLOSED You issued close function to close end of connection, or connection never opened

The number of bytes sent is returned in the high-order word of the first longword of the I/O status block.

IO$_WRITEVBLK | IO$M_EXTEND
Sends data stored in a list of buffers.

Format

status = SYS$QIO(efn, chan, IO$_WRITEVBLK | IO$M_EXTEND, iosb, astadr,

astprm, msghdr, size, 0, 0, 0, 0);

Arguments

p1 = u_long *msghdr

Address of the msghdr structure. Points to the address of the structure storing the array of additional

structures. Each of these array structures contains the address and size of one of the user buffers. The

msghdr structure is as follows:

struct msghdr {

 char *msg_name; /*optional address*/

 int msg_namelen; /*size of address*/

 struct iovec *msg_iov; /*scatter/gather array*/

 int msg_iovlen; /*elements in msg_iov*/

 char *msg_accrights; /*access rights*/

 int msg_accrightslen;

};

struct iovec {

 char *iov_base; /*address of buffer*/

 int iov_len; /*length of buffer*/

};

In the msghdr structure, this function uses only msg_iov and msg_iovlen. It ignores the values of

the other elements.

msg_iov stores the address of the array of iovec structures and msg_iovlen is the number of

iovec elements in the array. The iovec array stores the address and length of each buffer (in bytes)

that holds the data to be sent.

p2 = u_long size

Size of the msghdr structure, which must be 24 bytes. The following is an example using the scatter-

gather write function. The below figure shows a diagram for the example.

struct msghdr buflst;

struct iovec bufiov[3];

char buffer1[100];

char buffer2[20];

char buffer3[200];

buflst.msg_iov = bufiov;

buflst.msg_iovlen = 3;

bufiov[0].iov_base = buffer1;

bufiov[0].iov_len = sizeof(buffer1)

bufiov[1].iov_base = buffer2;

bufiov[1].iov_len = sizeof(buffer2)

bufiov[2].iov_base = buffer3;

bufiov[2].iov_len = sizeof(buffer13)

istat = SYS$QIOW(0,chan,

 IO$_WRITEVBLK | IO$M_EXTEND,&iosb,0,0,buflst,sizeof(buflst),

 0,0,0);

Status

See IO$_WRITEVBLK

SYS$ASSIGN
Assigns a channel to a device.

Format

status = SYS$ASSIGN(char *devnam, u_int *chan, [u_long acmode], [char

*mbxnam]);

Arguments

devnam

Address of a character string descriptor pointing to the device name string (TCP0:).

chan

Address of a word into which SYS$ASSIGN writes the channel number.

acmode

Optional access mode associated with the channel. The most privileged access mode used is that of the

caller.

mbxnam

Optional logical mailbox associated with the device. (Not supported by TCPDRIVER.)

Status

See the VMS System Services Reference Manual for a complete list of status messages.

SYS$CANCEL
Cancels any I/O that is pending on a socket. The I/O will be completed with an iosb status of

SS$_CANCEL.

Outstanding I/O operations are automatically cancelled at image exit.

Format

status = SYS$CANCEL(u_int chan);

Argument

chan

Number of the channel to be canceled.

Status

See HP’s VMS System Services Reference Manual for a complete list of status messages.

SYS$DASSGN
Releases a channel.

When you deassign a channel, any outstanding I/O is completed with an iosb status of SS$_CANCEL.

If a connection is open on the channel, it is aborted.

I/O channels are automatically deassigned at image exit.

Format

status = SYS$DASSGN(u_int chan);

Argument

chan

Number of the channel to be deassigned.

Status

See the VMS System Services Reference Manual for a complete list of status messages.

Sample Programs

C Programs
The following sample programs are included in the TCPWARE_COMMON:[TCPWARE.EXAMPLES]

directory:

• TCPDRIVER_CLIENT.C

• TCPDRIVER_SERVER.C

• FINGER.C

The first two pairs of programs show the use of stream sockets with SYS$QIO system service calls to

the TCPDRIVER. They are functionally the same as the TCP_SOCKET_CLIENT.C and

TCP_SOCKET_SERVER.C socket library programs.

The client sequence of operations is as follows:

1. Assigns an I/O channel to TCP0, using SYS$ASSIGN.

2. Opens a connection, using (IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP).

3. Exchanges data, using IO$_WRITEVBLK and IO$_READVBLK.

4. Closes the connection, using (IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN).

5. Performs additional reads until the peer returns an SS$_VCCLOSED status.

6. Deassigns the channel, using SYS$DASSGN.

The server sequence of operations is as follows:

1. Assigns an I/O channel to TCP0, using SYS$ASSIGN.

2. Causes a passive open of the connection, using (IO$_SETMODE | IO$M_CTRL |

IO$M_STARTUP | 0x0800). You can alternately use TCPDRIVER's IO$_CREATE

function that listens and accepts connections with UNIX-like functionality (use the

/DEFINE=USE_CREATE command in the CC line of the build process).

3. Exchanges data, using IO$_WRITEVBLK and IO$_READVBLK.

4. Closes the connection, using (IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN).

5. Deassigns the channel, using SYS$DASSGN.

FINGER

The FINGER.C file for the FINGER protocol also contains sample source code using TCPDRIVER

services.

Link the files to the TCPware Socket Library as follows for Alpha, VAX, and Itanium systems for DEC

C:

$ LINK FINGER SYS$INPUT/OPTIONS SYS$SHARE:TCPWARE_SOCKLIB_SHR/SHARE

$ Ctrl+Z

To build on a VAX with VAX C:

$ CC FINGER.C

$ LINK FINGER,SYS$INPUT/OPTIONS TCPWARE:UCX$IPC.OLB/LIBRARY -

_$ SYS$SHARE:VAXCRTL/SHARE

$ Ctrl+Z

$ FINGER :== $device:[directory]FINGER

To build on an Alpha, VAX, or Itanium systems with DEC C:

$ CC/PREFIX=ALL FINGER.C

$ LINK FINGER

$ FINGER :== $device:[directory]FINGER

Then type:

$ FINGER username@host

or

$ FINGER @host

FINGERD

To build on a VAX with VAX C:

$ CC FINGERD.C

$ LINK FINGERD,SYS$INPUT/OPTIONS TCPWARE:UCX$IPC.OLB/LIBRARY -

_$ SYS$SHARE:VAXCRTL.EXE/SHARE

To build on an Alpha,VAX, or Itanium system with DEC C:

$ CC/PREFIX=ALL FINGERD.C

$ LINK FINGERD,SYS$INPUT/OPTIONS SYS$SHARE:TCPWARE_SOCKLIB_SHR/SHARE

Use the NETCU ADD SERVICE and (optionally) the ADD ACCESS commands to "start" the server.

The ADD ACCESS commands can be used to restrict access to the FINGER server to specific hosts or

networks. For example:

$ NETCU ADD SERVICE FINGER TCP path:FINGERD -

_$ /PRIV=(NOSAME,NETMBX,TMPMBX,WORLD,SYSPRV) /ACCESS=n

Add these commands to the TCPWARE:SERVERS.COM file so that the server starts whenever TCPware

starts.

FORTRAN Program
The TCPWARE_COMMON:[TCPWARE.EXAMPLES] directory also includes a TCPSAMPLE.FOR

FORTRAN language file that transmits or receives data. This program links to the TCPware Socket

Library as follows:

ALPHA and IA64

$ FORTRAN/NOALIGN TCPWARE_COMMON:[TCPWARE.EXAMPLES]TCPSAMPLE

$ LINK TCPSAMPLE, SYS$INPUT/OPTIONS

SYS$SHARE:TCPWARE_SOCKLIB_SHR/SHARE

Ctrl+Z

VAX

$ FORTRAN TCPWARE_COMMON:[TCPWARE.EXAMPLES]TCPSAMPLE

$ LINK TCPSAMPLE, SYS$INPUT/OPTIONS

SYS$SHARE:TCPWARE_SOCKLIB_SHR/SHARE

Ctrl+Z

4. UDPDRIVER Services

Introduction
This chapter describes the User Datagram Protocol (UDP) device driver (UDPDRIVER) services. It

describes the user interface of TCPware for the OpenVMS UDP implementation only. RFC 768 contains

the protocol specification for UDP.

UDP allows an application on one machine to send a datagram to an application on another machine.

The datagram includes a protocol port number that identifies the receiving application from among other

applications executing on the remote machine.

The UDP protocol is transaction-oriented so it does not guarantee reliable delivery of data. If your

applications require ordered and reliable delivery of data, you should use TCP.

UDP services are available through the OpenVMS Queue I/O (SYS$QIO and SYS$QIOW) system

services. These system services:

• Open and close a port.

• Send and receive data over the port.

• Perform status checks on the port.

SYS$QIOW is the synchronous and SYS$QIO the asynchronous form of VMS system services. Use

each form depending on your application's requirements.

See the appropriate OpenVMS documentation for details on the OpenVMS I/O system services and

related services such as asynchronous system traps (ASTs) and event flags.

Note: The QIO calls described in this chapter are used for direct access to the UDPDRIVER. If

you are porting an application that uses the BGDRIVER or INETDRIVER QIO interface, there

may be no need to make modifications. Use TCPware's BGDRIVER (see Chapter 2) or

INETDRIVER (see Chapter 7).

Sequence of Operations
Perform the following sequence of operations to open a port:

1. Assign an I/O channel to the UDP0: device using the SYS$ASSIGN system service.

SYS$ASSIGN creates a new device unit and assigns to it the channel for the port.

2. Open the port with the IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP function of the

SYS$QIO or SYS$QIOW system services.

3. Perform read requests with the IO$_READVBLK function and write requests with the

IO$_WRITEVBLK function as desired.

4. Close the port with the IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN function.

5. Deassign the I/O channel with the SYS$DASSGN system service.

Other Operations
In addition to the sequence of operations described in the preceding section, UDPDRIVER includes

other operations that:

Read a datagram immediately with IO$_READVBLK | IO$M_NOW

Read the next received message without removing it

from the received message queue with

IO$_READVBLK | IO$M_DATACHECK

Suppress checksum generation at the UDP level with IO$_WRITEVBLK | IO$M_NOFORMAT

Request a list of buffers to be sent as a single datagram

with each request with

IO$_WRITEVBLK | IO$M_EXTEND

Read the open ports status with IO$_SENSEMODE

Read the port characteristics with IO$_SENSEMODE | IO$M_CTRL

Read the UDP counters with IO$_SENSEMODE | IO$M_RD_COUNT

Clear these UDP counters after they have been read

with

IO$_SENSEMODE | IO$M_RD_COUNT |

IO$M_CLR_COUNT

You must have OPER privilege to clear the

counters.

Cancel any pending I/O requests with SYS$CANCEL

User Datagram Protocol
Implementation Notes
There are no implementation specific restrictions for the User Datagram Protocol (UDP). The material

presented here does not explain or describe the UDP protocol.

UDPDRIVER System Service Call
Format
The format for the UDPDRIVER SYS$QIO system service call is as follows:

status = SYS$QIO[W](u_long efn, u_int chan, u_long func, unsigned quadword

*iosb, void *astadr, u_long astprm, p1, p2, p3, p4, p5, p6);

SYS$QIO and SYS$QIOW are used to issue UDP functions.

SYS$QIO is for asynchronous service completion, specifying that the service return to the caller

immediately after queuing the I/O request.

SYS$QIOW is for synchronous service completion, specifying that the service place the calling process

in a wait state and only return to the caller after completing the I/O operation.

The OpenVMS IODEF module provides definitions for the SYS$QIO function codes.

Note: The vertical bar (|) used in some of the functions described in this chapter is the C bit-wise

inclusive OR operator.

UDPDRIVER System Service Call
Arguments
You invoke UDPDRIVER system service calls with the standard OpenVMS QIO mechanism.

See the appropriate OpenVMS documentation (for example, the Introduction to VMS System Services

volume) for details on the QIO mechanism.

The following sections describe each system call argument.

efn

Number of the event flag set by completion of the I/O operation. The argument is optional.

chan

Channel assigned to the UDP device to which you are directing the request.

func

Device-specific function code and the modifier, if appropriate, for each operation.

iosb

I/O status block that receives the final completion status of the I/O operation, structured as in the below

figure.

The below table describes the status block fields in more detail.

Field Name Description

Transfer Byte

Count

Number of bytes of data transferred in the I/O operation.

Status Code SS$ status code or special error status code. If the low bit (0) of the OpenVMS error

code is clear, the network has returned an error.

Function-

Specific

Varies for each function code.

astadr

Address of the asynchronous system trap (AST) routine executed when the I/O is completed.

astprm

AST parameter to be passed to the AST routine.

p1…p6

Function-specific parameters, as described for each function.

UDPDRIVER System Service Call
Function Codes
System service call function codes specify what action the QIO performs. This section describes the

following function codes:

IO$_READVBLK IO$_WRITEVBLK | IO$M_EXTEND

IO$_WRITEVBLK IO$_SENSEMODE | IO$M_RD_COUNT

IO$_SENSEMODE IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP

IO$_SETMODE | IO$M_CTRL IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN

IO$_SENSEMODE | IO$M_CTRL

IO$_READVBLK
Receives a datagram. The received datagram is written to the specified user buffer.

Use the IO$M_NOW modifier to execute the function immediately regardless of the amount of available

data. If no data is available, the function returns SS$_NODATA status.

Use the IO$M_DATACHECK modifier with a read request to peek at the next received message without

removing it from the received message queue.

Unless you set a local internet address, datagrams sent to any local interface address, any local broadcast

address (TCPware supports both the standard -1 and nonstandard 0 broadcast address forms), or any

joined multicast host group address are eligible to be received.

Note: UDPDRIVER holds a maximum of five unsolicited datagrams. It is good programming

practice to have a read request pending for incoming datagrams.

Format

status = SYS$QIO(efn, chan, IO$_READVBLK, iosb, astadr, astprm, buffer,

size, udp_address, 0, 0, receive_timeout);

Arguments

p1 = byte *buffer

Address of the user's buffer that receives the data.

p2 = u_int size

Length (in bytes) of the buffer to which the address argument points. This is the amount of data the

user is willing to receive. The value must be at least 20 bytes.

p3 = u_long *udp_address

Address of an optional 4-longword buffer. Receives the source and destination IP addresses and UDP

port numbers from the received datagrams. The below figure shows the buffer format.

Note: IO$_READVBLK returns the source and destination internet addresses in internet byte order,

which is reversed from the normal VMS byte order. For example, internet address 2.3.4.5 is stored

as ^X05040302.

p6 = u_long receive_timeout

Contains the receive time-out time (in seconds). If this value is non-zero, the SS$_TIMEOUT status is

returned if a datagram isn't received within this time.

Status

SS$_ABORT Request aborted due to closed connection

SS$_BUFFEROVF User's buffer too small for entire datagram

Truncated datagram is returned

Remainder of datagram is lost

SS$_CANCEL Request cancelled

SS$_DEVINACT Device is not active or port not opened

SS$_NODATA No datagram available and IO$M_NOW was specified

SS$_NORMAL Success

Datagram received

SS$_THIRDPARTY Port closed by third party

Usually indicates that TCPware was shut down.

SS$_TIMEOUT Receive time out time specified and no datagram received within allowed time

The number of bytes received are returned in the high-order word of the first longword of the I/O status

block. This may be less than the bytes requested.

IO$_SENSEMODE
Reads the active ports status and returns status information for all of the open UDPDRIVER ports.

Format

status = SYS$QIO(efn, chan, IO$_SENSEMODE, iosb, astadr, astprm, buffer,

address, 0, 0, 0, 0);

Arguments

p1 = byte *buffer

Optional address of the 8-byte device characteristics buffer. The data returned is: the device class

(DS$_SCOM) in the first byte, the device type (0) in the second byte, and the default buffer size, which

is the maximum datagram size, in the high-order word of the first longword. IO$_SENSEMODE returns

the second longword as 0.

p2 = u_int *address

Address of the descriptor for the buffer to receive the status information on the open ports. The buffer

receives 22 bytes of information for each open UDP port. The below figure shows the 22 bytes of status

information returned.

Protocol type Word value is 3 for UDPDRIVER ports, 4 for INETDRIVER datagram sockets,

and 5 for BGDRIVER datagram sockets.

Unit number Word value is the UDPDRIVER, INETDRIVER or BGDRIVER device unit

number for the port.

Receive queue Word value is the number of bytes received on the port waiting to be delivered to

the user (via the read function).

Send queue Word value is the number of bytes waiting to be transmitted for the port.

Local internet

address

Longword value is the local internet address specified for the opened port. 0 means

that none was specified.

Local port

number

Word value is the local port number for the opened port.

Peer internet

address

Longword value is the peer's internet address for a fully specified opened port. 0

means the port is not fully specified.

Peer port

number

Word value is the peer's port number for a fully specified opened port. 0 means the

port is not fully specified.

Status

SS$_BUFFEROVF Buffer too small for all connections

Truncated buffer returned

SS$_DEVINACT Device not active

Contact your system manager to determine why TCPware (or UPDRIVER) was not

started

SS$_NORMAL Success

Status information returned

The byte count for the status information buffer is returned in the high-order word of the first longword

of the I/O status block. This may be less than the bytes requested. See the below figure for more

information.

The size in bytes of each connection's record (22 bytes) is returned in the low order word of the second

longword of the I/O status block.

The total number of active connections is returned in the high-order word of the second longword of the

I/O status block. This can be greater than the number of reported connections if the buffer is full.

IO$_SENSEMODE | IO$M_CTRL
Reads the port characteristics for the channel.

Format

status = SYS$QIO(efn, chan, IO$_SENSEMODE | IO$M_CTRL,iosb, astadr,

astprm,buffer, address, 0, 0, 0, 0);

Arguments

p1 = byte *buffer

Optional address of the 8-byte device characteristics buffer. The data returned is: the device class

(DC$_SCOM) in the first byte, the device type (0) in the second byte, and the default buffer size, which

is the maximum datagram size, in the high-order word of the first longword. IO$_SENSEMODE returns

the second longword as 0.

p2 = u_int address

Address of the descriptor for the extended characteristics buffer to receive the characteristics. The

information returned in the buffer is formatted the same as the extended characteristics buffer used to set

the connection characteristics. See the IO$_SETMODE function description for more information.

If bit 12 (mask 4096) is set in the parameter identifier (PID), the PID is followed by a counted string. If

bit 12 is clear, the PID is followed by a longword value. While TCPware currently never returns a

counted string for a parameter, this may change in the future.

The below table lists the port characteristics that the function returns.

PID Meaning

0 Local internet or multicast address. Internet or multicast address is returned as the longword

value. Last specified value or 0 is returned.

1 Local port number. Port number is returned in the low order word of the longword value.

Local port number is either the default port number or the last specified local port number.

2 Peer internet address. Internet address is returned as the longword value. Last specified value

or 0 is returned.

3 Peer port number. Port number is returned in the low order word of the longword value. Last

specified value or 0 is returned.

5 Port datagram size. Maximum datagram size (in bytes) is returned as the longword value.

6 Port state. Longword value is 0 if the port is not open and 1 if the port is open.

7 Shared access control. Longword value is 0 if the port is set for exclusive access and 1 if the

port is set for shared access.

10 Socket options.

14 IP TTL. Longword. Low byte contains the time-to-live (TTL).

15 IP TOS. Longword. Low byte of the longword contains the type of service (TOS).

18 Multicast interface. Longword. IP address of the local interface to use in sending multicast

datagrams. If 0, the default interface is used.

19 Multicast TTL. Longword. Low byte contains the time-to-live (TTL) to be used in multicast

datagrams to be transmitted.

20 Multicast loopback. Longword. Low byte is 0 to disable and 1 to enable local loopback of

multicast datagrams.

Note: The order in which IO$_SENSEMODE | IO$M_CTRL returns the parameters can change. It

is recommended that you search the buffer for the desired parameter.

Status

SS$_BUFFEROVF Buffer too small for all connections

Truncated characteristics buffer returned

SS$_DEVINACT Device not active

Contact your system manager to determine why TCPware (or UPDRIVER) was not

started

SS$_NORMAL Success

Characteristics returned

The byte count for the characteristics buffer is returned in the high-order word of the first longword of

the I/O status block. This may be less than the bytes requested.

The number of bytes in the receive queue is returned in the low order word of the second longword in

the I/O status block.

Note: You can use the SYS$GETDVI system service to obtain the local port number, peer port

number, and peer internet address. The DEVDEPEND field stores the local port number (low order

word) and peer port number (high-order word). The DEVDEPEND2 field stores the peer internet

address.

IO$_SENSEMODE | IO$M_RD_COUNT
Reads the UDP counters. You can add the IO$M_CLR_COUNT modifier to this function to zero the

counters after they are read. However, you must have the OPER privilege to use this modifier.

Format

status = SYS$QIO(efn, chan,IO$_SENSEMODE | IO$M_RD_COUNT, iosb, astadr,

astprm, 0, address, 0, 0, 0, 0);

Argument

p2 = u_long address

Address of the descriptor for the buffer that receives the counters. These counters relate only to the UDP

level and are for all ports since the counters were last zeroed. The counters in the order they are

returned:

1. Number of seconds since last zeroed

2. Number of datagrams transmitted

3. Number of datagrams transmitted with transmission errors

4. Number of datagrams received

5. Number of datagrams received in error (invalid UDP header or checksum)

6. Number of datagrams that were discarded because they could not be delivered to a receiver

All counters are longword values. All counters stop at their maximum value instead of overflowing.

Status

SS$_BUFFEROVF Buffer too small for all connection

Truncated buffer returned

SS$_DEVINACT Device not active

Contact your system manager to determine why TCPware (or UPDRIVER) was not

started

SS$_NORMAL Success, Counters returned

IO$_SETMODE | IO$M_CTRL
Sets the port characteristics in the extended characteristics buffer.

The buffer consists of a series of six-byte or counted string entries. The first word of each entry contains

the parameter identifier (PID) of a characteristic, followed by either a longword that contains the value

of that characteristic, or a counted string. Counted strings consist of a word with the size of the character

string, followed by the character string.

Format

status = SYS$QIO(efn, chan, IO$_SETMODE | IO$M_CTRL,iosb, astadr, astprm, 0,

address, 0, 0, 0, 0);

Argument

p2 = u_int address

The address argument is the address of the extended characteristics buffer's descriptor. The below

figure shows the format of the extended characteristics buffer and its descriptor.

The below table lists the port characteristics you can set. The characteristics remain set, even after you

close the port, until you change them with another IO$_SETMODE operation.

PID Meaning

0 Local internet address. Longword with the local host's internet or multicast address. If used,

must be a valid local internet or multicast address. Set this parameter only if the port is not open.

Specify in internet byte order, reversed from the normal VMS byte order. For example, internet

address 2.3.4.5 is stored as ^X05040302.

To determine if an internet address is local, issue an IO$_SETMODE | IO$M_CTRL function

specifying the address in this characteristic. If the address is not local, the function returns an

SS$_BADPARAM status.

1 Local port number. Low order word of the longword containing the port number. If omitted,

the function uses the unique port number generated when you assign the UDP device unit. Set

this parameter only if the port is not open. If you use 0, the function generates a new, unique

number. Specify in normal VMS byte order.

2 Peer internet address. Longword with the peer host's internet address. If you specify both the

peer's internet address and port number after opening the port (or when the port is opened) the

port is considered fully specified (or opened as fully specified) and all further receive requests

receive datagrams from that address and port only. Transmitted requests that do not provide a

source/destination buffer are sent to that address and port.

Specify in internet byte order, as the local internet address characteristic above. Using 0

functionally omits the address.

3 Peer port number. Low order word of the longword containing the port number. (See PID 2

above.) Specify in normal VMS byte order. Using 0 functionally omits the port number.

7 Shared access control. Longword that specifies whether others can (shared access) or cannot

(exclusive access) use the same local port number. For shared access (used primarily by servers),

the value must be non-zero. You can open any number of ports on the local port number.

Received datagrams are placed in a common queue so that the first receive on any of these

opened ports returns the next datagram. For exclusive access (the default), the longword value

must be 0.

9 Change ownership. Longword that allows the current owner of the device unit to prepare to

pass ownership to another process. Removes the owner's process ID from the connection. If the

value field is non-zero, specifies the new owner UIC for the connection and changes the

connection protection so that only system and owner have access (S:RWLP,O:RWLP). Changes

the following fields for the connection: owner process ID, owner UIC, and device protection.

Primarily the NETCP master server but also other programs use it.

10 Set socket options. Low order word of the longword value field containing the mask value of

the socket options to set. Specify the following options, as defined in the

TCPWARE_INCLUDE:SOCKET.H header file (the values are in hexadecimal):

SO_DEBUG, with a value of 0001, enables debugging (ignored)

SO_REUSEADDR, with a value of 0004, allows reuse of local address (controllable through the

passive open access control parameter

SO_KEEPALIVE, with a value of 0008, keeps connections alive

SO_DONTROUTE, with a value of 0010, prevents routing (ignored)

SO_BROADCAST, with a value of 0020, enables use of broadcasts (ignored)

SO_USELOOPBACK, with a value of 0040, bypasses hardware when possible (ignored)

11 Clear socket options. Low order word of the longword value field containing the mask of the

socket options to clear. (See the options under PID 10 above.)

13 IP options. Counted string containing the IP options to be included in datagrams.

14 IP TTL. Low byte of the longword containing the time-to-live (TTL) for datagrams.

15 IP TOS. Low byte of the longword containing the type of service (TOS) for datagrams.

16 Join multicast group. Counted string of eight bytes of which the first longword contains the

multicast group IP address to join, and the last longword contains the IP address of the local

interface on which to join the group. If 0, the default interface is used.

17 Leave multicast group. Counted string of eight bytes of which the first longword contains the

multicast group IP address to leave, and the last longword contains the IP address of the local

interface from which to leave the group. If 0, the default interface is used.

18 Multicast interface. Longword with the IP address of the local interface to use in sending

multicast datagrams. If 0, the default interface is used.

19 Multicast TTL. Longword of which the low byte contains the time-to-live (TTL) for multicast

datagrams transmitted.

20 Multicast loopback. Longword of which the low byte is 0 to disable, or 1 to enable local

loopback of multicast datagrams.

Status

SS$_BADPARAM Bad parameter or value specified

PID returned in low order word of second longword

SS$_DEVACTIVE Port is open, and you made a request to change a parameter that cannot be

changed when the port is open

SS$_DEVINACT Device not active

Contact system manager why TCPware (or TCPDRIVER) not started

SS$_DUPUNIT Multicast group address already joined

SS$_INSFMEM Insufficient memory to complete request

SS$_IVBUFLEN Extended characteristics buffer length invalid

SS$_NOPRIV Setting IP layer options (PIDs 13 through 20) requires privileges

Application must either be running under SYSTEM UIC or have SYSPRV,

BYPASS, or OPER privilege

SS$_NORMAL Success

Characteristics set

SS$_TOOMUCHDATA Too many multicast group addresses specified

SS$_UNREACHABLE Default interface for multicast group address could not be found

Specify local interface's IP address when joining multicast group

IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN
Closes a previously opened port.

After you issue this modifier, any received datagrams are discarded.

Format

status = SYS$QIO(efn, chan, IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN, iosb,

astadr, astprm, 0, 0, 0, 0, 0, 0);

Arguments

None.

Status

SS$_DEVINACT Device not active

Contact system manager why TCPware (or TCPDRIVER) not started

SS$_NORMAL Success

Port is now (or was) closed

Port can no longer receive datagrams; however, datagrams can still be sent

IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP
Opens a new receive port. When opening a new receive port, you have a choice of either fully or

partially specifying the port characteristics.

To open a fully specified port, you must specify both the peer's internet address and port number.

UDPDRIVER then delivers only datagrams received from that address and port and destined for the

local port number.

To open a partially specified port, do not specify the peer's internet address and port number.

UDPDRIVER then delivers all datagrams destined for the local port number, except those to be

delivered to fully specified ports for the same local port number. You can convert a partially specified

port into a fully specified port by issuing a IO$_SETMODE | IO$M_CTRL function and specifying

both the peer's internet address and port number.

Format

status = SYS$QIO(efn, chan, IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP, iosb,

astadr, astprm, 0, address, 0, 0, 0, 0);

Argument

p2 = u_int address

Address of the descriptor for the extended characteristics buffer. See the previous IO$_SENSEMODE |

IO$M_CTRL function description for details on the extended characteristics buffer.

Note: You only need to open ports if you are to receive datagrams. You can send datagrams

whether or not you open the port.

Status

SS$_BADPARAM Bad parameter or value specified

PID returned in low order word of second longword

SS$_DEVACTIVE Port is already open

SS$_DEVINACT Device not active

Contact system manager why TCPware (or TCPDRIVER) not started

SS$_DUPUNIT Specified port number is already in use by another user, and that user or you did

not request shared access

SS$_NOPRIV Insufficient privilege

Program tried to open local port below 1024, but program does not have BYPASS

or SYSPRV privilege

SS$_NORMAL Success

Port is open and ready for receives

SS$_THIRDPARTY Port closed by third party

Usually indicates that TCPware was shut down.

IO$_WRITEVBLK
Sends a datagram stored in a single user buffer.

The IO$M_NOFORMAT modifier suppresses checksum generation at the UDP level.

Format

status = SYS$QIO(efn, chan,IO$_WRITEVBLK, iosb, astadr, astprm,buffer, size,

address, 0, 0, 0);

Arguments

p1 = byte *buffer

Address of the buffer that contains the data to be sent.

p2 = u_int size

User's buffer size in bytes (the byte count), which is the amount of data that the user is sending. The

value should not be greater than 64000 bytes.

p3 = u_long address

Address of the optional 4-longword source/destination buffer. The source and destination internet

address and port number specified in this buffer are used to transmit the datagram.

The below figure shows the buffer format.

You can use any destination port. You can specify the source internet address, which must be a valid

local address, or specify it as 0. When you specify the address as 0, UDPDRIVER supplies the

appropriate local internet address. You must specify internet addresses in internet byte order, which is

reversed from the normal VMS byte order. For example, internet address 2.3.4.5 is stored as

^X05040302.

If you do not specify the address buffer or if fields in this buffer are 0, UDPDRIVER uses the port's

characteristic values set using the IO$_SETMODE | IO$M_CTRL or IO$_SETMODE |

IO$M_CTRL | IO$M_STARTUP functions for the unspecified fields.

To broadcast a datagram, you must either specify the source address and a destination address of

255.255.255.255, or specify a local network's broadcast address. The local network's broadcast address

is an address with all bits set (or cleared) for the host number portion of the internet address.

Status

SS$_DEVINACT Device not active

Contact system manager why TCPware (or TCPDRIVER) not started

SS$_IVBUFLEN User's buffer too large

SS$_NORMAL Success

Datagram was transmitted

SS$_OPINCOMPL Datagram not transmitted because no destination internet address or port number

was specified by source/destination buffer or port's characteristics

SS$_THIRDPARTY TCPware shut down

SS$_UNREACHABLE No route to specified destination internet address

The number of bytes sent are returned in the high-order word of the first longword of the I/O status

block.

IO$_WRITEVBLK | IO$M_EXTEND
Sends a datagram stored in an array of buffers.

The IO$M_NOFORMAT modifier suppresses checksum generation at the UDP level.

Format

status = SYS$QIO(efn, chan, IO$_WRITEVBLK | IO$M_EXTEND,iosb, astadr,

astprm,msghdr, size, 0, 0, 0, 0);

Arguments

p1 = u_long *msghdr

Address of the msghdr structure. Points to the address of the structure storing the array of additional

structures. Each of these array structures contains the address and size of one of the user buffers.

p2 = u_long size

Size of the msghdr structure. The size must be 24 bytes.

For details on the msghdr structure and an example of using the scatter-gather write function, see

Chapter 3, TCPDRIVER Services.

Status

SS$_DEVINACT Device not active

Contact system manager why TCPware (or TCPDRIVER) not started

SS$_IVBUFLEN User's buffer too large

SS$_NORMAL Success

Datagram was transmitted

SS$_OPINCOMPL Datagram not transmitted because no destination internet address or port number

was specified by source/destination buffer or port's characteristics

SS$_THIRDPARTY TCPware shut down

SS$_UNREACHABLE No route to specified destination internet address

The number of bytes sent are returned in the high-order word of the first longword of the I/O status

block.

SYS$ASSIGN
Assigns a channel to a device.

Format

status = SYS$ASSIGN(char *devnam, u_int *chan, [unsigned long acmode], [char

*mbxnam]);

Arguments

devnam

Address of a character string descriptor pointing to the device name string (UDP0:).

chan

Address of a word into which SYS$ASSIGN writes the channel number.

acmode

Optional access mode associated with the channel. The most privileged access mode used is that of the

caller.

mbxnam

Optional logical mailbox associated with the device.

Status

See the VMS System Services Reference Manual for a complete list of status messages.

SYS$CANCEL
Cancels any I/O that is pending on a channel. The I/O will be completed with an iosb status of

SS$_CANCEL.

Outstanding I/O operations are automatically cancelled at image exit.

Format

status = SYS$CANCEL(u_int chan);

Argument

chan

Number of the channel to be canceled.

Status

See the VMS System Services Reference Manual for a complete list of status messages.

SYS$DASSGN
Releases a channel.

When you deassign a channel, any outstanding I/O is completed with an iosb status of SS$_CANCEL.

I/O channels are automatically deassigned at image exit.

Format

status = SYS$DASSGN(u_int chan);

Argument

chan

Number of the channel to be deassigned.

Status

See the VMS System Services Reference Manual for a complete list of status messages.

Sample Programs

C Programs
The following sample programs, which show the use of SYS$QIO system service calls to the

UDPDRIVER to set up a DISCARD client and server, are included in the

TCPWARE_COMMON:[TCPWARE.EXAMPLES] directory:

• UDPDRIVER_CLIENT.C

• UDPDRIVER_SERVER.C

The client sequence of operations is as follows:

1. Assigns an I/O channel to UDP0, using SYS$ASSIGN.

2. Sends data using $QIO with IO$_WRITEVBLK.

3. Deassigns the channel, using SYS$DASSGN.

The server sequence of operations is as follows:

1. Assigns an I/O channel to UDP0, using SYS$ASSIGN.

2. Opens a receive port, using $QIO(IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP).

3. Exchanges data, using $QIO(IO$_WRITEVBLK) and $QIO(IO$_READVBLK).

4. Closes the port, using $QIO(IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN).

5. Deassigns the channel, using SYS$DASSGN.

To build any one of these applications using DEC C, enter:

$ CC/DECC/PREFIX=ALL filename

$ LINK filename

Ctrl+Z

To build any one of these applications using VAX C, enter:

$ CC/VAXC filename

$ LINK filename, TCPWARE:UCX$IPC/LIB, SYS$INPUT/OPTIONS -

_$ SYS$SHARE:VAXCRTL/SHARE

Ctrl+Z

FORTRAN Program
The TCPWARE_COMMON:[TCPWARE.EXAMPLES] directory also includes a UDPSAMPLES.FOR

FORTRAN language file that transmits or receives data. This program links to the TCPware Socket

Library as follows:

VAX

$ FORTRAN TCPWARE_ROOT:[TCPWARE.EXAMPLES]UDPSAMPLE

$ LINK UDPSAMPLE, SYS$INPUT/OPTIONS

 SYS$SHARE:TCPWARE_SOCKLIB_SHR/SHARE

Ctrl+Z

Alpha and I64

$ FORTRAN/NOALIGN TCPWARE_ROOT:[TCPWARE.EXAMPLES]UDPSAMPLE

$ LINK UDPSAMPLE, SYS$INPUT/OPTIONS

 SYS$SHARE:TCPWARE_SOCKLIB_SHR/SHARE

Ctrl+Z

5. IPDRIVER Services

Introduction
This chapter describes the IP device driver (IPDRIVER) services. It describes both the user and external

interfaces of this IP implementation:

• The user interface exists above the IP layer, de-multiplexing received datagrams, as described

below.

• The external interface provides a method by which you can support four types of network

interfaces. The program you create is responsible for sending and receiving raw IP datagrams

over the network interface.

IP does not include end-to-end data reliability, flow control, sequencing, or other services usually found

in host-to-host protocols. Since TCP does include these services, you should use TCP unless the

applications programs intend to implement or do not require these services.

IP services are available through the OpenVMS Queue I/O (SYS$QIO and SYS$QIOW) system

services. Functions are provided to open and close a port, and to transmit and receive datagrams.

SYS$QIOW is the synchronous and SYS$QIO the asynchronous form of VMS system services. Use

each form depending on your application’s requirements.

The IPDRIVER uses ports to demultiplex received datagrams. When an IP datagram is received,

IPDRIVER validates the header and searches for a port opened on the protocol number indicated within

the datagram’s internet header. If no port is opened for that protocol or that port has no outstanding

receive, IPDRIVER discards the datagram.

See the below figure for an illustration of the user interface and external interface working with

IPDRIVER. The IP specifications are in RFC 791.

The external interface is intended primarily for sites that use proprietary network hardware. This

interface lets you write programs that support the use of IPDRIVER with various network controllers.

This chapter refers to these programs as Network Interface Programs.

Basically, the Network Interface Programs perform two functions:

• Delivery of received datagrams to IPDRIVER for processing.

• Receiving of datagrams from IPDRIVER for transmission.

These programs do not handle IP activities such as routing, fragmentation and reassembly, or datagram

validation. IPDRIVER performs these activities.

Sequence of Operations
Perform the following sequence of operations to open a port:

1. Assign an I/O channel to IPA0: with the SYS$ASSIGN system service. SYS$ASSIGN creates

a new device unit and assigns to it the channel for the port.

2. Open the port with the IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP function of the

SYS$QIO or SYS$QIOW system service.

3. Perform read requests with the IO$_READVBLK function and write requests with the

IO$_WRITEVBLK function to receive and transmit datagrams as desired.

4. Close the port with the IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN function.

5. Deassign the I/O channel with the SYS$DASSGN system service.

See the appropriate OpenVMS documentation for information on the OpenVMS I/O system services

(SYS$ASSIGN, SYS$CANCEL, SYS$DASSGN, SYS$QIO, and SYS$QIOW) and on related system

services, such as asynchronous system trap (AST) and event flag services.

Other Operations
In addition to the sequence of operations described above, IPDRIVER includes other operations that:

Read the network device information, read the ARP table, or read

the routing table with

IO$_SENSEMODE |

IO$M_CTRL

Read the IP counters with IO$_SENSEMODE |

IO$M_RD_COUNT

Internet Protocol Implementation
Notes
The material presented here does not explain or describe the Internet Protocol (IP).

TCPware for OpenVMS implements IP Version 4, and the following restrictions apply:

• The type of service field is ignored.

• All options are ignored (options may be present in incoming datagrams). Options are copied to

fragmented datagrams as required by the Internet Protocol specification.

• The TCPware host may send the following Internet Control Message Protocol (ICMP) messages:

Destination

unreachable
When the datagram cannot be forwarded or the destination port is not active

Echo In response to a echo request

Parameter

problem
When you enable forwarding and the datagram contains a parameter error

Redirect When you enable forwarding and the forwarded datagram exits by the same

interface on which it was received (see the NETCU ENABLE FORWARDING

command)

Timestamp reply In response to a timestamp request

IPDRIVER System Service Call
Format
The format for the IPDRIVER SYS$QIO system service call is as follows:

status = SYS$QIO[W](u_long efn, u_int chan, u_long func, unsigned quadword

*iosb, void *astadr, u_long astprm, p1, p2, p3, p4, p5, p6);

SYS$QIO or SYS$QIOW issues IP functions.

SYS$QIO is for asynchronous service completion, specifying that the service return to the caller

immediately after queuing the I/O request.

SYS$QIOW is for synchronous service completion, specifying that the service place the calling process

in a wait state and only return to the caller after completing the I/O operation.

The OpenVMS IODEF module provides definitions for the SYS$QIO function codes.

Note: The vertical bar (|) used in some of the functions described in this chapter is the C bitwise

inclusive OR operator.

IPDRIVER System Service Call
Arguments
You invoke IPDRIVER system service calls with the standard OpenVMS QIO mechanism.

See the appropriate OpenVMS documentation (for example, the Introduction to VMS System Services

volume) for details on the QIO mechanism.

The following sections describe each system call argument.

efn

Number of the event flag set by completion of the I/O operation. The argument is optional.

chan

I/O channel assigned to the IP device to which you are directing the request.

func

Device-specific function code and the modifier, if appropriate, for each operation.

iosb

I/O status block that receives the final completion status of the I/O operation, structured as in the below

figure.

The below table describes the status block fields in more detail.

Field Name Description

Function-

Specific

Varies for each function code.

Status Code SS$ status code or special error status code. If the low bit (0) of the OpenVMS error

code is clear, the network returned an error.

Transfer Byte

Count

Number of bytes of data transferred in the I/O operation.

astadr

Address of the asynchronous system trap (AST) routine executed when the I/O is completed.

astprm

AST parameter to be passed to the AST routine.

p1…p6

Function-specific parameters, as described for each function.

IPDRIVER User Interface System
Service Call Function Codes
System service call function codes specify what action the QIO performs. This section describes the

following function codes for the User Interface:

IO$_READVBLK IO$_SETMODE | IO$M_CTRL

IO$_SENSEMODE | IO$M_RD_COUNT IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP

IO$_SENSEMODE IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN

IO$_SENSEMODE | IO$M_CTRL IO$_WRITEVBLK

IO$_READVBLK
Receives a datagram. The data received is written to the specified user buffer.

Note: IPDRIVER delivers ICMP messages received for the active protocol. It is up to the

application to check the "protocol" field in the received datagram to determine if the received

datagram is an ICMP message. IPDRIVER can deliver the following ICMP messages: destination

unreachable, time exceeded, parameter problem, source quench, and redirect.

Note: A copy of a broadcast or multicast datagram is looped back by default. This means that your

application receives its own broadcast and multicast datagrams.

Format

status = SYS$QIO(efn, chan,IO$_READVBLK,iosb, astadr, astprm, buffer,

size,0, 0, 0, 0);

Arguments

p1 = byte *buffer

Address of the user’s buffer that receives the datagram. This buffer must be large enough to store the

internet header as well as the expected data. The maximum size of an internet header is 60 bytes.

p2 = u_int size

User’s buffer size in bytes (the byte count). This is the amount of data the user is willing to receive

(including the internet header). The value should not be greater than 65000 bytes.

The internet header contains the following fields:

Destination internet address (i.e., the local

internet address)

Longword at an offset of 16 bytes into the header. Stored

in internet byte order.

Identification Word at an offset of 4 bytes into the header. Stored in

internet byte order.

Options Variable length buffer (internet header size - 20) at an

offset of 20 bytes into the header.

Source internet address Longword at an offset of 12 bytes into the header. Stored

in internet byte order.

Time to Live Byte at an offset of 8 bytes into the header.

Type of Service Byte at an offset of 1 byte into the header.

See RFC 791 for details on the internet header.

Status

SS$ABORT Request aborted due to closed connection

SS$_BUFFEROVF User’s buffer was too small for entire datagram

Truncated datagram is returned

Remainder of datagram is lost

SS$_CANCEL Request cancelled

SS$_DEVINACT Device not active or port was not opened

SS$_NODATA No datagram is available and IO$M_NOW was specified

SS$_NORMAL Success

Datagram received

The number of bytes of the entire datagram (including the internet header) is returned in the high-order

word of the first longword of the I/O status block. The size (in bytes) of the internet header is returned in

the low-order word of the second longword. The size (in bytes) of the data within the datagram is

returned in the high-order word of the second longword.

IO$_SENSEMODE | IO$M_CTRL
Performs the following functions:

• Reads extended characteristics

• Reads network device information

• Reads the ARP table

• Reads the routing table

Format

status = SYS$QIO(efn, chan, IO$_SENSEMODE | IO$M_CTRL,iosb, astadr, astprm,

buffer, address, function, line-id, 0, 0);

Arguments

p1 = byte *buffer

Optional address of the 8-byte device characteristics buffer. The data returned is the device class

(DC$_SCOM) in the first byte, the device type (0) in the second byte, and the default buffer size (0) in

the high-order word of the first longword. The second longword is returned as 0.

p2 = u_int *address

Address of the descriptor for the buffer to receive the information. The format of the buffer depends on

the information requested. Each buffer format is described separately in the section that follows.

If bit 12 (mask 4096) is set in the parameter identifier (PID), the PID is followed by a counted string. If

bit 12 is clear, the PID is followed by a longword value. While TCPware currently never returns a

counted string for a parameter, this may change in the future.

p3 = u_long function

Code that designates the function. The function codes are shown in the below table.

Code Function

0 Read extended characteristics

1 Read network device information

2 Read routing table

3 Read ARP table

8 Read routing table (includes CIDR-related mask information)

9 Returns a record for each interface in the following format:

Line Id

Bytes Transmitted

Bytes Received

All values are longwords.

p3 function code 8 is a superset of function code 2. Both read the routing table, although the output is

different. For details, see the Reading the Routing Table section.

p4 = u_long line-id

Specify this argument only if you are reading a network device’s ARP table function.

Reading Extended Characteristics

Use IO$_SENSEMODE | IO$M_CTRL with function=0 to read the extended characteristics. The

information returned consists of one or more records, each record containing a word parameter identifier

(PID) value followed by either a longword or a counted string. A counted string consists of a word

length followed by the specified number of bytes. The parameters that can be returned are listed in the

below table.

PID Meaning

14 IP TTL. Longword. Low byte of the longword contains the time-to-live (TTL).

15 IP TOS. Longword. Low byte of the longword contains the type of service (TOS).

18 Multicast interface. Longword. IP address of the local interface to use in sending multicast

datagrams. If 0, the default interface is used.

19 Multicast TTL. Longword. Low byte contains the time-to-live (TTL) to be used in sending

multicast datagrams.

20 Multicast loopback. Longword. Low byte is 0 to disable and 1 to enable local loopback of

multicast datagrams.

Reading Network Device Information

Use IO$_SENSEMODE | IO$M_CTRL with p3=1 to read network device information. The

information returned in the buffer (specified by p2=address) can consist of multiple records. Each

record consists of nine longwords, and one record is returned for each device.

The SHOW NETWORKS command in NETCU uses this function.

When you read network device information, the data in each record is returned in the order presented

below. All are longword values.

1. Line id (see the description of the line-id argument)

2. Line’s local internet address

3. Line’s internet address network mask

4. Line’s maximum transmission unit (MTU) in the low-order word, and the line flags in the high-

order word

5. Number of packets transmitted (includes ARP packets for Ethernet lines)

6. Number of transmit errors

7. Number of packets received (includes ARP and trailer packets for Ethernet lines)

8. Number of receive errors

9. Number of received packets discarded due to insufficient buffer space

Reading the Routing Table

Use IO$_SENSEMODE | IO$M_CTRL with p3=2 or p3=8 to read the routing table. The

information returned in the buffer (specified by p2=address) can consist of multiple records. Each

record consists of five longwords, and one record is returned for each table entry.

The SHOW ROUTES command in NETCU uses this function.

The p3=8 function returns full routing information and is a superset of p3=2, which was retained for

backwards compatibility with existing programs. p3=2 and p3=8 return the same table of routing

entries, in the following order, except that p3=2 does not return items 7 and 8 (address mask and Path

MTU):

1 Destination

internet

address.

Destination host or network to which the datagram is bound. Returned as a

longword value.

2 Gateway

internet

address.

Internet address to which the datagram for this route is transmitted. Returned as a

longword value.

3 Flags. Routing table entry’s flag bits. Returned as a word value:

Mask 1, name GATEWAY, if set, the route is to a gateway (the datagram is sent to

the gateway internet address). If clear, the route is a direct route.

Mask 2, name HOST, if set, the route is for a host. If clear, the route is for a

network.

Mask 4, name DYNAMIC, if set, the route was created by a received ICMP

redirect message.

Mask 8, name AUTOMATIC, if set, this route was added by TCPWARE_RAPD

process and will be modified or remoted by that process as appropriate.

Mask 16, name LOCKED, if set, the route cannot be changed by an ICMP

redirect message.

Mask 32, name INTERFACE, if set, the route is for a network interface.

Mask 64, name DELETED, if set, the route is marked for deletion (it is deleted

when the reference count reaches 0).

Mask 128, name POSSDOWN, if set, the route is marked as possibly down.

4 Reference

count.

Number of connections currently using the route. Returned as a word value.

5 Use count. Number of times the route has been used for outgoing traffic. Returned as a

longword value.

6 Line ID. Line identification for the network device used to transmit the datagram to the

destination. See the description of the line-id argument later in this section for

the line ID codes. The following table shows the line identification values

7 Address mask. Address mask for the destination address. Returned as a longword value.

8 Path MTU. Path maximum transmission unit. Returned as a longword value.

Line ID Values:

Line ID Line ID Value

LPB-0 ^X00000001

PRO-n ^X00nn0003

HYP-n ^X00nn0004

X25-n ^X00nn0006

UNA-n ^X00nn0102

DSV-n ^X00nn0105

SLIP-n ^X00nn0141

QNA-n ^X00nn0202

DSB-n ^X00nn0205

DECNET-n ^X00nn0241

BNA-n ^X00nn0302

DST-n ^X00nn0305

PPP-n ^X00nn0341

SVA-n ^X00nn0402

MNA-n ^X00nn0502

ISA-n ^X00nn0602

KFE-n ^X00nn0702

MXE-n ^X00nn0802

ERA-n ^X00nn0902

EWA-n ^X00nn0A02

CLIP-n ^X00nn2002

ELA-n ^X00nn2102

MFA-n ^X00nn4102

FZA-n ^X00nn4202

FAA-n ^X00nn4302

FEA-n ^X00nn4402

FQA-n ^X00nn4502

TRA-n ^X00nn6102

TRE-n ^X00nn6202

Note: The I/O status block (iosb) returns routing table entry size information for the p3=8

function to assist in diagnosing buffer overflow situations. See the Status section for details.

Reading the ARP Table Function

Use IO$_SENSEMODE | IO$M_CTRL with function=3 to read a network device’s ARP table

function. The information returned in the buffer (specified by p2=address) depends on the line ID

specified in line-id. The SHOW ARP command in NETCU uses this function.

The line-id argument is the line ID and is a longword value. The least significant byte of the line ID

is the major device type code. The next byte is the device type subcode. The next byte is the controller

unit number. The most significant byte is ignored.

The information returned in the buffer can consist of multiple records. Each record consists of 12 bytes,

and one record is returned for each ARP table entry.

When reading a table function, the data in each record is returned in the following order:

1 Internet

address.

Returned as a longword value.

2 Physical

address.

Returned as a 6 byte value.

3 Flags. Returned as a word value. The ARP table entry’s flag bits are shown in the

following table.

ARP Table Entry Flag Bits:

Mask Name Description

1 PERMANENT If set, the entry can only be removed by a NETCU REMOVE ARP command

and if RARP is enabled, the local host responds if a RARP request is received

for this address. If clear, the entry can be removed if not used within a short

period.

2 PUBLISH If set, the local host responds to ARP requests for the internet address (this bit is

usually only set for the local host’s entry). If clear, the local host does not

respond to received ARP requests for this address.

4 LOCKED If set, the physical address cannot be changed by received ARP requests/replies.

4096 LASTUSED If set, last reference to entry was a use rather than an update.

8192 CONFNEED If set, confirmation needed on next use.

16384 CONFPEND If set, confirmation pending.

32768 RESOLVED If set, the physical address is valid.

Status

SS$_BADPARAM Code specified in function argument invalid

SS$_BUFFEROVF Buffer too small for all information

Truncated buffer returned.

SS$_DEVINACT Device not active

Contact your system manager to determine why TCPware was not started

SS$_NORMAL Success

Requested information returned

SS$NOSUCHDEV Line identification specified in arp argument does not exist

The byte count for the information or counters buffer is returned in the high-order word of the first

longword of the I/O status block. This can be less than the bytes requested.

• For the p3=2 routing table function, in the second longword of the I/O status block, bit 0 is

always set, bit 1 is set if the forwarding capability is enabled, and bit 2 is set if ARP replies for

non-local internet addresses are enabled.

• For the p3=8 routing table function, the IOSB contains the following:

Status Code SS$_NORMAL or SS$_BUFFEROVF

Transfer Byte Count Number of bytes of returned information

Entry Size Number of bytes in each entry

Number of Entries Number of entries in the routing table

If the status is SS$_BUFFEROVF, you can determine the number of routing entries actually returned by

calculating (Transfer Byte Count) DIV (Entry Size) and comparing that with the Number of Entries

value. Be sure to check the Entry Size in the IO status block. Later versions of TCPware may return

more information for each entry, which will return a larger Entry Size. Any additional information to be

returned in the future will be added to the end of the returned entry.

IO$_SENSEMODE | IO$M_RD_COUNT
Reads the IP counters.

The IO$M_CLR_COUNT modifier with this function zeros the counters after they are read. Using

IO$M_CLR_COUNT requires the OPER privilege.

Format

status = SYS$QIO(efn, chan,IO$_SENSEMODE | IO$M_RD_COUNT, iosb, astadr,

astprm, buffer, address, 0, 0, 0, 0);

Arguments

p1 = byte *buffer

Optional address of the 8-byte device characteristics buffer. The data returned is the device class

(DC$_SCOM) in the first byte, the device type (0) in the second byte, and the default buffer size (0) in

the high-order word of the first longword. The second longword is returned as 0.

p2 = u_long *address

Address of the descriptor for the buffer to receive the information. The information returned in the

buffer is a record that consists of eleven longwords. The data in the record is returned in the order

below. Each value is a longword.

1. Number of seconds since last zeroed

2. Number of IP datagrams transmitted

3. Number of IP datagrams fragmented

4. Number of IP datagrams forwarded (if gateway capability is enabled)

5. Number of ICMP messages transmitted

6. Number of IP datagrams and fragments received

7. Number of IP fragments received

8. Number of ICMP messages received

9. Number of datagrams delivered to receivers

10. Number of IGMP messages transmitted

11. Number of IGMP messages received

Status

SS$_BUFFEROVF Buffer too small for all characteristics

Truncated characteristics buffer returned

SS$_NOPRIV Insufficient privilege

OPER privilege required to zero counters

The byte count for the counters buffer is returned in the high-order word of the first longword of the I/O

status block. This is the actual number of bytes received, which may be less than what was requested.

IO$_SETMODE | IO$M_CTRL
Sets the port characteristics.

Format

status = SYS$QIO(efn, chan,IO$_SETMODE | IO$M_CTRL, iosb, astadr, astprm, 0,

address, 0, 0, 0, 0);

Argument

p2 = u_int *address

IO$_SETMODE | IO$M_CTRL sets the port characteristics in the extended characteristics buffer. The

buffer consists of a series of six-byte or counted string entries. The first word of each entry contains the

parameter identifier (PID) of a characteristic, followed by either a longword that contains the value for

that characteristic or a counted string. Counted strings consist of a word with the size of the character

string followed by the character string.

The address argument is the address of the descriptor for the extended characteristics buffer. The below

diagram shows the format of the descriptor for the extended characteristics buffer and the extended

characteristics buffer.

The below table lists the port characteristics you can set.

PID Meaning

13 IP options. Counted string. Internet Protocol options to be included in datagrams to be

transmitted.

14 IP TTL. Longword. Low byte of the longword contains the time-to-live (TTL) to be used in

datagrams to be transmitted.

15 IP TOS. Longword. Low byte of the longword contains the type of service (TOS) to be used in

datagrams to be transmitted.

16 Join multicast group. Counted string of eight bytes. First longword contains the multicast

group IP address to join. Last longword contains the IP address of the local interface on which to

join the group (if 0, the default interface is used).

17 Leave multicast group. (See the previous PID.)

18 Multicast Interface. Longword. IP address of the local interface to use in sending multicast

datagrams. If 0, the default interface is used.

19 Multicast TTL. Longword. Low byte contains the time-to-live (TTL) to be used in multicast

datagrams to be transmitted.

20 Multicast loopback. Longword. Low byte is 0 to disable and 1 to enable local loopback of

multicast datagrams.

Note: The above parameters remain set even after you close the port until you change them with

another IO$_SETMODE operation

Status

SS$_BADPARAM Specified bad parameter or parameter value

Returns PID in low order word of second longword

SS$_DEVACTIVE Port is open, and you made request to change parameter that cannot be changed

when port is open

SS$_DEVINACT Device is not active

Contact your system manager to determine why TCPware (or IPDRIVER) was

not started

SS$_DUPINIT Multicast group address already joined

SS$_INSFMEM Insufficient memory to complete request

SS$_IVBUFLEN Extended characteristics buffer length invalid

SS$_NOPRIV Setting IP layer options (PIDs 13 through 20) requires privileges

Application must either be running under SYSTEM UIC or have SYSPRV,

BYPASS, or OPER privilege

SS$_NORMAL Success

Characteristics set

SS$_TOOMUCHDATA Too many multicast group addresses specified

SS$_UNREACHABLE No default interface for multicast group address could not be found

Specify local interface’s IP address when joining multicast group

IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN
Closes a port.

Closing a port aborts all pending receives for the port, prevents further receives and transmissions on the

port, and lets another user use the protocol number.

Format

status = SYS$QIO(efn, chan,IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN,iosb,

astadr, astprm, 0, 0, 0, 0, 0, 0);

Arguments

None.

Status

SS$_DEVINACT Device not active

Contact your system manager to determine why TCPware (or IPDRIVER) was not

started

SS$_NORMAL Success

Port now (or was) closed

Port can no longer receive any datagrams; however, datagrams can still be sent

SS$_NOPRIV Insufficient privileges

BYPASS or SYSPRV privilege required to open port

IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP
Opens a port. Opening a port lets you receive internet datagrams.

Requires BYPASS or SYSPRV privileges.

Format

status = SYS$QIO(efn, chan,IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP, iosb,

astadr, astprm, 0, 0, protocol, num, 0, 0);

Arguments

p3 = u_int protocol

Internet protocol number in the low byte. Datagrams are transmitted using this protocol number, and you

can only receive datagrams with it.

See the latest Assigned Numbers RFC for a list of the currently assigned protocol numbers.

p4 = u_long num

Number of unsolicited receives to be queued for delivery. A value of 0 to 5 is valid. 0 results in all

unsolicited receives being discarded.

Status

SS$_DEVACTIVE Port already open

SS$_DEVINACT Device not active

Contact your system manager to determine why TCPware was not started

SS$_DUPUNIT Specified port number already in use by another port

SS$_NOPRIV Insufficient privileges

You need BYPASS or SYSPRV privilege to open port

SS$NORMAL Success

Port open and write and read functions can be used to transmit or receive datagrams

IO$_WRITEVBLK
Sends data. This builds and transmits the datagram using the protocol number for the port.

The IO$M_NOFORMAT modifier prevents fragmentation. This sets the “don’t fragment” bit in the IP

datagram.

The IO$M_FORCEPATH modifier prevents routing on the datagram. This limits the datagram to be sent

to a locally connected address.

The IO$M_LPBEXT modifier inhibits a copy of a broadcast or multicast datagram from being looped

back.

Format

status = SYS$QIO(efn, chan,IO$_WRITEVBLK,iosb, astadr, astprm, buffer, size,

address, dest, source, 0);

Arguments

p1 = byte *buffer

User’s buffer address. This is the buffer that contains the data to be sent. The buffer does not include the

internet header.

p2 = u_int size

User’s buffer size in bytes (the byte count). This is the amount of data that the user has to send. The

value should not be greater than 65000 bytes.

If the resulting datagram is larger than the maximum transmission unit (MTU) for the network, the

datagram is fragmented, unless you specified IO$M_NOFORMAT. In that case, IO$_WRITEVBLK

returns an error.

p3 = u_int address

Address of the descriptor for the optional transmit characteristics buffer.

The transmit characteristics buffer consists of a series of 6-byte and counted string entries. The first

word of each entry contains the parameter identifier (PID) followed either by a longword or by a

counted string.

The PID determines whether a longword value or counted string follows. The longword contains one of

the values that can be associated with that parameter. The counted string consists of a word byte count

field followed by the specified number of bytes of data.

The below diagram shows the format of the descriptor for the extended characteristics buffer and the

extended characteristics buffer.

The following table lists the characteristics you can specify.

PID Meaning

1 Type of service. Low-order byte of the longword value. Contains the type of service. If omitted,

the previously specified value or the default of 0 is used.

2 Time to live. Low-order byte of the longword value field. Contains the time to live. If not

specified, the previously specified value of the default is used. The default time to live is

specified by the IPDEFAULTTTL parameter for non-multicast datagrams and is 1 for multicast

datagrams.

3 Identification. Low-order word of the longword value field. Contains the identification

number. IPDRIVER automatically increments this value for each transmission (the initial value

starts at 0).

4 Options. Counted string. Contains the internet options buffer. This buffer is used as is and is

not validated. The maximum size of this counted string is 40 bytes. Note that if the options are

not a multiple of 4 bytes, IPDRIVER adds the required padding (using the End of Option List

option).

5 Protocol. Lowest-order byte of the longword value field. Contains the IP protocol number to be

used in sending the datagram. Can be used to override the protocol under which this unit was

opened.

See the specifications for the Internet Protocol (RFC 791) for details on each of the internet header items

described above.

p4 = u_long dest

Destination internet address. Internet addresses are specified in internet byte order (which is reversed

from the normal VAX byte order). For example, internet address 2.3.4.5 is stored as ^X05040302. If the

destination internet address is the loopback internet address, IPDRIVER loops-back the datagram.

p5 = u_long source

Optional source internet address. Must be a valid local internet address (if specified). Internet addresses

are specified in internet byte order (which is reversed from the normal VAX byte order). For example,

internet address 2.3.4.5 is stored as ^X05040302.

Status

SS$_BADPARAM Bad parameter or parameter value specified

PID returned in low order word of second longword

If parameter ID is 0, source internet address is not valid (it is not local address)

SS$_DEVINACT Device not active

Contact your system manager to determine why TCPware (or IPDRIVER) was

not started

SS$_INSFMEM Insufficient memory available to fragment datagram

SS$_INVSECLASS Basic Security Option label incompatible with outgoing IPSO settings

SS$_IVBUFLEN User’s buffer too large

SS$_NORMAL Success

Datagram transmitted

Failure of translation is not considered an error because datagram would most

likely be retransmitted by higher level software at a later time

Also allows some time for ARP reply to be received

SS$_OPINCOMPL Datagram not transmitted because no destination internet address or port number

was specified by source/destination bugger or port’s characteristics

SS$_THIRDPARTY TCPware shut down

SS$_UNREACHABLE No route to the destination internet address exists

Add route for destination or check internet address

The number of data bytes transmitted are returned in the high-order word of the first longword of the I/O

status block.

SYS$ASSIGN
Assigns a channel to a device.

Format

status = SYS$ASSIGN (char *devnam, word *chan, [u_long acmode], [char

*mbxnam]);

Arguments

devnam

Address of a character string descriptor pointing to the device name string (IPA0:).

chan

Address of a word into which SYS$ASSIGN writes the channel number.

acmode

Optional access mode associated with the channel. The most privileged access mode used is that of the

caller.

mbxnam

Optional logical mailbox associated with the device. (Not supported by IPDRIVER)

Status

See the VMS System Services Reference Manual for a complete list of status messages.

SYS$CANCEL
Cancels any I/O that is pending on a channel.

The I/O will be completed with an iosb status of SS$_CANCEL.

Outstanding I/O operations are automatically canceled at image exit.

Format

status = SYS$CANCEL(u_int chan);

Argument

chan

Number of the channel to be canceled.

Status

See the VMS System Services Reference Manual for a complete list of status messages.

SYS$DASSGN
Releases a channel.

When you deassign a channel, any outstanding I/O is completed with an iosb status of SS$_CANCEL.

I/O channels are automatically deassigned at image exit.

Format

status = SYS$DASSGN(u_int chan);

Argument

chan

Number of the channel to be deassigned.

Status

See the VMS System Services Reference Manual for a complete list of status messages.

IPDRIVER External Interface
This section describes the IPDRIVER External Interface.

This interface allows you to write Network Interface Programs that support the use of IPDRIVER with

various network controllers.

I/O Functions for the External Interface
The Network Interface Program uses four functions to communicate with IPDRIVER. The below table

lists these functions.

Function Purpose

IO$_INITIALIZE Initializes the IPDRIVER External Interface for the network device.

(Informs IPDRIVER that the External Interface is on-line.)

IO$_READVBLK Receives datagrams from IPDRIVER for transmission over the

network.

IO$_SETMODE | IO$M_CTRL

| IO$M_SHUTDOWN
Shuts down the IPDRIVER External interface.

IO$_WRITEVBLK Delivers datagrams that are received from the network to

IPDRIVER. IPDRIVER processes and delivers them to higher-level

applications (such as TCP and UDP).

Sequence of Operations for the Network Interface
Program
This section provides the typical sequence of operations for the Network Interface Program. These

operations apply only to the IPDRIVER External Interface. Any operations needed to set up and use the

network device depend on the specific requirements of that device.

The Network Interface Program:

1. Uses the Assign I/O Channel (SYS$ASSIGN) system service to assign an I/O channel to

IPA0:. SYS$ASSIGN creates a new unit for the channel.

2. Issues the IO$_INITIALIZE function on the assigned channel to initialize the network line.

3. Issues the IO$_READVBLK function to read IP datagrams from IPDRIVER, then sends the

datagrams over the network device.

4. Issues the IO$_WRITEVBLK function for each datagram received from the network device.

5. Issues the IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN function to shut down the

network device.

6. Uses the Deassign I/O Channel (SYS$DASSGN) system service to deassign the channel.

Your Network Interface programs must provide their own means of starting up and shutting down. You

cannot use the NETCU START/IP and STOP/IP commands to start up or shut down these network

lines.

IPDRIVER External Interface System Service Call
Codes
The following pages describe each SYS$QIO[W] function code for the external interface. System service

call function codes specify what action the QIO performs. See the format specified in the IPDRIVER

System Service Call Format section before referencing each function.

You can use OpenVMS system services SYS$ASSIGN, SYS$DASSGN, and SYS$CANCEL for the

External Interface in the same way as described for the User Interface in the IPDRIVER User Interface

System Service Call Functions section.

This section describes the following function codes for the External Interface:

IO$_INITIALIZE IO$_SETMODE IO$_READVBLK IO$_WRITEVBLK

IO$_INITIALIZE (External)
Informs IPDRIVER that the External Interface is on-line. IPDRIVER adds the External Interface to a list

of existing network interfaces and creates a route for it.

Once a Network Interface program issues an IO$_INITIALIZE on a channel, that channel becomes

the External Interface. After that, the functions documented in the IPDRIVER User Interface System

Service Call Function section for the User Interface (such as those used to open and close ports) are no

longer valid: you must use only those functions documented in this part of the chapter, the IPDRIVER

External Interface section.

Format

status = SYS$QIO(efn, chan,IO$_INITIALIZE,iosb, astadr, astprm, buffer,

size, 0, 0, 0, 0);

Arguments

p1 = byte *buffer

Address of the line information buffer. The below diagram illustrates this buffer.

In the figure:

address

mask

is the address mask for the network. The bits set in the mask are the bits that specify the

host number (the one’s complement of the network mask).

flags is the line’s flag bits. Typically, this value is 0, but the following bits can be set as needed:

internet

address

is the internet address of the host on the network or, for unnumbered interfaces, the

internet address used as the source address when sending datagrams over the interface if a

source address was not explicitly specified.

lineid is the line identification. Its value should be 00nnxx41 (hex), where:

nn is the unit number of the line.

xx is a unique value for the specific network line. SLIP lines are 01. IP-over-DECnet lines

are 02. PPP lines are 03. For Network Interface Programs, nn should start at 80 (hex).

mtu is the maximum transmission unit for the network. It is the size of the largest IP datagram

that can be transmitted over the network.

Bit Mask Meaning

0 1 Unnumbered interface. If this bit is set, the interface does not have a local address and

the internet address specified is only used when originating datagrams over the interface

when no source address was explicitly specified.

p2 = u_int size

Size of the line information buffer, in bytes.

Status

SS$_NORMAL Initialization successful

SS$_BADPARAM lineid parameter does not contain valid value, or already in use

Lowest order byte must be 41 (hex) for External Interface

SS$_DEVACTIVE Device already active

SS$_DEVREQERR You are trying to start up new interface while IPDRIVER is in process of shutting

down

SS$INSFMEM Insufficient system memory

Necessary control block cannot be allocated

SS$_IVADDR Address already in use

SS$_NOPRIV Insufficient privileges

You need OPER privilege to start network interface

IO$_READVBLK (External)
Requests IPDRIVER to return the next IP datagram to the Network Interface program. The Network

Interface program should then send the datagram over the network.

The Network Interface program is responsible for adding the network header to the datagram.

IPDRIVER provides "unsolicited" read support. This means that datagrams are held in a queue until the

Network Interface Program issues an IO$_READVBLK function. IPDRIVER queues up to 100

datagrams.

Format

status = SYS$QIO(efn, chan, IO$_READVBLK,iosb, astadr, astprm, buffer, size,

0, 0, 0, 0);

Arguments

p1 = byte *buffer

Address of the buffer that receives the next IP datagram.

p2 = u_int size

Size, in bytes, of the buffer. This buffer must be at least as large as the MTU of the interface and not

greater than 65000 bytes. Otherwise, IPDRIVER might return a SS$_DATAOVERUN status code.

Status

SS$_NORMAL Read successful

In I/O status block, high order word of first longword contains size of IP datagram

in bytes

SS$_ABORT Requests aborted

External Interface is down

SS$_DATAOVERUN Receive buffer in Network Interface Program too small for IP datagram

Truncated datagram returned to user-specified buffer

In I/O status block high order word of first longword contains truncated size of IP

datagram in bytes

SS$DEVINACT Device not active

Use IO$_INITIALIZE function first

The high-order word of the first longword contains the size of the IP datagram read.

The second longword of the I/O status block contains the internet address of the next destination. The

next destination can be the final destination or a gateway. This longword is valid only for the

SS$_NORMAL and SS$_DATAOVERUN status codes.

IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN
(External)
Shuts down the External Interface for the channel.

Causes IPDRIVER to remove the network interface from the list of available interfaces. It also removes

any routes for the network interface.

Format

status = SYS$QIO(efn, chan,IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN,iosb,

astadr, astprm, 0, 0, 0, 0, 0, 0);

Arguments

None.

Status

SS$_Normal Success

IO$_WRITEVBLK (External)
Used after the Network Interface program receives a datagram from the network. Delivers the datagram

to IPDRIVER for processing.

Format

status = SYS$QIO(efn, chan,IO$_WRITEVBLK,iosb, astadr, astprm, buffer, size,

0, flags, 0, 0);

Arguments

p1 = byte *buffer

Address of the buffer containing the full IP datagram.

p2 = u_int size

Size of the IP datagram in bytes. The value should not be greater than 65000 bytes.

Note: The buffer specified by these parameters must not include the network header.

p4 = u_long flags

Flag bits providing information about the received datagram as follows:

Bit Mask Meaning

0 1 Datagram was sent to a broadcast/multicast address. This information is used to prevent

sending ICMP datagrams to broadcast/multicast addresses. All other bits must be 0.

Status

SS$_NORMAL Write successful

SS$_ABORT Request aborted

External Interface shut down

SS$_DEVINACT Device not active

Use IO$_INITIALIZE function first

6. INETDRIVER Services

Introduction
This chapter describes the internet device driver (INETDRIVER) services.

The INETDRIVER services provide an asynchronous I/O implementation of the UNIX socket calls

within the OpenVMS Queue I/O Request (SYS$QIO and SYS$QIOW) system services. These system

services allow for efficient socket operations in that Asynchronous System Trap (AST) routines can be

associated with I/O requests.

The INETDRIVER services provide the Stanford Research Institute (SRI) QIO interface. The interface

is an international de facto standard that provides a one-to-one mapping between the UNIX socket

functions and the OpenVMS SYS$QIO system services.

INETDRIVER interfaces directly with the TCP, UDP, and IP (for raw functions) protocols in the

transport layers. It does not replace the TCPDRIVER or UDPDRIVER services but provides another

way to communicate with them.

For details, see the TCPDRIVER Services and UDPDRIVER Services chapters.

INETDRIVER supports QIOs to:

• Create a stream, datagram, or raw socket

• Bind a socket to a local port or address

• Set a socket to listen mode

• Accept a connection

• Create a connection

• Send and receive data

• Perform other socket and control functions

Note: The TCPware INETDRIVER supports stream, datagram, and raw sockets, but only for the

AF_INET address family.

Sequence of Operations
The INETDRIVER sequences of operations are divided into client operations and server operations.

Each have distinct steps, as outlined in the following sections.

Client Operations
The INETDRIVER client operations for a stream socket connection are as follows:

1. Assign an INET channel to the INET0: device using the SYS$ASSIGN system service. This

creates a new INET device unit and assigns a channel to it.

2. Create a stream socket using the SYS$QIO[W] system service with the IO$_SOCKET function.

3. If you want to assign a particular address to an unnamed socket, use the SYS$QIO[W]

IO$_BIND function. This is optional and not necessary under most circumstances.

4. Connect to a peer on the server using the SYS$QIO[W] IO$_CONNECT function. Specify the

server's internet address as a "well-known" port number.

5. Exchange data with the peer using the SYS$QIO[W] IO$_SEND and SYS$QIO[W]

IO$_RECEIVE functions.

6. After the data exchange is complete, deassign the channel using the SYS$DASSGN system

service.

The below figure shows the client operation steps.

Server Operations
The INETDRIVER server operations for a simple, single-thread stream socket connection are as

follows:

1. Assign an INET listen channel to the INET0: device using the SYS$ASSIGN system service.

This creates a new INET device unit and assigns a channel to it.

2. Create a stream socket using the SYS$QIO[W] IO$_SOCKET function.

3. Bind the socket to the server's "well-known" port number using the SYS$QIO[W] IO$_BIND

function.

4. Enable listens and set up the listen queue length using the SYS$QIO[W] IO$_LISTEN function.

5. Assign an INET accept channel to the INET0: device using the SYS$ASSIGN system service

again.

6. Accept incoming connect requests using the SYS$QIO[W] IO$_ACCEPT function on the accept

channel, specifying the listen channel as a parameter. Then wait for the client to connect.

7. Exchange data with the client on the accept channel using the SYS$QIO[W] IO$_SEND and

SYS$QIO[W] IO$_RECEIVE functions.

8. After the data exchange is complete, deassign the accept channel using the SYS$DASSGN

system service. This closes the connection.

Repeat steps 5 through 8 to process additional server connections. The below figure shows the server

operations steps.

Multicasting
INETDRIVER Services includes the following setsockopt() and getsockopt() definitions at

the IPPROTO_IP level for multicasting support:

#define IP_MULTICAST_IF 2

#define IP_MULTICAST_TTL 3

#define IP_MULTICAST_LOOP 4

#define IP_ADD_MEMBERSHIP 5

#define IP_DROP_MEMBERSHIP 6

The IP_ADD_MEMBERSHIP and IP_DROP_MEMBERSHIP requests use the following structure:

struct ip_mreq {

 struct in_addr imr_multiaddr; /* Multicast address of group */

 struct in_addr imr_intrface; /* local IP address of interface */

};

Other Operations
In addition to the routines associated with the sequence of operations above, INETDRIVER also

includes other operations that:

• Set socket options (IO$_SETSOCKOPT)

• Get socket options (IO$_GETSOCKOPT)

• Shut down sockets (IO$_SHUTDOWN)

• Get socket names (IO$_GETSOCKNAME)

• Change the INET device characteristics (IO$_SETCHAR)

• Get the address of the remote end for a socket (IO$_GETPEERNAME)

• Change socket characteristics (IO$_IOCTL)

• Deliver an AST to the process if out-of-band data arrives (IO$_SETMODE | IO$_ATTNAST)

INETDRIVER Socket Library
The Socket Library routines described in the Socket Library chapter make use of the TCPDRIVER and

UDPDRIVER programming interface. An alternate set of socket routines is available that makes use of

the INETDRIVER programming interface and allows a mix of socket routines and INETDRIVER QIO

calls. This alternate set of socket routines is presently only available in the TCPWARE:SOCKLIB.OLB

socket library (the routines are not part of the TCPWARE_SOCKLIB_SHR.EXE shareable run-time

library). The following routines are available:

inet_socket inet_socket_recv inet_sendto inet_socket_ioctl

inet_bind inet_recv inet_shutdown inet_getsockname

inet_connect inet_recvfrom inet_socket_close inet_getpeername

inet_listen inet_socket_write inet_setsockopt inet_socket_perror

inet_accept inet_socket_send inet_getsockopt inet_tcpware_server

inet_socket_read inet_send

The socket number (descriptor) used by these routines is the VMS I/O channel of the INETDRIVER

device being used. This allows for the mixing of these routines and direct QIOs to the driver.

INETDRIVER System Service Call
Format
The format for the INETDRIVER SYS$QIO system service call is as follows:

status = SYS$QIO[W](u_long efn, u_int chan, u_long func, unsigned quadword

*iosb, void *astadr, u_long astprm, p1, p2, p3, p4, p5, p6)

The TCPWARE_INCLUDE:INETIODEF.H file provides definitions for the QIO function codes.

Note: The E-prefix status codes (such as ECONNRESET) listed under the STATUS headings are

returned in the I/O status block (iosb) and are not the UNIX errno values. As described in the I/O

Status Block Fields section under the iosb argument, the values returned for these codes are the

UNIX errno values multiplied by 8 and logically ORed with 0x8000.

Note: The vertical bar (|) used in some of the functions described in this chapter is the C bitwise

inclusive OR operator.

INETDRIVER System Service Call
Arguments
You invoke UDPDRIVER system service calls with the standard OpenVMS QIO mechanism.

See the appropriate OpenVMS documentation (for example, the Introduction to VMS System Services

volume) for details on the QIO mechanism.

The following sections describe each system call argument.

efn

(Optional) Number of the event flag to be set when the I/O operation completes.

chan

I/O channel assigned to the INET device to which the request is directed.

func

Device-specific function codes and modifiers for each operation.

iosb

I/O status block that receives the final completion status of the I/O operation, structured as in the below

figure.

The below table describes the status block fields in more detail.

Field Name Description

Transfer Byte

Count

Number of bytes of data transferred in the I/O operation.

Status Code SS$ status code or special error status code. If the low bit (0) of the OpenVMS error

code is clear, the network has returned an error.

If the most significant bit of this word is set (mask of 0x8000), the status code is the

UNIX errno code multiplied by 8 and logically ORed with 0x8000.

Function-

Specific

Varies for each device and function code.

astadr

Asynchronous system trap (AST) routine to be executed when the I/O is completed.

astprm

AST parameter to be passed to the AST routine.

p1…p6

Function-specific parameters, as described for each function.

INETDRIVER System Service Call
Function Codes
System service call function codes specify what action the QIO performs.

IO$_ACCEPT
Waits for a connection to a listening socket and associates a OpenVMS channel to the socket for that

new connection. The connection's socket has the same properties as the listening socket.

If no pending connections exist on the queue and the socket is not marked as nonblocking,

IO$_ACCEPT blocks the caller until a connection is made to the listening socket. If the socket is

marked as nonblocking and no pending connections exist on the queue, IO$_ACCEPT returns an

EWOULDBLOCK error.

Multiple IO$_ACCEPT requests are supported on a single channel.

See IO$_ACCEPT_WAIT for an alternative to IO$_ACCEPT.

Format

status = SYS$QIO(efn, new-inet-chan, IO$_ACCEPT, iosb, astadr, astprm,

address, addrlen, inet-chan, 0, 0, 0);

Arguments

chan = u_int new-inet-chan

OpenVMS channel to a newly created INET: device. This channel should be created by using

SYS$ASSIGN to assign a new channel to INET0: prior to issuing the IO$_ACCEPT function. The

accepted connection uses this channel.

p1 = struct *address

Optional pointer to a structure that receives the peer's address for the connection following completion

of the IO$_ACCEPT function. The structure is defined as follows:

Struct

{

 unsigned long Length;

 struct sockaddr_in Address;

}

p2 = u_int addrlen

Length (in bytes) of the buffer to which the address argument points. The value must be at least 20

bytes.

p3 = u_int inet-chan

OpenVMS channel for the INET: device on which the IO$_LISTEN was performed. After accepting

the connection, this device remains available to accept additional connections.

Status

EALREADY Operation is already in progress or the socket is in use (e.g. an IO$_ACCEPT is

active on the channel).

ECONNABORTED Listening channel was shut down or aborted.

EINVAL Operation is not valid (for a nonstream socket), or an invalid inet-chan or

addrlen argument was specified.

ENETDOWN Network was shut down.

ENOTSOCK No socket exists on the listening channel.

EOPNOTSUPP Socket is not of type SOCK_STREAM.

EWOULDBLOCK Connection is marked as nonblocking and no connection is waiting to be

accepted.

SS$_IVCHAN Invalid listening channel number was specified.

SS$_THIRDPARTY Network is being shut down.

IO$_ACCEPT_WAIT
Waits for an incoming connection on a listening socket without accepting the connection. When the

IO$_ACCEPT_WAIT is complete, a connection is available for accepting; IO$_ACCEPT is then used

to accept it.

Multiple IO$_ACCEPT_WAIT requests are supported on a single channel.

IO$_ACCEPT_WAIT is useful to avoid holding an additional INET channel while waiting to service a

connection.

Format

status = SYS$QIO(efn,inet-chan, IO$_ACCEPT_WAIT, iosb, astadr, astprm, 0, 0,

0, 0, 0, 0);

Argument

chan = u_int inet-chan

OpenVMS channel to the INET: device on which the IO$_LISTEN was performed.

Status

ECONNABORTED Listening channel was shut down or aborted.

EINVAL Operation is not valid (for a nonstream socket), or an invalid inet-chan or

addrlen argument was specified.

ENETDOWN Network was shut down.

ENOTSOCK No socket exists on the listening channel.

EOPNOTSUPP Socket is not of type SOCK_STREAM.

EWOULDBLOCK Connection is marked as nonblocking and no connection can be accepted.

SS$_THIRDPARTY Network is being shut down.

IO$_BIND
Assigns an address to an unbound socket. When a socket is created with IO$_SOCKET, it has no

assigned address. IO$_BIND requests that the address be assigned to the socket.

Normally used by servers to bind to their "well-known" port number before issuing the IO$_LISTEN

function. Clients typically do not use this function, since IO$_CONNECT normally will assign an

unused port number.

Note: To bind to port numbers 1 through 1023, a process must be running under a privileged UIC,

or with the SYSPRV or BYPASS privilege.

Format

status = SYS$QIO(efn, inet-chan, IO$_BIND, iosb, astadr, astprm, name,

namelen,0, 0, 0, 0);

Arguments

chan = u_int inet-chan

OpenVMS channel to the INET: device on which the IO$_SOCKET was performed.

p1 = struct sockaddr_in *name

Address to which the socket should be bound.

p2 = u_long namelen

Length of the name argument (in bytes).

Status

EACCES Specified address is not available from the local machine.

EADDRNOTAVAIL Requested address is protected; the user has no permission to have access to it.

EADDRINUSE Specified address is already in use.

EINVAL Operation is not valid (for a nonstream socket).

ENETDOWN Network was shut down.

SS$_THIRDPARTY Network is being shut down.

IO$_CONNECT
For stream sockets, attempts a connection to a peer socket. For datagram sockets, permanently specifies

the peer to which the datagrams are to be sent or from which they are to be received.

Format

status = SYS$QIO(efn, inet-chan, IO$_CONNECT,iosb, astadr, astprm,name,

namelen,0, 0, 0, 0);

Arguments

chan = u_int inet-chan

Channel to the socket.

p1 = struct sockaddr_in *name

Address of the peer to which the socket should be bound.

p2 = u_long namelen

Length of the name argument (in bytes).

Status

EADDRNOTAVAIL Requested address is protected; the user has no permission to have access to it.

EADDRINUSE Specified address is already in use.

EALREADY Operation is already in progress.

ECONNABORTED Operation was aborted.

ECONNREFUSED Connection was refused by the peer.

EHOSTUNREACH Host was unreachable.

EINVAL Socket has already been used for a connection, or the namelen argument is

invalid.

EISCONN Socket is already connected.

ENETDOWN Network has been shut down.

ENETUNREACH Destination network is unreachable.

EOPNOTSUPP Operation is not supported (e.g., a connect on a listening socket).

ETIMEDOUT Connection timed out.

EWOULDBLOCK Socket is marked as nonblocking; connection attempt is in progress.

SS$_THIRDPARTY Network is being shut down.

IO$_GETPEERNAME
Returns the address of the peer connected to the specified socket.

Format

status = SYS$QIO(efn,inet-chan, IO$_GETPEERNAME, iosb, astadr, astprm,

address, addrlen,0, 0, 0, 0);

Arguments

chan = u_int inet-chan

Channel to the socket.

p1 = struct sockaddr_in *address

Receives the peer's address.

p2 = u_long *addrlen

On entry, contains the byte length of the space pointed to by address. On return, it contains the byte

length of the data returned.

Status

EINVAL Invalid addrlen was specified.

ENETDOWN Network has been shut down.

ENOTCONN Socket is not connected.

SS$_THIRDPARTY Network is being shut down.

IO$_GETSOCKNAME
Returns the local address of a socket.

Format

status = SYS$QIO(efn,inet-chan, IO$_GETSOCKNAME,iosb, astadr, astprm,

address, addrlen,0, 0, 0, 0);

Arguments

chan = u_int inet-chan

Channel to the socket.

p1 = struct sockaddr_in *address

Receives the local or multicast address.

p2 = u_long *addrlen

On entry, contains the byte length of the space pointed to by address. On return, it contains the byte

length of the data returned.

Status

EINVAL addrlen argument is invalid.

ENETDOWN Network was shut down.

SS$_THIRDPARTY Network is being shut down.

IO$_GETSOCKOPT
Retrieves the value of options associated with a socket.

The TCPWARE_INCLUDE:SOCKET.H file contains definitions for the socket-level options. The

IPPROTO_IP level options defined in the TCPWARE_INCLUDE:IN.H file are not compatible with

INETDRIVER.

Format

status = SYS$QIO(efn,inet-chan, IO$_GETSOCKOPT,iosb, astadr, astprm, level,

optname, optval, optlen, 0, 0);

Arguments

chan = u_int inet-chan

Channel to the socket.

p1 = u_long level

SOL_SOCKET to change socket options, or IPPROTO_IP to change IP options (which requires system

UIC, SYSPRV, or BYPASS privilege).

p2 = u_long optname

TCPware ignores this option where indicated. However, you should include it if you created other

routines that set this option to that you do not get an error message.

p3 = byte *optval

Pointer to a buffer that is to receive the current value of the option. The format of this buffer is

dependent on the option requested. Options other than SO_LINGER return a longword value. For those

options that are enabled or disabled, 0 is returned if disabled, 1 is returned if enabled.

SO_LINGER uses the following structure for the linger value:

structlinger

{

 intl_onoff ;/* option on/off */

 intl_linger ;/* linger time */

};

p4 = u_long *optlen

On entry, contains the byte length of the space pointed to by optval. On return, contains the byte

length of the option returned.

Status

EINVAL level specified is invalid.

ENOPROTOOPT Option is unknown.

ENETDOWN Network was shut down.

SS$_THIRDPARTY Network is being shut down.

IO$_IOCTL
Manipulates socket characteristics. The TCPWARE_INCLUDE:IOCTL.H file contains definitions for

the IO$_IOCTL request codes.

Note: This function does not support operations to set network interface information.

Format

status = SYS$QIO(efn,inet-chan, IO$_IOCTL, iosb, astadr, astprm, request,

argp, 0, 0, 0, 0);

Arguments

chan = u_int inet-chan

Channel to the socket.

p1 = u_long request

IO$_IOCTL function to perform. The IO$_IOCTL functions are listed in the below table:

Value Description

FIONBIO Sets/clears nonblocking mode

FIONREAD Returns bytes available for reading

SIOCADDRT Adds a routing entry

SIOCATMARK Returns whether the read point is at the out-of-band (TCP urgent) mark

SIOCDARP Deletes an address resolution (ARP) entry

SIOCDELRT Deletes a routing entry

SIOCGARP Gets an address resolution (ARP) entry

SIOCGIFCONF Returns list of network interfaces

SIOCGIFADDR Returns the internet address for an interface

SIOCGIFBRDADDR Returns the broadcast address for an interface

SIOCGIFDSTADDR Returns the destination address for a point-to-point interface

SIOCGIFFLAGS Returns the flags for an interface

SIOCGIFMETRIC Returns the metric for an interface

SIOCGIFMTU Returns the minimum transmission unit for an interface

SIOCGIFNETMASK Returns the network mask for an interface

SIOCSARP Adds an address resolution (ARP) entry

p2 = byte *argp

Pointer to a buffer whose format and function depends on the request specified.

Status

ENOPROTOOPT request specified is invalid.

ENETDOWN Network was shut down.

SS$_THIRDPARTY Network is being shut down.

IO$_LISTEN
Places the stream in a listen state and specifies the maximum number of incoming connections that can

be queued waiting to be accepted. This backlog must be specified before accepting a connection on a

socket.

Applies to sockets of type SOCK_STREAM only.

Format

status = SYS$QIO(efn,inet-chan, IO$_LISTEN, iosb, astadr, astprm,backlog, 0,

0, 0, 0, 0);

Arguments

chan = u_int inet-chan

Channel to the socket.

p1 = u_long backlog

Maximum length of the queue of pending connections. If a connection request arrives when the queue is

full, the request is ignored. The backlog queue is limited by the TCPware BACKLOG_LIMIT parameter.

If the specified value is greater than BACKLOG_LIMIT, BACKLOG_LIMIT is used.

See the ADD SERVICE command description in Chapter 2, NETCU Commands, in the NETCU

Command Reference for details on setting the BACKLOG_LIMIT parameter.

Status

EISCONN Socket is already connected.

EOPNOTSUPP Operation is not supported (such as when the connection on a listening socket).

ENETDOWN Network was shut down.

SS$_THIRDPARTY Network is being shut down.

IO$_RECEIVE
Receives data from a socket.

The length of the data received is returned in the second word of the I/O Status Block (iosb). A count

of 0 indicates an end-of-file condition, or the connection was closed.

For SOCK_DGRAM and SOCK_RAW messages, if the message is too long to fit in the supplied buffer,

excess bytes are discarded. For SOCK_STREAM data, no bytes are discarded, even though the amount of

data processed on a request may be different than the amount sent.

If no data is available for the socket, the IO$_RECEIVE function waits for data to arrive, unless the

socket is in nonblocking mode.

Format

status = SYS$QIO(efn,inet-chan, IO$_RECEIVE,iosb, astadr, astprm, buffer,

size, flags, from, fromlen, 0);

Arguments

chan = u_int inet-chan

Channel to the socket.

p1 = byte *buffer

Address of the user's buffer.

p2 = u_long *size

Byte size of the user's buffer. The value should not be greater than 64000 bytes. The actual number of

bytes read is returned in the iosb.

p3 = u_long flags

Control information that affects the IO$_RECEIVE function and is formed by logically OR-ing one or

more of the following values:

#define MSG_OOB 0x1/*send out-of-band data*/

#define MSG_PEEK 0x2*peek at incoming message*/

#define MSG_NONBLOCKING 0x10/*override blocking state*/

#define MSG_TIME 0x100/*limit receive wait time*/

The MSG_OOB flag causes IO$_RECEIVE to read any out-of-band data arriving on the socket.

The MSG_PEEK flag causes IO$_RECEIVE to read the data present in the socket without removing the

data. This allows the caller to view the data, but leave it in the socket for future IO$_RECEIVE

functions.

The MSG_NONBLOCKING flag causes IO$_RECEIVE to be a nonblocking request. An

EWOULDBLOCK status would be returned if the request cannot be completed immediately.

The MSG_TIME flag (for datagram sockets only) causes IO$_RECEIVE to complete within

SO_RCVTIMEO seconds with the ETIMEDOUT status (if no message is received). Use the

IO$_SETSOCKET function to set SO_RCVTIMEO.

p4 = struct *from

For SOCK_DGRAM and SOCK_RAW sockets, the optional from argument is a pointer to a structure that

contains the address of the socket that sent the packet following completion of the IO$_RECEIVE

function. The structure is defined as follows:

struct

{

 unsigned short Length;

 struct sockaddr_inAddress;

} ;

The from argument is ignored for SOCK_STREAM sockets.

p5 = u_int fromlen

For SOCK_DGRAM sockets, byte length (at least 18 bytes) of the buffer pointed to by the from

argument. The fromlen argument is ignored for SOCK_STREAM sockets.

Status

ECONNRESET Connection was reset by the peer.

EHOSTUNREACH Host was unreachable.

EINVAL from argument is invalid, or no out-of-band data was available.

ENETDOWN Network was shut down.

ENOTCONN Socket is not connected.

EOPNOTSUPP Out-of-band request exists on a non-stream socket.

ETIMEDOUT Connection timed out.

EWOULDBLOCK Request would block.

SS$_CANCEL Request was cancelled.

SS$_THIRDPARTY Network is being shut down.

IO$_SEND
Sends stream data (for stream sockets), messages (for datagram sockets), or raw data to a socket.

IO$_SEND blocks if no buffer space is available at the socket to hold the data to be transmitted unless

the socket was placed in nonblocking mode. For datagram sockets, if the message is too long to pass

through the underlying protocol in a single unit, an EMSGSIZE status is returned, and the message is not

transmitted.

Format

status = SYS$QIO(efn,inet-chan, IO$_SEND, iosb, astadr, astprm, buffer,

size, flags, to, tolen, 0);

Arguments

chan = u_int inet-chan

Channel to the socket.

p1 = byte *buffer

Address of the user's buffer.

p2 = u_long size

Byte size of the user's buffer. The actual number of bytes sent is returned in the iosb. The value should

not be greater than 64000 bytes.

p3 = u_long flags

Control information that affects the IO$_SEND function and is formed by logically ORing one or more

of the following values:

#define MSG_OOB 0x1/*send out-of-band data*/

#define MSG_NONBLOCKING 0x10/*override blocking state*/

The MSG_OOB flag causes IO$_SEND to send out-of-band data on sockets that support this operation

(e.g., SOCK_STREAM sockets).

The MSG_NONBLOCKING flag causes IO$_SEND to be a nonblocking request. An EWOULDBLOCK

status would be returned if the request cannot be completed immediately. For stream sockets, some of

the data may have been sent: the amount is returned in the second word of the iosb.

p4 = struct sockaddr_in *to

For datagram sockets, the optional to argument is a pointer to the address to which the packet should be

transmitted. This argument is ignored for SOCK_STREAM sockets.

p5 = u_long tolen

For datagram sockets, the optional tolen argument contains the byte length of the address pointed to

by the to argument. This argument is ignored for SOCK_STREAM sockets.

Status

ECONNRESET Connection was reset by the peer.

EDESTADDRREQ Destination address was not specified.

EHOSTUNREACH Host was unreachable.

EINVAL to argument is invalid, or no out-of-band data was available.

EISCONN Socket is already connected.

EMSGSIZE Datagram was too large.

ENETDOWN Network was shut down.

ENETUNREACH Destination network is unreachable.

ENOTCONN Socket is not connected.

EOPNOTSUPP Out-of-band request exists on a non-stream socket.

EPIPE Connection was broken.

ETIMEDOUT Connection timed out.

EWOULDBLOCK Request would block.

SS$_THIRDPARTY Network is being shut down.

IO$_SETCHAR
Sets special device characteristics for the INET device rather than for the socket attached to it. These

operations are normally used by the TCPware master server (NETCP) process only. IO$_SETCHAR

requires LOG_IO privileges.

Format

status = SYS$QIO(efn,inet-chan, IO$_SETCHAR, iosb, astadr, astprm, flags, 0,

0, 0, 0, 0);

Arguments

chan = u_int inet-chan

Channel to the socket.

p1 = u_long flags

Address of a longword bit mask of one or more of the values that appear in the below table. If

IO$_SETCHAR is not called, all options are set to OFF.

Bit Description

0 If set, makes the device permanent.

If clear, makes the device temporary (default).

1 If set, makes the device shareable.

If clear, makes the device nonshareable (default).

2 If set, allow the device to be handed off. (The device is not deleted when the last channel is

deassigned, but is deleted the next time the last channel is deassigned.)

Status

SS$_NOPRIV Argument requires LOG_IO privileges.

IO$_SETMODE | IO$M_ATTNAST
Enables an AST to be delivered to the process when out-of-band (TCP urgent) data is received on the

socket. This function is similar to the UNIX SIGURG signal being delivered.

This is a once-only AST. After the AST is delivered, you must explicitly re-enable it using this function

if you want the AST to be delivered when future out-of-band data is received.

Format

status = SYS$QIO(efn,inet-chan, IO$_SETMODE | IO$M_ATTNAST,iosb, astadr,

astprm, routine, parameter, acmode, 0, 0, 0);

Arguments

chan = u_int inet-chan

Channel to the socket.

p1 = void *routine

Address of the AST routine to call when out-of-band data arrives on the socket. To cancel AST delivery,

specify routine as 0.

p2 = u_long parameter

Argument to call the AST routine.

p3 = u_long acmode

Access mode for the AST.

IO$_SETSOCKOPT
Manipulates options associated with a socket.

The TCPWARE_INCLUDE:SOCKET.H file contains definitions for the socket-level options. The

IPPROTO_IP level options defined in the TCPWARE_INCLUDE:IN.H file are not compatible with

INETDRIVER.

Format

status = SYS$QIO(efn, inet-chan, IO$_SETSOCKOPT,iosb, astadr, astprm, level,

optname, optval, optlen, 0, 0);

Arguments

chan = u_int inet-chan

Channel to the socket.

p1 = u_long level

SOL_SOCKET to change socket options, IPPROTO_TCP to change TCP options, or IPPROTO_IP to

change IP options (which requires a SYSTEM UIC, or the SYSPRV or BYPASS privilege).

p2 = u_long optname

Option to be manipulated. See the below tables.

Argument Values for SOL_SOCKET Level:

SOL_SOCKET Option Description

SO_BROADCAST Enables or disables broadcasting on the socket (ignored)

SO_DEBUG Enables debugging in the protocol modules (ignored)

SO_DONTROUTE Prevents routing applied to outgoing messages (ignored)

SO_ERROR Returns current socket error (if any)

SO_KEEPALIVE Keeps connections alive

SO_LINGER Delay (in seconds) before closing a socket (ignored)

SO_OOBINLINE Leaves received out-of-band data in line

SO_REUSEADDR Allows local address reuse

SO_RCVBUF Size of the internal receive buffer

SO_RCVLOWAT (Ignored)

SO_RCVTIMEO Receive timeout time (ignored for stream sockets)

SO_SNDBUF Size of the internal send buffer

SO_SNDLOWAT (Ignored)

SO_SNDTIMEO Send timeout time (ignored for datagram sockets)

SO_TYPE Type of socket (stream or datagram)

SO_USELOOPBACK Bypasses hardware when possible (ignored)

Argument Values for IPPROTO_TCP Level:

IPPROTO_TCP Option Description

TCP_KEEPALIVE Determines how long an idle socket should remain open

Argument Values for IPPROTO_IP Level:

IPPROTO_IP Option Description

IP_OPTIONS Gets or sets IP options to be sent in subsequent datagrams

IP_MULTICAST_IF Gets or sets the interface used for sending multicast datagrams

IP_MULTICAST_TTL Gets or sets the IP time-to-live (TTL) to be sent in subsequent datagrams

IP_MULTICAST_LOOP Gets or sets whether sent multicast datagrams should be looped back locally

IP_ADD_MEMBERSHIP Adds a multicast group membership for an interface

IP_DROP_MEMBERSHIP Drops a multicast group membership from an interface

p3 = byte *optval

Pointer to a buffer that contains the value to which the option is to be set. The format of this buffer is

dependent on the option requested.

p4 = u_long optlen

Byte length of the optval buffer.

Status

EADDRNOTAVAIL Address not available for use.

EADDRINUSE Address already in use.

EINVAL level specified is invalid.

ENETDOWN Network was shut down.

ENOBUFS Insufficient memory for requests.

ENOPROTOOPT Option is unknown.

ETOOMANYREFS Too many multicast memberships requested.

SS$_THIRDPARTY Network is being shut down.

IO$_SHUTDOWN
Causes all or part of a full-duplex connection on a socket to be shut down. Can be used to signal an end-

of-file to the peer without closing the socket itself, which would also prevent further data from being

received.

Format

status = SYS$QIO(efn, inet-chan, IO$_SHUTDOWN, iosb, astadr, astprm, how, 0,

0, 0, 0, 0);

Arguments

chan = u_int inet-chan

Channel to the socket.

p1 = u_long how

Part of the full-duplex connection to shut down, as shown in the below table.

Value Description

0 Further receive operations are not allowed

1 Further send operations are not allowed

2 Further receive and send operations are not allowed

Status

EINVAL how specified is invalid.

ENETDOWN Network was shut down.

SS$_THIRDPARTY Network is being shut down.

IO$_SOCKET
Creates the desired socket type. The three currently supported types are stream sockets

(SOCK_STREAM), datagram sockets (SOCK_DGRAM), and raw sockets (SOCK_RAW).

Note: Before issuing the IO$_SOCKET function, an INET channel must first be assigned to the

INET0: device, using SYS$ASSIGN.

Format

status = SYS$QIO(efn, inet-chan, IO$_SOCKET, iosb, astadr, astprm,

AF_INET(2), type, protocol, 0, 0, 0);

Arguments

chan = u_int inet-chan

Channel to the socket.

p1 = u_long addressfam = AF_INET

Must be AF_INET.

p2 = u_long type

Semantics of communication using the created socket. The three currently supported types are:

SOCK_STREAM (for a TCP socket), SOCK_DGRAM (for a UDP socket), and SOCK_RAW (for a raw

socket).

p3 = u_long protocol

For TCP and UDP sockets, the protocol argument value must be 0. For raw sockets, a non-zero

protocol can be specified.

Status

ENETDOWN Network was shut down.

EPROTONOSUPPORT Requested addressfam, type, or protocol is not supported.

SS$_THIRDPARTY Network is being shut down.

SYS$ASSIGN
Assigns a channel to a device.

Format

status = SYS$ASSIGN(char *devnam, u_int inet-chan, [u_long acmode], [char

*mbxnam]);

Arguments

devnam

Address of a character string descriptor pointing to the device name string.

inet-chan

Address of a word into which SYS$ASSIGN writes the channel number.

acmode

Optional access mode associated with the channel. The most privileged access mode used is that of the

caller.

mbxnam

Optional logical mailbox associated with the device. (Not supported by INETDRIVER.)

Status

See the VMS System Services Reference Manual for a complete list of status messages.

SYS$CANCEL
Cancels any I/O that is pending on a socket.

The I/O will be completed with an iosb status of SS$CANCEL.

Outstanding I/O operations are automatically cancelled at image exit.

Format

status = SYS$CANCEL(u_int inet-chan);

Argument

inet-chan

Number of the channel to be cancelled.

Status

See the VMS System Services Reference Manual for a complete list of status messages.

SYS$DASSGN
Closes a socket.

When you deassign a channel, any outstanding I/O is completed with an iosb status of SS$CANCEL.

I/O channels are automatically deassigned at image exit.

Format

status = SYS$DASSGN(u_int inet-chan);

Argument

inet-chan

Number of the channel to be de-assigned.

Status

See the VMS System Services Reference Manual for a complete list of status messages.

Sample Programs
The following pair of sample programs, which show the use of stream sockets with SYS$QIO system

service calls to the INETDRIVER, are included in the TCPWARE_COMMON:[TCPWARE.EXAMPLES]

directory:

• INETDRIVER_CLIENT.C

• INETDRIVER_SERVER.C

They are functionally the same as the TCP_SOCKET_CLIENT.C and TCP_SOCKET_SERVER.C

sample programs.

The client calling sequence is as follows:

1. Assign a channel for the connection ($ASSIGN)

2. Create a stream socket (IO$_SOCKET)

3. Connect to the server (IO$_CONNECT)

4. Exchange data (IO$_SEND, IO$_RECEIVE)

5. Close the connection ($DASSGN)

The server calling sequence is as follows:

1. Assign a channel to listen on ($ASSIGN)

2. Create a stream socket to listen on (IO$_SOCKET)

3. Bind the socket to an address (IO$_BIND)

4. Listen for incoming connections (IO$_LISTEN)

5. Assign a channel to accept on ($ASSIGN)

6. Accept the incoming connection (IO$_ACCEPT)

7. Exchange data (IO$_SEND, IO$_RECEIVE)

8. Close the connection ($DASSGN)

To build any one of these applications using DEC C, enter:

$ CC/DECC/PREFIX=ALL filename

$ LINK filename

To build any one of these applications using VAX C, enter:

$ CC/VAXC filename

$ LINK filename, TCPWARE:UCX$IPC/LIB, SYS$INPUT/OPTIONS -

_$ SYS$SHARE:VAXCRTL/SHARE

7. FTP Library

Introduction
This chapter is for application programmers. It describes the TCPware FTP library routines.

The TCPware FTP library routines provide a programming interface to the FTP protocol. Use the FTP

library routines in your own applications to provide FTP capabilities.

The following routines are included in the library:

FTP_ACCOUNT Specifies the user account on the remote host

FTP_ALLOCATE_CCB Allocates a connection control block (CCB)

FTP_APPEND_FILE Appends a file to a remote file

FTP_AUTH Requests protected authentication.

FTP_CCC Requests that the command channel be clear text.

FTP_CHECK_FEATURES Sends the FEAT command to the FTP server and builds a bit mask of

supported FTP optional features.

FTP_CLOSE_CONNECTION Closes the connection to the remote FTP server

FTP_CREATE_DIRECTORY Creates a directory on the remote host

FTP_DEALLOCATE_CCB Deallocates a CCB

FTP_DELETE_DIRECTORY Deletes a directory on the remote host

FTP_DELETE_FILE Deletes a file on the remote host

FTP_GET_CCB Gets information from a CCB field

FTP_GET_FILE Copies a file from the remote host

FTP_GET_LIST Gets file listing on the remote host

FTP_GET_NAME_LIST Gets a filename listing on the remote host

FTP_LOGIN_USER Authorizes the user on the remote host

FTP_OPEN_CONNECTION Opens an FTP connection

FTP_PASSWORD Specifies the user password on the remote host

FTP_PBSZ Specifies the protection buffer size.

FTP_PRINT_DIRECTORY Returns the current directory on the remote host

FTP_PROT Specifies the protection level to use for transfers

FTP_PUT_FILE Copies a file to the remote host

FTP_QUOTE Sends an FTP command to the remote host

FTP_RENAME_FILE Renames a file on the remote host

FTP_SET_DIRECTORY Sets the remote directory

FTP_SET_DEBUG Sets the debugging mode

FTP_SET_PASV Sets passive mode transfers

FTP_SET_STRU Specifies the file structure

FTP_SET_TYPE Specifies the data representation type

FTP_USER Specifies the user on the remote host

These routines allow you to establish and maintain FTP connections with remote hosts that support the

FTP protocol.

The TCPware FTP library routines follow the standard OpenVMS conventions for modular library

routines. See the OpenVMS documentation on calling modular libraries for more information.

Because TCPware FTP library routines use asynchronous system traps (ASTs), application programs

must not run with ASTs disabled for long periods of time. Also, you should not call TCPware FTP

library routines at the AST level.

The TCPware FTP library routines are in the TCPWARE_FTPLIB_SHR.EXE shareable library. The

symbolic definitions for the various CCB fields and other parameters are in the

TCPWARE_INCLUDE:FTPDEF.H header file. While this file is written for C language, it is very easy

to convert to other OpenVMS languages.

Building an FTP Client
The FTP Client sample program is provided in

TCPWARE_COMMON:[TCPWARE.EXAMPLES]FTPSAMPLE.C.

To build using DEC C, enter:

$ CC/DECC/PREFIX=ALL FTPSAMPLE.C

$ LINK FTPSAMPLE, SYS$INPUT/OPTIONS –

_$ SYS$SHARE:TCPWARE_FTPLIB_SHR/SHARE -

_$ SYS$SHARE:TCPWARE_SOCKLIB_SHR/SHARE

To build using VAX C, enter:

$ CC/VAXC/PREFIX=ALL FTPSAMPLE.C

$ LINK FTPSAMPLE, SYS$INPUT/OPTIONS -

_$ SYS$SHARE:TCPWARE_FTPLIB_SHR/SHARE -

_$ SYS$SHARE:TCPWARE_SOCKLIB_SHR/SHARE -

_$ SYS$SHARE:VAXCRTL.EXE/SHARE

Connection Control Block
The connection control block (CCB) contains all the information required to establish and maintain an

FTP connection. Each open connection requires a CCB.

The storage space for the CCB is allocated dynamically. Therefore, the number of simultaneous

connections is limited only by your process resources. You can reuse a CCB. You can close one

connection and open a new one using the same CCB.

Gain access to the CCB fields using the FTP_GET_CCB library routine as described in Library

Routines.

The below table lists CCB fields and their uses:

CCB Fields CCB Uses

FTP_CCB_DC_CHAN Channel for the FTP data connection (unsigned word)

FTP_CCB_DC_PN Port number of the data connection (unsigned word)

FTP_CCB_FEATURE_MASK Longword bit mask of server features reported by the response to the FTP

FEAT command sent by the CHECK_FEATURES subroutine

FTP_CCB_FILENAME Name of the file causing the transfer error (character string descriptor)

FTP_CCB_FOR_IA IP address of the remote host (unsigned longword)

FTP_CCB_FOR_PN Remote port number of the control connection (unsigned word)

FTP_CCB_FX_TYPE Data representation type (character string descriptor with a maximum

length of 2); see the FTP_SET_TYPE routine for the possible values

FTP_CCB_LOC_IA IP address of the local host (unsigned longword)

FTP_CCB_LOC_PN Local port number of the control connection (unsigned word)

FTP_CCB_LOGGED_IN Login status (Boolean); true if the user is successfully logged in on the

remote host

FTP_CCB_NETCHAN Channel for the FTP control connection (unsigned word)

FTP_CCB_NODENAME Node name of the remote host (character string descriptor with a

maximum length of 128)

FTP_CCB_OPENED Connection status (Boolean); true if control connection is successfully

opened to the remote host

FTP_CCB_PASSWORD User password on the remote host (character string descriptor with a

maximum length of 64 characters)

FTP_CCB_PASV Boolean that indicates whether passive mode is enabled (TRUE) or

disabled (FALSE).

FTP_CCB_RPLCOD Server reply code (longword)

FTP_CCB_RPLLEN Length of the server reply message (longword)

FTP_CCB_RPLTXT Reply text received from the server (character string descriptor with a

maximum length of 512 characters)

FTP_CCB_STAT_BYTES Number of bytes transferred (longword)

FTP_CCB_STAT_SECONDS Seconds required for the transfer (double floating point)

FTP_CCB_STATUS Completion status (unsigned longword)

FTP_CCB_STRU File structure (character string descriptor); see the FTP_SET_STRU

routine for the possible values

FTP_CCB_USERNAME Username on the remote host (character string descriptor with a

maximum length of 64 characters)

Transferring Files
The FTP_APPEND_FILE, FTP_GET_FILE, and FTP_PUT_FILE library routines described in

Library Routines have two optional arguments: mode and record-size. These options provide finer

control in transferring OpenVMS files.

Using the mode argument causes the transfer mode set by FTP_SET_TYPE and FTP_SET_STRU to

be ignored. The lower word of the mode longword specifies the primary transfer mode. The following

symbols define the primary transfer mode:

MODE_C_ASCII Transfers the file in ASCII format

MODE_C_IMAGE Transfers the file in IMAGE mode

MODE_C_BINARY Transfers .OBJ, .STB, .BIN, and .LDA files in BINARY format

MODE_C_BLOCK Transfers STREAM, STREAM_LF, STREAM_CR and UNDEFINED files in

BLOCK mode

The higher word of the mode longword defines optional transfer modes. The following symbols define

the optional transfer modes:

MODE_M_FCC Combined with MODE_C_ASCII, transfers the ASCII file with FORTRAN

carriage control.

MODE_M_APPEND Appends the source to a destination file. (Not supported by all servers.)

MODE_M_VARIABLE Combined with MODE_C_IMAGE, transfers an image file in variable length

recode mode, except that all records are the same length. (Applies to local output

image files only.)

MODE_M_RECORD Transfers the file using STRU_R so as to communicate the record structure

during the copy. (Not supported by all servers.)

MODE_M_RESTART When transferring the file in STREAM mode performs a restart from where the

transfer stopped based upon file size. Requires support of the feature and the

CHECK_FEATURES routine to be called beforehand.

MODE_M_VMS Transfers the file in VMS file mode.

Using MODE_M_VMS allows you to transfer any type of RMS file between

OpenVMS systems. Note that if specifying this flag, all other flags are ignored.

Error Status Codes
To access TCPware error status codes, such as TCPWARE_REJECTED, define them in the code as

follows:

globalvalue TCPWARE_REJECTED;

Then LINK with the definitions of TCPware error messages using the link option:

TCPWARE:SOCKLIB.OLB/INCLUDE=TCPWARE_MSGPTR

For example, the following code checks if the status returned by FTP_PUT_FILE is

TCPWARE_REJECTED and takes the appropriate action:

globalvalue TCPWARE_REJECTED;

...

status = FTP_PUT_FILE(...);

if (status == TCPWARE_REJECTED)

{

 do something;

 return status;

}

Library Routines
This section describes each of the TCPware FTP library routines. Each function argument is described

using standard OpenVMS notation for procedure arguments.

All scalar and buffer arguments are passed by reference. Strings are passed by descriptor. All function

arguments must be specified, although some optional arguments may be omitted by passing a 0 (by

value).

Each TCPware FTP library routine returns an unsigned longword condition value in R0. The standard

system service return codes defined in the $SSDEF macro are used. Gain access to the TCPware error

statuses (those beginning with TCPWARE) by global value.

These routines are included in the TCPWARE_FTPLIB_SHR.EXE shareable library.

FTP_ACCOUNT
Specifies the user account on the remote host.

Format

FTP_ACCOUNT(u_long ccb, char *account);

Arguments

ccb

Identifies the CCB with the active connection.

account

Name of the user account on the remote host.

Description

This routine sends the FTP ACCT command to specify the name of the account on the remote host.

Condition Values Returned

SS$_NORMAL Normal successful completion

TCPWARE_NONODE Connection is not open

TCPWARE_NEEDACCT Server requires an account for login

TCPWARE_LOGINFAIL Login attempt failed

TCPWARE_CTRLERR Unexpected error processing the control connection (the connection is closed)

FTP_ALLOCATE_CCB
Allocates a connection control block (CCB).

Format

FTP_ALLOCATE_CCB(u_long *ccb);

Argument

ccb

Returns a pointer to the new CCB.

Description

This routine allocates a new CCB, initializes the resources, and returns a pointer to it. A CCB must be

allocated before all the subsequent calls to the TCPware FTP library routines.

Condition Values Returned

Any condition value returned by LIB$GET_VM and LIB$GET_EF can be returned.

Example

#include <descrip.h>

#include <ssdef.h>

#include "ftpdef.h"

main ()

{

 $DESCRIPTOR(host, "ds.internic.net");

 $DESCRIPTOR(user, "anonymous");

 $DESCRIPTOR(pswd, "your-name@your-site");

 $DESCRIPTOR(dir, "rfc");

 $DESCRIPTOR(file, "rfc-index.txt");

 long ccb, status;

 long debug = DEBUG_REPLY;

 status = SS$_NORMAL;

 ftp_allocate_ccb(&ccb);

 .

 .

 .

 return (status);

}

FTP_APPEND_FILE
Appends a file to a remote file.

Format

FTP_APPEND_FILE(u_long ccb, char *source, [char *destination], [long mode],

[long *record-size]);

Arguments

ccb

Identifies the CCB with the active and logged-in connection for the file transfer.

source

Source file on the local host.

destination

Destination file on the remote host. If omitted, the source filename and extensions are used.

mode

Transfer mode. See the Transferring Files section for the list of available transfer mode codes.

Note: Using mode causes the transfer mode set by FTP_SET_TYPE and FTP_SET_STRU to be

ignored.

record-size

Record size of the local output file when transferring in IMAGE mode.

Description

This routine sends the APPE command to append the local file to the file on the remote host.

Condition Values Returned

SS$_NORMAL Normal successful completion

TCPWARE_NONODE Connection is not open

TCPWARE_OPENIN Error opening a file for input

TCPWARE_OPENDATA Failed to open data connection

TCPWARE_SETPORT Failed to set up data connection

TCPWARE_FILRDERR Error reading from or sending a file

TCPWARE_CTRLERR Unexpected error processing the control connection (the connection is closed)

FTP_AUTH
Specifies the authentication/security mechanism to be used as per RFC 2228 and RFC 4217. Currently

only TLS is supported.

Format

FTP_AUTH(u_long ccb, char *mechanism);

Arguments

ccb

Identifies the CCB with the active and logged-in connection for the file transfer.

mechanism

Specifies the authentication/security mechanism to use. Currently only TLS is supported.

Description

This routine sends an FTP AUTH command to the FTP server. The FTP_AUTH() procedure resets the

data transfer parameters to the original state as specified in the RFCs.

Condition Values Returned

SS$_NORMAL Normal successful completion

TCPWARE_CTRLERR Unexpected error processing the control connection (the connection is closed)

TCPWARE_IVREQUEST Invalid request

TCPWARE_REQFAIL Request failed.

FTP_CCC
Specifies that the command channel return to clear text transmission.

Format

FTP_CCC(u_long ccb);

Arguments

ccb

Identifies the CCB with the active and logged-in connection for the file transfer.

Description

This routine sends an FTP CCC command to the FTP server.

Condition Values Returned

SS$_NORMAL Normal successful completion

TCPWARE_NONODE Connection is not open

FTP_CHECK_FEATURES
Sends the FEAT command to the server and builds the bit mask of supported features.

Format

FTP_CHECK_FEATURES(u_long ccb);

Arguments

ccb

Identifies the CCB with the active and logged-in connection for the file transfer.

Description

This routine sends an FTP FEAT command to the FTP server and interprets the response to build a bit

mask of supported optional features.

Condition Values Returned

None.

FTP_CLOSE_CONNECTION
Closes the connection to the remote FTP server if one is open.

Format

FTP_CLOSE_CONNECTION (u_long ccb);

Argument

ccb

Identifies the CCB whose active FTP connection is to be closed.

Description

This routine sends an FTP QUIT command to the remote FTP server to close the connection and free up

the resources allocated to it.

Condition Value Returned

SS$_NORMAL Normal successful completion

Example

 status = ftp_get_file(ccb, &file, 0, 0, 0);

 if (!(status & 1))

 {

 printf("failed to get file %s", file.dsc$a_pointer);

 goto error;

 }

 error:

 ftp_close_connection(ccb);

 return(status);

FTP_CREATE_DIRECTORY
Creates a directory on the remote host.

Format

FTP_CREATE_DIRECTORY(u_long ccb, char *directory);

Arguments

ccb

Identifies the CCB with the active and logged-in connection.

directory

Directory specification on the remote host.

Description

This routine sends an FTP MKD command that creates a specified directory on the remote server. If the

pathname is relative, a subdirectory is created under the current remote directory. If the MKD command

is rejected, the XMKD command is used.

Condition Values Returned

SS$_NORMAL Normal successful completion

TCPWARE_CREATEFAIL Failed to create the directory

TCPWARE_CTRLERR Unexpected error processing the control connection (the connection is

closed)

FTP_DEALLOCATE_CCB
Deallocates a CCB.

Format

FTP_DEALLOCATE_CCB(u_long *ccb);

Argument

ccb

Identifies the CCB you want to deallocate.

Description

This routine deallocates a CCB that is no longer needed. The CCB is deallocated when it is fully closed.

An implicit abort is performed on the connection if the CCB is still in use.

The virtual memory and event flag reserved for the CCB by the FTP_ALLOCATE_CCB() routine are

freed when this routine is completed.

Condition Value Returned

SS$_NORMAL Normal successful completion

Example

 status = ftp_get_file(ccb, &file, 0, 0, 0);

 if ((status & 1))

 {

 printf("failed to get file %s", file.dsc$a_pointer);

 goto error;

 }

error:

 ftp_close_connection(ccb);

error_nocon:

 ftp_deallocate_ccb(&ccb);

 return(status);

FTP_DELETE_DIRECTORY
Deletes a directory on the remote host.

Format

FTP_DELETE_DIRECTORY(u_long ccb, char *directory);

Arguments

ccb

Identifies the CCB with the active and logged-in connection.

directory

Directory to be deleted on the remote host.

Description

This routine sends an FTP RMD command to delete a specified directory on the remote server. If the RMD

command is rejected, the XRWD command is used.

Condition Values Returned

SS$_NORMAL Normal successful completion

TCPWARE_DELETEFAIL Failed to delete the remote directory

TCPWARE_CTRLERR Unexpected error processing the control connection (the connection is

closed)

FTP_DELETE_FILE
Deletes a file on the remote host.

Format

FTP_DELETE_FILE(u_long ccb, char *file);

Arguments

ccb

Identifies the CCB with the active and logged-in connection.

file

File specification of the file to be deleted on the remote host

Description

This routine sends an FTP DELE command to delete a specified file on the remote server.

Condition Values Returned

SS$_NORMAL Normal successful completion

TCPWARE_DELETEFAIL Failed to delete the remote file

TCPWARE_CTRLERR Unexpected error processing the control connection (the connection is

closed)

FTP_GET_CCB
Gets information from a CCB field.

Format

FTP_GET_CCB(u_long ccb, u_long *field-code, u_long *value, int *length);

Arguments

ccb

Identifies the CCB from which information is retrieved.

field-code

Code specifying the CCB field information you are requesting.

See Connection Control Block for the valid field codes and their data types. Symbols for these field

codes are defined in the TCPWARE_INCLUDE:FTPDEF.H file.

value

Returned value of the specified CCB field. The value argument is the address of a variable that will

receive the value of the CCB field. The data type of this variable depends on the field requested in

field-code.

length

Returns the resulting length of the value field if the data type of the returned value is STRING.

Description

This routine returns the contents of the specified field from the CCB.

Condition Values Returned

SS$_NORMAL Normal, successful completion

SS$_BADPARAM Bad parameter specified

FTP_GET_FILE
Copies a file from a remote host.

Format

FTP_GET_FILE(u_long ccb, char *source, [char *destination], [long *mode],

[word *record-size]);

Arguments

ccb

Identifies the CCB with the active and logged-in connection for the file transfer.

source

Source file on the remote host.

destination

Destination file on the local host. If omitted, the source filename and extensions are used.

mode

Transfer mode. See Transferring Files for a list of available transfer mode codes.

Note: Using mode causes the transfer mode set by FTP_SET_TYPE and FTP_SET_STRU to be

ignored.

record-size

Record size of the local output file when transferring in IMAGE mode.

Description

This routine sends an FTP RETR command to transfer a remote file to the local host.

Condition Values Returned

SS$_NORMAL Normal successful completion

TCPWARE_NONODE Connection is not open

TCPWARE_OPENOUT Error opening a file for output

TCPWARE_OPENDATA Failed to open data connection

TCPWARE_SETPORT Failed to set up data connection

TCPWARE_FILWRTERR Error writing to or receiving a file

TCPWARE_CTRLERR Unexpected error processing the control connection (the connection is closed)

Example

 $DESCRIPTOR(file, "rfc-index.txt");

 long ccb, status;

 status = ftp_get_file(ccb, &file, 0, 0, 0);

 if (!(status & 1))

 {

 printf("failed to get file %s", file.dsc$a_pointer);

 goto error;

 }

 error:

 ftp_close_connection(ccb);

 return(status);

FTP_GET_LIST
Gets a file listing on the remote host.

Format

FTP_GET_LIST(u_long ccb, [char *directory], char *output);

Arguments

ccb

Identifies the CCB with the active and logged-in connection.

directory

Directory specification on the remote host. If omitted, the current remote directory is used.

output

Specifies the local file where the output of the remote directory listing is stored.

Description

This routine sends the FTP LIST command to list a remote directory and stores the output to the local

file. The output is in the format of the remote operating system.

Condition Values Returned

SS$_NORMAL Normal successful completion

TCPWARE_NONODE Connection is not open

TCPWARE_OPENOUT Error opening a file for output

TCPWARE_OPENDATA Failed to open data connection

TCPWARE_SETPORT Failed to set up data connection

TCPWARE_FILWRTERR Error writing to or receiving a file

TCPWARE_CTRLERR Unexpected error processing the control connection (the connection is closed)

FTP_GET_NAME_LIST
Gets a filename listing on the remote host.

Format

FTP_GET_NAME_LIST(u_long ccb, [char *directory], char *output);

Arguments

ccb

Identifies the CCB with the active and logged-in connection.

directory

Directory specification on the remote host. If omitted, the current remote directory is used.

output

Specifies the local file where the output of the remote directory listing is stored.

Description

This routine sends the FTP NAME LIST (NLIST) command to retrieve the name list of the specified

remote directory and stores it in the local file. Output is a list of valid file pathnames with each name

separated in separate lines. Usually, this output is more suitable for machine processing than the list

obtained using FTP_GET_LIST().

Condition Values Returned

See the FTP_GET_LIST() routine.

FTP_LOGIN_USER
Authorizes the user on the remote host.

Format

FTP_LOGIN_USER(u_long ccb, char *username, char *password);

Arguments

ccb

Identifies the CCB of the active network connection.

username

Username on the remote host.

password

Password of the user on the remote host.

Description

This routine sends the FTP USER and PASS commands in sequence to the remote host to log in the

specified user with the specified password. The connection must have been opened previously. If there

is already a user logged in and the specified username and password are identical to the current values,

this routine has no effect.

The user must be logged in on the remote host using this routine or a combination of FTP_USER and

FTP_PASSWORD (optionally, FTP_ACCOUNT) performed before calling any other routines for data

transfer.

Condition Values Returned

SS$_NORMAL Normal successful completion

TCPWARE_NONODE Connection is not open

TCPWARE_NEEDACCT Server requires an account for login

TCPWARE_LOGINFAIL Login attempt failed

Example

#include <descrip.h>

#include <ssdef.h>

#include "ftpdef.h"

main()

{

 $DESCRIPTOR(host, "ds.internic.net");

 $DESCRIPTOR(user, "anonymous");

 $DESCRIPTOR(pswd, "your-name@your-site");

 $DESCRIPTOR(dir, "rfc");

 $DESCRIPTOR(file, "rfc-index.txt");

 long ccb, status;

 long debug = DEBUG_REPLY;

 status = SS$_NORMAL;

 ftp_allocate_ccb(&ccb);

 status = ftp_open_connection(ccb, 0, &host, 0, 0);

 if (!(status & 1))

 {

 printf("failed to make connection to %s", host.dsc$a_pointer);

 goto error_nocon;

 }

 status = ftp_login_user (ccb, &user, &pswd);

 if (!(status & 1))

 {

 printf("failed to login as %s", user.dsc$a_pointer);

 goto error;

 }

error:

 ftp_close_connection (ccb);

 return(status);

}

FTP_OPEN_CONNECTION
Opens an FTP connection to a remote host.

Format

FTP_OPEN_CONNECTION(u_long ccb, [u_long *ia], [char *host-name], [u_int

*port], [u_long *timeout]);

Arguments

ccb

Identifies the CCB associated with the new connection.

ia

Internet address of the remote host to which you want to connect. The argument is the address of an

unsigned longword containing the internet address in internet byte order (for example, internet address

1.2.3.4 is stored as 04030201 hex).

host-name

Host name of the remote host to which you want to connect. If the string is a valid internet address in

a.b.c.d format, that address is used. Otherwise, the Socket Library's gethostbyname routine is used

to determine the internet address from the host name.

port

Port number for the remote FTP server. If omitted, port number 21 is used.

timeout

Timeout time in seconds for establishing the FTP control connection. If omitted, the timeout time is 120

seconds (2 minutes).

Description

This routine opens an active FTP connection to the specified remote host. Specify either the internet

address or the host name. If you specify both, the internet address is used.

If you call this routine with a CCB with an active connection and the requested remote host is the same,

SS$_WASSET is returned and connection is maintained. If you request a different remote host on an

active CCB, the existing connection is closed and a new connection is opened.

Condition Values Returned

SS$_NORMAL Normal successful completion

SS$_WASSET Connection to specified node already established

SS$_BADPARAM Missing internet address or host name

SS$_UNREACHABLE Remote node is unreachable

TCPWARE_REJECTED Remote server rejected the connection

TCPWARE_OPENCTRL Failed to open control connection

Example

#include <descrip.h>

#include <ssdef.h>

#include "ftpdef.h"

main()

{

 $DESCRIPTOR(host, "ds.internic.net");

 $DESCRIPTOR(user, "anonymous");

 $DESCRIPTOR(pswd, "your-name@your-site");

 $DESCRIPTOR(dir, "rfc");

 $DESCRIPTOR(file, "rfc-index.txt");

 long ccb, status;

 long debug = DEBUG_REPLY;

 status = SS$_NORMAL;

 ftp_allocate_ccb (&ccb);

 status = ftp_open_connection(ccb, 0, &host, 0, 0);

 if (!(status & 1))

 {

 printf("failed to make connection to %s", host.dsc$a_pointer);

 goto error_nocon;

 }

 return (status);

}

FTP_PASSWORD
Specifies the user password on the remote host.

Format

FTP_PASSWORD(u_long ccb, char *password);

Arguments

ccb

Identifies the CCB with the active connection.

password

Password of the user on the remote host.

Description

This routine sends the FTP PASS command to specify the password of the user on the remote host. You

must call this routine immediately after the FTP_USER routine if the latter returns a

TCPWARE_NEEDPWD status.

Condition Values Returned

SS$_NORMAL Normal successful completion

TCPWARE_NONODE Connection is not open

TCPWARE_NEEDACCT Server requires an account for login

TCPWARE_LOGINFAIL Login attempt failed

TCPWARE_CTRLERR Unexpected error processing the control connection (the connection is closed)

FTP_PBSZ
Sets the protection buffer size as specified in RFC 2228 and RFC 4217. Only 0 (zero) is supported as

per RFC 4217.

Format

FTP_PBSZ(u_long ccb, char *size_string);

Arguments

ccb

Identifies the CCB with the active and logged-in connection for the file transfer.

size_string

Sets the size of the protection buffer. Currently only “0” (zero) is supported as per RFC 4217.

Description

This routine sends an FTP PBSZ command to the FTP server.

Condition Values Returned

SS$_NORMAL Normal successful completion

TCPWARE_IVREQUEST Invalid request

TCPWARE_NONODE Connection is not open

FTP_PRINT_DIRECTORY
Returns the current directory on the remote host.

Format

FTP_PRINT_DIRECTORY(u_long ccb, char *directory, [int *length]);

Arguments

ccb

Identifies the CCB with the active and logged-in connection.

directory

Returns the current directory on the remote host.

length

Returns the resulting length of the directory field.

Description

This routine sends the FTP PWD command to retrieve the current working directory on the remote

server. If the PWD command is rejected, the XPWD command is used.

Condition Values Returned

SS$_NORMAL Normal successful completion

TCPWARE_BADREPLY Unexpected reply from the server

TCPWARE_CTRLERR Unexpected error processing the control connection (the connection is closed)

FTP_PROT
Sets the protection level specified in RFC 2228 and RFC 4217. Only C (clear) and P (private) are

supported as per RFC 4217.

Format

FTP_PROT(u_long ccb, char prot_level);

Arguments

ccb

Identifies the CCB with the active and logged-in connection for the file transfer.

prot_level

Specifies the protection level to use for data transfers. Only C (clear) and P (private) are supported as

per RFC 4217.

Description

This routine sends an FTP PROT command to the FTP server.

Condition Values Returned

SS$_NORMAL Normal successful completion

TCPWARE_IVREQUEST Invalid request

TCPWARE_NONODE Connection is not open

FTP_PUT_FILE
Copies a file to a remote host.

Format

FTP_PUT_FILE(u_long ccb, char *source, [char *destination], [long *mode],

[long *record-size]);

Arguments

ccb

Identifies the CCB with the active and logged-in connection for the file transfer.

source

Source file on the local host.

destination

Destination file on the remote host. If omitted, the source filename and extensions are used.

mode

Transfer mode. See the Transferring Files section for a list of available transfer mode codes.

Note: Using mode causes the transfer mode set by FTP_SET_TYPE and FTP_SET_STRU to be

ignored.

record-size

Record size of the local output file when transferring in IMAGE mode.

Description

This routine sends the STOR command to copy the local file to the remote host.

Condition Values Returned

SS$_NORMAL Normal successful completion

TCPWARE_NONODE Connection is not open

TCPWARE_OPENIN Error opening a file for input

TCPWARE_OPENDATA Failed to open data connection

TCPWARE_SETPORT Failed to set up data connection

TCPWARE_FILRDERR Error reading from or sending a file

TCPWARE_CTRLERR Unexpected error processing the control connection (the connection is closed)

FTP_QUOTE
Sends an FTP command to the remote server.

Format

FTP_QUOTE(u_long ccb, char *command);

Arguments

ccb

Identifies the CCB with the active connection.

command

Command to be sent to the remote FTP server.

Description

This routine sends the specified literal command string to the remote FTP server. For example, sending

the HELP command with this routine obtains the help information from the remote server (as reply

messages), if the remote server supports this command.

Note that you can use this routine only for simple commands, not for commands involving data transfer.

Condition Values Returned

SS$_NORMAL Normal successful completion

TCPWARE_CTRLERR Unexpected error processing the control connection (the connection is closed)

FTP_RENAME_FILE
Renames a file on the remote host.

Format

FTP_RENAME_FILE(u_long ccb, char *old-file, char *new-file);

Arguments

ccb

Identifies the CCB with the active and logged-in connection.

old-file

File to rename on the remote host.

new-file

New filename on the remote host.

Description

This routine sends the FTP RNFR and RNTO commands in sequence to rename a file on the remote

server.

Condition Values Returned

SS$_NORMAL Normal successful completion

TCPWARE_RENAMEFAIL Failed to rename the remote file

TCPWARE_CTRLERR Unexpected error processing the control connection (the connection is

closed)

FTP_SET_DEBUG
Sets the debugging mode for the FTP library.

Format

FTP_SET_DEBUG(u_long ccb, u_long *flag, [void *output-routine]);

Arguments

ccb

Identifies the CCB with the active and logged-in connection.

flag

Debugging flags to be set. Specify any of the following flag bits:

DEBUG_REPLY Output the replies received from the remote server

DEBUG_COMMAND Output the FTP commands sent to the remote server

The symbols for these flags are defined in the TCPWARE_INCLUDE:FTPDEF.H file.

output-routine

Address of a pointer to a routine that writes debugging text one line at a time. If omitted,

LIB$PUT_OUTPUT is used. If you specify the routine of your own, it must have the same calling

format as LIB$PUT_OUTPUT.

Description

This routine sets the debugging mode for the FTP library. When the debugging flags are set, the FTP

library outputs the debugging messages by LIB$PUT_OUTPUT, or a user-specified routine.

Condition Value Returned

SS$_NORMAL Normal successful completion

FTP_SET_DIRECTORY
Sets the remote directory.

Format

FTP_SET_DIRECTORY(u_long ccb, char *directory);

Arguments

ccb

Identifies the CCB with the active and logged-in connection.

directory

Directory specification on the remote host. If omitted, the parent directory is used.

Description

This routine sends the FTP CWD command to change the default directory on the remote server, and the

CUP command to change the directory to the parent directory. If the directory specification is null, it

changes the directory to the parent directory on the remote server. If the CWD and CUP commands are

not accepted, the XCWD and XCUP commands are used.

Condition Values Returned

SS$_NORMAL Normal successful completion

TCPWARE_SETDEFAIL Failed to set default directory

TCPWARE_CTRLERR Unexpected error processing the control connection (the connection is closed)

Example

 status = ftp_set_directory(ccb, &dir);

 if (!(status & 1))

 {

 printf("failed to change directory to %s", dir.dsc$a_pointer);

 goto error;

 }

error:

 ftp_close_connection(ccb);

FTP_SET_PASV
Sets passive mode.

Format

FTP_SET_PASV(u_long ccb, u_long *flag);

Arguments

ccb

Identifies the CCB with the active and logged-in connection.

flag

Value 0 disables passive mode; value 1 enables passive mode.

Description

This routine sets PASV (passive) mode. If enabled, the client sends the server the PASV command and

the client initiates data connections to the server. If disabled, the client sends the server the PORT

command and the server initiates the data connections.

Condition Values Returned

SS$_NORMAL Normal successful completion

FTP_SET_STRU
Specifies the file structure.

Note: The mode arguments with FTP_GET_FILE and FTP_PUT_FILE cause the transfer mode

set by FTP_SET_STRU to be ignored.

Format

FTP_SET_STRU(u_long ccb, char *stru);

Arguments

ccb

Identifies the CCB with the active connection for setting the file structure.

stru

Contains a character code that specifies the file structure. The valid types are:

F File (no record structure)

R Record structure

V VMS structure

O O VMS structure (for backward compatibility)

Description

This routine sends the FTP STRU command to specify the file structure for the subsequent file transfer.

Condition Values Returned

SS$_NORMAL Normal successful completion

SS$_BADPARAM Bad parameter

TCPWARE_NONODE Connection is not open

TCPWARE_UNSXFRFORM Unsupported transfer format

TCPWARE_CTRLERR Unexpected error processing the control connection (the connection is

closed)

FTP_SET_TYPE
Specifies the data representation type.

Note: The mode arguments with FTP_GET_FILE and FTP_PUT_FILE cause the transfer mode

set by FTP_SET_TYPE to be ignored.

Format

FTP_SET_TYPE(u_long ccb, char *type);

Arguments

ccb

Identifies the CCB with the active connection.

type

Character string code that specifies the file representation type. The first character is the primary transfer

mode, as follows:

A ASCII

I Image

EBCDIC type is not supported.

Do not use an additional character for transfer mode I. For transfer mode A, the second character must

specify one of the following format control options:

N Non-print (no vertical format information)

C FORTRAN carriage control

TELNET format control is not supported.

Description

This routine sends an FTP TYPE command to specify the file representation for the subsequent file

transmission. The default representation type is AN (ASCII transfer in non-print mode).

Condition Values Returned

SS$_NORMAL Normal successful completion

SS$_BADPARAM Bad parameter

TCPWARE_NONODE Connection is not open

TCPWARE_UNSTYPE Unsupported data representation type

TCPWARE_CTRLERR Unexpected error processing the control connection (the connection is closed)

FTP_USER
Specifies the user on the remote host.

Format

FTP_USER(u_long ccb, char *username);

Arguments

ccb

Identifies the CCB with an active connection for specifying the username.

username

Username on the remote host.

Description

This routine sends an FTP USER command to the remote host to specify the user on the remote host. It

may require a subsequent call to FTP_PASSWORD to complete the login. If there is already a user

logged in on the specified connection, that user is logged out.

Condition Values Returned

SS$_NORMAL Normal successful completion

TCPWARE_NEEDPWD Server requires a password for login

TCPWARE_LOGINFAIL Login attempt failed

8. Socket Library

Introduction
This chapter describes the Socket Library to use for your particular programming application.

TCPware provides a Socket Library if you are running a version of VMS earlier than 5.3 or are using the

Remote Procedure Call (RPC) routines. However, Process Software does not recommend that you use

the TCPware Socket Library for later versions of OpenVMS.

OpenVMS provides a C Socket Library you should use for VMS Version 5.3 and later. VMS provides a

collection of VAX C, DEC C, and DEC C++ subroutines that closely emulates the UNIX socket

functions.

Note! The TCPware socket library is deprecated and unsupported.

See VAX C Run Time Library Manual or DEC C Language Reference Manual for information on these

socket library routines.

Transitioning to the C Socket Library:
Include (Header) Files
OpenVMS provides header files for its C socket library that are similar to those provided by the obsolete

TCPware socket library.

To use the VMS C Socket Library header files:

• If you are transitioning an existing VAX C socket application, change any #include

statements for TCPware's header files to reference VMS's header files. For example:

#include "tcpware_include:netdb.h"

becomes:

#include <netdb.h>

Then compile as follows:

o On the VAX C command line:

$ cc prog.c

o On the DEC C command line for VAX:

$ cc /stand=vaxcprog.c

o On the DEC C command line for Alpha and I64:

$ cc /stand=vaxc/nomember_align/assume=noalignedprog.c

• If you are porting or developing an ANSI C or C++ application, use the VMS header files as

shown above. Then compile the application (in the case of DEC C, omit the

/stand=vaxc option).

If you are developing a new program using DEC C, compile using:

 $ cc /prefix_library_entries=all_entriesprog.c

Transitioning to the C Socket Library:
Linking Applications
You can then link against VMS's C socket library as follows:

• For VAX C:

$ link prog,sys$input/options tcpware:ucx$ipc/lib –

_$ sys$share:vaxcrtl/share

• For DEC C on the VAX, Alpha and I64, and for DEC C++:

$ link prog

Sample Programs
The following sample programs are included in the TCPWARE_COMMON:[TCPWARE.EXAMPLES]

directory:

• TCP_SOCKET_CLIENT.C

• TCP_SOCKET_SERVER.C

• UDP_SOCKET_CLIENT.C

• UDP_SOCKET_SERVER.C

The TCP_SOCKET_CLIENT.C and TCP_SOCKET_SERVER.C pair of programs provide a self-

declared ECHO server that sequentially accepts client connections and echoes back the client messages.

The UDP_SOCKET_CLIENT.C and UDP_SOCKET_SERVER.C pair of programs provide a self-

declared DISCARD server that can receive (and discard) datagrams from multiple clients.

These programs are functionally equivalent to the BGDRIVER sample programs in Chapter 2, UCX

Compatibility Services.

To build any one of these applications using DEC C, enter:

$ CC/DECC/PREFIX=ALL filename

$ LINK filename

To build any one of these applications using VAX C, enter:

$ CC/VAXC filename

$ LINK filename, TCPWARE:UCX$IPC/LIB, SYS$INPUT/OPTIONS -

_$ SYS$SHARE:VAXCRTL/SHARE

Debugging programs that use the C
socket library
The logical TCPWARE_SOCKET_TRACE can be defined to get a trace of socket library operations and

status values returned from TCPware to aid in debugging of applications. The details of the

interpretation of the logical are in the table below:

number • 1 - control operations

• 2 - read operations

• 4 - write operations

These values can be ORed together to get any combination of operations.

anything

else

Interpreted as a (partial) file specification with the default specification being

SYS$SCRATCH:TCPWARE_SOCKET_process_name.LOG

This can be useful for services that are started up by NETCU or another listening service

and that create separate processes. The logical can be defined at the SYSTEM level and the

socket library routines will generate a separate log file for each process. When this format is

used the log consists of all three classes (control, read and write) operations.

9. TELNET Library

Introduction
This chapter is for application programmers. It describes the TELNET library routines.

The TELNET library routines provide a programming interface to the TELNET protocol. Use the

TELNET library routines in your own applications to provide TELNET capabilities.

This chapter does not describe the TELNET protocol.

The following routines are included in the library:

TEL_ABORT_CONNECTION Aborts a TELNET connection

TEL_ALLOCATE_CCB Allocates a connection control block (CCB)

TEL_CLOSE_CONNECTION Closes a TELNET connection

TEL_CREATE_TERMINAL Opens and allocates a TELNET device

TEL_DEALLOCATE_CCB Deallocates a CCB

TEL_GET_CCB Gets the value of a CCB field

TEL_OPEN_CONNECTION Opens a TELNET connection

TEL_RECEIVE_DATA Receives data

TEL_SEND_COMMAND Sends TELNET commands

TEL_SEND_DATA Sends data

TEL_SET_CCB Sets the value of a CCB field

These routines allow you to establish and maintain TELNET connections with remote hosts that support

the TELNET protocol. You can establish multiple simultaneous TELNET connections; the number is

limited only by the resources available to your process.

The TELNET library routines follow the standard OpenVMS conventions for modular library routines.

See the OpenVMS documentation on calling modular libraries for more information.

Because TELNET library routines use asynchronous system traps (ASTs), application programs must

not run with ASTs disabled for long periods of time.

The TELNET library routines are in the TCPWARE:TELLIB.OLB object library. The symbolic

definitions for the various connection control block (CCB) fields are in the

TCPWARE_INCLUDE:_CCBFLD.H header file. While this file is written for C, it is easy to convert to

other languages.

The TELNET client sample program is provided in

TCPWARE_COMMON:[TCPWARE.EXAMPLES]TELNET_SAMPLE.C.

To build using DEC C, enter:

$ CC/DECC/PREFIX=ALL TELNET_SAMPLE.C

$ LINK FTPSAMPLE, SYS$INPUT/OPTIONS TCPWARE:TELLIB/LIB -

_$ SYS$SHARE:TCPWARE_SOCKLIB_SHR/SHARE

To build using VAX C, enter:

$ CC/VAXC/PREFIX=ALL TELNET_SAMPLE.C

$ LINK FTPSAMPLE, SYS$INPUT/OPTIONS TCPWARE:TELLIB/LIB -

_$ SYS$SHARE:TCPWARE_SOCKLIB_SHR/SHARE -

_$ SYS$SHARE:VAXCRTL.EXE/SHARE

Connection Control Block
This section describes the connection control block (CCB) that contains all the information required to

establish and maintain a TELNET connection. Each open connection requires a CCB.

The storage space for the CCB is allocated dynamically. Therefore, the number of simultaneous

connections is limited only by your process resources. A CCB can be reused; you can close one

connection and then open a new one using the same CCB.

Note: The ccb-ptr argument in the library routines must remain in scope at a fixed address.

Also, the ccb-ptr is to be used with a single CCB from the time of TEL_ALLOCATE_CCB to

TEL_DEALLOCATE_CCB.

You can access the CCB fields with the TEL_GET_CCB and TEL_SET_CCB library routines as

described below. The below table lists the CCB fields and their uses:

CCB Fields CCB Uses

CCB_ASTRTN Address of the AST routine to be called when data is received (unsigned longword).

Cleared once the AST is declared. You must explicitly reset this field each time you

want the AST to be used. Use with TEL_GET_CCB or TEL_SET_CCB, or with

TEL_OPEN_CONNECTION.

CCB_CHAN Channel number for the TCP0: device (unsigned word), defined only when a

connection is open (otherwise 0). (Use the CCB_ISOPEN field described below to

determine if a connection is open instead of checking for a non-zero channel number.)

Use with TEL_GET_CCB.

CCB_CMDRTN Address of your TELNET command processing routine that you must use with

TEL_OPEN_CONNECTION (unsigned longword). Also use with TEL_GET_CCB or

TEL_SET_CCB.

CCB_EF Event flag number to set when there is received data (unsigned longword). Can also

be used as an argument to TEL_OPEN_CONNECTION. Use event flag 0 to disable

the use of an event flag. Use with TEL_GET_CCB.

CCB_ISOPEN Connection status (unsigned byte). Value is 1 if the connection is open, 0 if not. Use

with TEL_GET_CCB.

CCB_LIA Connection's local internet address (unsigned longword), in internet byte order (for

example, internet address 1.2.3.4 is stored as 04030201 hex). Valid only when a

connection is open. Use with TEL_GET_CCB.

CCB_LPORT Local port number for the connection (unsigned word). Valid only when a connection

is open. Use with TEL_GET_CCB.

CCB_RCVBCT Total byte count for the connection (unsigned longword). The counter wraps with an

overflow. Use with TEL_GET_CCB.

CCB_RCVBCNT Number of unread bytes in the internal receive buffer that reflects the amount of raw

data in the internal buffer (unsigned word). May be larger than the actual number of

user data bytes you read due to requirements of the TELNET protocol. Use with

TEL_GET_CCB.

CCB_RCVIOC Total count of internal network read operations performed for the connection

(unsigned longword). The counter wraps with an overflow. Use with

TEL_GET_CCB.

CCB_RIA Connection's remote internet address (unsigned longword), in internet byte order (for

example, internet address 1.2.3.4 is stored as 04030201 hex). Can be set only when

used as an argument to TEL_OPEN_CONNECTION. Use with TEL_GET_CCB.

CCB_RPORT Remote port number for the connection (unsigned word), the default being 23 (for the

TELNET server). You can only set this field when specified as an argument to

TEL_OPEN_CONNECTION. Valid only when a connection is open. Use with

TEL_GET_CCB.

CCB_SNDBCNT Number of untransmitted bytes in the internal send buffer (unsigned word) that

reflects the amount of raw data in the internal buffer. May be larger than the actual

number of user data bytes you send due to requirements of the TELNET protocol.

Use with TEL_GET_CCB.

CCB_SNDBCT Total count of bytes sent for the connection (unsigned longword). The counter wraps

with an overflow. Use with TEL_GET_CCB.

CCB_SNDIOC Total count of internal write operations for the connection (unsigned longword). The

counter wraps with an overflow. Use with TEL_GET_CCB.

CCB_TIMO Time-out value (in seconds) for the connection (unsigned longword), the default

being 120 seconds (2 minutes). Can also be used as an argument to

TEL_OPEN_CONNECTION. Use with TEL_GET_CCB.

CCB_UFLAGS Communicates state information between the user's application and the library

routines (unsigned longword). The below table lists the only defined bits. All other

bits are reserved and must be zero. Your program should set and clear bits 0 and 1 in

this field when TELNET negotiates the TRANSMIT-BINARY option. Use with

TEL_GET_CCB or TEL_SET_CCB.

CCB_USER1 User-definable (unsigned longword). Use with TEL_GET_CCB or TEL_SET_CCB.

CCB_USER2 User-definable (unsigned longword). Use with TEL_GET_CCB or TEL_SET_CCB.

If you want to enable SYNCH signal processing mode, set bit 31 before opening a connection. The

TELNET library routines enter this mode when they receive urgent data. They remain in this mode until

they encounter the TELNET DATA MARK command and no more urgent data exists. In this mode,

TEL_RECEIVE_DATA discards all data and the EC and EL commands. All other TELNET commands

are passed to your command processing routine.

Bit... If set, means...

0 Enables local binary mode

1 Enables remote binary mode

31 Enables SYNCH signal processing

The TELNET library routines use additional fields internally that are not accessible to application

programs.

Library Routines Reference
This section describes each of the TELNET library routines.

All scalar and buffer arguments are passed by reference. Strings are passed by descriptor. You must use

all function arguments, although you can omit some optional ones by passing a 0 (by value).

Each TELNET library routine returns an unsigned longword condition value in R0 and use the standard

system service return codes defined in the $SSDEF macro.

The function arguments are described using the following "dot" notation:

argument-name.access-data-type.passing-mechanism parameter-form

For example, the following argument specification indicates the CCB address pointer, having modify

access and a passing mechanism by reference:

ccb-ptr.ma.r

See the OpenVMS Run-Time Library documentation for a complete description of this procedure

argument notation.

These routines are included in the TCPWARE:TELLIB.OLB object library. You must also include the

Socket Library when linking.

See the beginning of this chapter for details on linking.

TEL_ABORT_CONNECTION
Aborts a connection.

Format

ret-status.wlc.v = TEL_ABORT_CONNECTION(u_long *ccb-ptr);

Argument

ccb-ptr

Address of a pointer to the connection control block (CCB) used by all the TELNET library routines to

identify a connection.

Description

Aborts the TELNET connection, cancels all outstanding sends and receives, and returns the

SS$_VCBROKEN status.

Condition Values Returned

SS$_NORMAL Connection aborted (connection closed)

TEL_ALLOCATE_CCB
Allocates a connection control block (CCB).

Format

ret-status.wlc.v = TEL_ALLOCATE_CCB(ccb-ptr,rcv-buf-size,snd-buf-size);

Arguments

ccb-ptr

Address of an unsigned longword that will receive a pointer to the CCB used by all the TELNET library

routines to identify a connection.

rcv-buf-size

Address of an unsigned word containing the number of bytes allocated to the internal receive buffer.

There is no minimum buffer size by default. However, use at least 64 bytes as an absolute minimum,

with 1024 bytes recommended to enhance performance.

snd-buf-size

Address of an unsigned word containing the number of bytes allocated to the internal send buffer. There

is no minimum buffer size by default. However, use at least 64 bytes as an absolute minimum, with

1024 bytes recommended to enhance performance.

Description

Allocates memory for a CCB using the LIB$GET_VM routine. Memory is allocated from the default

zone. The CCB and the internal buffers are contiguous in memory. An internal local event flag will also

be allocated from the second local event flag cluster.

You should only access the CCB data fields using the TEL_GET_CCB and TEL_SET_CCB routines.

You must allocate a CCB before calling any other TELNET library routine.

Condition Values Returned

Any condition value returned by LIB$GET_VM and LIB$GET_EF.

TEL_CLOSE_CONNECTION
Closes a TELNET connection.

Format

ret-status.wlc.v = TEL_CLOSE_CONNECTION(ccb-ptr);

Argument

ccb-ptr

Address of a pointer to the CCB.

Description

Call this routine when you finished sending data to the remote host or when the remote host notifies you

that it closed its end of the connection.

This routine initiates a close on the local end of an open connection. For a connection to be fully closed,

both ends of the connection (local and remote) must be closed. No more data can be sent or received

once a connection is fully closed.

Additional data can be received until the remote end closes its side of the connection. Therefore, you

must call the TEL_RECEIVE_DATA routine until the SS$_VCCLOSED status is returned.

Here are the two typical close situations:

Remote end closes first TEL_RECEIVE_DATA returns the SS$_VCCLOSED status, then you call

TEL_CLOSE_CONNECTION to close your end of the connection.

TEL_CLOSE_CONNECTION returns when the connection is fully closed.

Local end closes first You call TEL_CLOSE_CONNECTION to close your end of the connection.

TEL_CLOSE_CONNECTION returns, but the remote end of the connection is

still open. You must call TEL_RECEIVE_DATA until it returns the

SS$_VCCLOSED status.

In general TEL_RECEIVE_DATA must return SS$_VCCLOSED. This can happen before or after you

call TEL_CLOSE_CONNECTION.

Condition Values Returned

SS$_ILLSEQOP Connection not open

SS$_NORMAL Success, close initiated or successful

SS$_THIRDPARTY Software was shut down (connection closed)

SS$_TIMEOUT Connection timed out (connection closed)

SS$_VCBROKEN Connection broken (connection closed)

TEL_CREATE_TERMINAL
Opens and allocates a connection to an NTA device so that you can use a terminal device with

TELNET.

Format

ret-status.wlc.v = TEL_CREATE_TERMINAL(ccb-ptr, [ia], [host], cmd-rtn,

[efn], [ast-addr], [port], [timeout], [flags]);

Arguments

ccb-ptr

Address of a pointer to the CCB. The CCB must be in a closed state.

ia

Address of an unsigned longword containing the remote host's internet address in internet byte order (for

example, internet address 1.2.3.4 is stored as 04030201 hex). If omitted or 0, the host argument

determines the remote host.

host

Address of a text string descriptor of the remote host's host name. If the string is a valid a.b.c.d type

internet address, that address is used. Otherwise, the Socket Library's gethostbyname routine

determines the internet address from the host name. If omitted or a null string, the ia argument

determines the remote host.

cmd-rtn

Address of the user's command processing routine called each time a TELNET command is received.

Inputs to the command processing routine are the CCB of the connection, a buffer containing one

complete command, and a buffer byte count.

efn

Address of an unsigned longword containing the event flag to use. The event flag is set whenever data is

available in the receive buffer, and cleared when the last byte of data is removed. It is up to you to

allocate the event flag if necessary. You must never set or clear the event flag. If omitted, the previous

value of this field is used; if 0, the field is cleared. If no event flag is specified, you will have to use

another method, such as an AST routine, to determine when data is received.

ast-adr

Address of an AST routine to be called when data is received. This AST routine is declared when

received data is available. You must set the ast-adr each time you want to be notified of received

data. Use the TEL_SET_CCB routine to set the ast-adr after a connection is open.

A pointer to the CCB is passed to the AST routine by reference as the AST argument. You can use the

CCB_USER1 and CCB_USER2 fields if you want to pass arguments to the AST routine.

port

Address of an unsigned word containing the 16-bit port number for the connection (normally 23).

Supplied for use in special applications where the remote server is not a standard TELNET server. If

omitted or 0, the default value 23 is used.

timeout

Address of an unsigned longword with the number of seconds to wait on the connection before timeout.

If omitted or 0, the default value 120 (2 minutes) is used.

Description

Call this routine when you want to open and allocate a connection to an NTA device so that you can use

a terminal device with TELNET.

TEL_DEALLOCATE_CCB
Deallocates a CCB.

Format

ret-status.wlc.v = TEL_DEALLOCATE_CCB(ccb-ptr);

Argument

ccb-ptr

Address of a pointer to the CCB.

Description

Gets rid of a CCB you no longer need. The CCB is deallocated when it is fully closed. An implicit abort

is performed on the connection if the CCB is still in use.

The virtual memory and event flag reserved for the CCB by the TEL_ALLOCATE_CCB routine is freed

when this routine completes.

Condition Values Returned

SS$_NORMAL Success

TEL_GET_CCB
Gets information from a CCB field.

Format

ret-status.wlc.v = TEL_GET_CCB(ccb-ptr, field-code, value);

Arguments

ccb-ptr

Address of a pointer to the CCB. The CCB for the connection does not need to be open unless otherwise

specified.

field-code

Address of an unsigned word containing the symbolic value for the CCB field. The symbolic definitions

for the CCB fields are in the TCPWARE_INCLUDE:_CCBFLD.H file.

value

Address of a variable that receives the value of the CCB field. The data type of this variable depends on

the field requested in field-code.

Description

The value of the CCB field you requested is returned in the argument value. The data type of value

should be the same as the field you requested.

Condition Values Returned

SS$_BADPARAM Bad field-code specified

SS$_NORMAL Normal, successful completion

TEL_OPEN_CONNECTION
Opens a TELNET connection to a remote host.

Format

ret-status.wlc.v = TEL_OPEN_CONNECTION(ccb-ptr, [ia], [host], cmd-rtn,

[efn], [ast-adr], [port], [timeout]);

Arguments

ccb-ptr

Address of a pointer to the CCB.

ia

Address of an unsigned longword containing the remote host's internet address in internet byte order (for

example, internet address 1.2.3.4 is stored as 04030201 hex). If omitted or 0, the host argument

determines the remote host name.

host

Address of a text string descriptor of the remote host's host name. If the string is a valid a.b.c.d type

internet address, that address is used. Otherwise, the Socket Library's gethostbyname routine

determines the internet address from the host name. If omitted or a null string, the ia argument

determines the remote host.

cmd-rtn

Address of the user's command processing routine called each time a TELNET command is received.

Inputs to the command processing routine are the CCB of the connection, a buffer containing one

complete command, and a buffer byte count.

efn

Address of an unsigned longword containing the event flag to use. The event flag is set whenever data is

available in the receive buffer, and cleared when the last byte of data is removed. It is up to you to

allocate the event flag if necessary. You must never set or clear the event flag. If omitted, the previous

value of this field is used; if 0, the field is cleared. If no event flag is specified, you will have to use

another method, such as an AST routine, to determine when data is received.

ast-adr

Address of an AST routine to be called when data is received. This AST routine is declared when

received data is available. You must set the ast-adr each time you want to be notified of received

data. Use the TEL_SET_CCB routine to set the ast-adr after a connection is open.

A pointer to the CCB is passed to the AST routine by reference as the AST argument. You can use the

CCB_USER1 and CCB_USER2 fields if you want to pass arguments to the AST routine.

port

Address of an unsigned word containing the 16-bit port number for the connection (normally 23).

Supplied for use in special applications where the remote server is not a standard TELNET server. If

omitted or 0, the default value 23 is used.

timeout

Address of an unsigned longword with the number of seconds to wait on the connection before timeout.

If omitted or 0, the default value 120 (2 minutes) is used.

Description

Opens an active TELNET connection to the remote host specified in ia or host. A network read

operation is automatically initiated.

Specify either the internet address or host name. If you specify both, the internet address is used.

See the TCPware Management Guide for details on internet addresses and hostnames.

A connection must be opened before you can send or receive data or commands.

Condition Values Returned

SS$_BADPARAM Invalid I/O channel, missing internet address or host name, or no route exists to

the specified internet address

SS$_NORMAL Connection is open

SS$_NOSUCHNODE ia was not specified, and host was not found by gethostbyname

SS$_THIRDPARTY Software was shut down (connection closed)

SS$_TIMEOUT Connection timed-out (connection closed)

SS$_VCBROKEN Connection broken (connection closed)

Any condition value returned by the $ASSIGN and $QIO system services.

TEL_RECEIVE_DATA
Receives data from a remote host.

Format

ret-status.wlc.v = TEL_RECEIVE_DATA(ccb-ptr, buffer-size, buffer, byte-

count);

Arguments

ccb-ptr

Address of a pointer to the CCB.

The ccb-ptr variable must remain in scope at a fixed address. Also, the ccb-ptr is to be used with a

single CCB from the time of TEL_ALLOCATE_CCB to TEL_DEALLOCATE_CCB.

buffer-size

Address of an unsigned word containing the number of bytes you are willing to receive.

buffer

Address of the first byte of the buffer. The buffer must be at least buffer-size bytes in length.

byte-count

Address of an unsigned word variable that receives the length of the data in the buffer.

Description

Call this routine whenever data is available. You can use ASTs or event flags to determine when data is

available. You must also call this routine after you initiated a close from the local end, as the remote

host may still be open and sending data. When the remote host closes, TEL_RECEIVE_DATA returns a

status of SS$_VCCLOSED.

If you are using ASTs, you must set the AST address each time you want to be notified by an AST that

data is available. This is typically done before returning from your AST routine.

See TEL_SET_CCB()/

TEL_SET_CCB on how to set the AST address or event flag number.

Do not use this routine to poll for data since that would waste CPU time.

Pairs of IAC characters (ASCII 255) are translated to a single IAC, and a NUL character (ASCII 0)

following a carriage return is removed as dictated by the TELNET protocol. When in remote binary

mode (bit 1 is set in CCB_UFLAGS) a NULL following a carriage return is not removed.

This routine ensures that TELNET commands and data are processed in the order in which they are

received. It does this by copying TELNET data to your buffer until your buffer is full, there is no more

data, or a TELNET command is encountered. If a TELNET command is encountered and data was

copied to your buffer, it is not processed until the next call to TEL_RECEIVE_DATA(), at which time

any additional data following the TELNET command or commands is also returned.

When the byte-count argument is 0, all data (and commands) have been processed. If the remote end

closes the connection, a SS$_VCCLOSED status is returned after the last byte is transferred. You must

call TEL_CLOSE_CONNECTION() to fully close the connection.

Condition Values Returned

SS$_ILLSEQOP Connection not open

SS$_NORMAL Success, data was copied to internal buffer

SS$_THIRDPARTY Software was shut down (connection closed)

SS$_TIMEOUT Connection timed-out (connection closed)

SS$_VCBROKEN Connection broken (connection closed)

SS$_VCCLOSED Connection closed by remote host (local end still open)

TEL_SEND_COMMAND
Sends TELNET commands to the remote host. Commands include option commands and control

functions (such as BREAK and AYT).

Format

ret-status.wlc.v = TEL_SEND_COMMAND(ccb-ptr, buffer, byte-count);

Arguments

ccb-ptr

Address of a pointer to the CCB.

buffer

Address of the first byte of your data. The commands must be complete and correct. Command data

must include the IAC character(s) where appropriate.

byte-count

Address of an unsigned word containing the number of bytes in the command buffer.

Description

This routine is similar to the TEL_SEND_DATA() routine. The only difference is that no processing is

done to the command data. The buffer is transmitted with IAC and CR characters left as is.

Condition Values Returned

SS$_ILLSEQOP Connection not open

SS$_NORMAL Success, data was copied to internal buffer

SS$_THIRDPARTY Software was shut down (connection closed)

SS$_TIMEOUT Connection timed-out (connection closed)

SS$_VCBROKEN Connection broken (connection closed)

TEL_SEND_DATA
Sends data to the remote host.

Format

ret-status.wlc.v = TEL_SEND_DATA(ccb-ptr, buffer, byte-count);

Arguments

ccb-ptr

Address of a pointer to the CCB.

buffer

Address of the first byte of your data.

byte-count

Address of an unsigned word containing the number of bytes in the data buffer.

Description

Sends the data in your buffer to the remote host. This routine will not return until all of the data is copied

to the internal transmit buffer.

Usually data is immediately copied to the internal buffer, and control is returned to your application

program. However, if the internal transmit buffer is full, TEL_SEND_DATA ()waits until there is room

in the internal buffer before copying the data and returning. Buffer space becomes available as data is

delivered to the remote host.

IAC characters (ASCII 255) in your buffer are doubled and carriage returns not followed by line feeds

have a NULL character (ASCII 0) inserted following the carriage return as dictated by the TELNET

protocol. When in local binary mode (bit 0 is set in CCB_UFLAGS) a NULL character is not inserted

after a carriage return.

Condition Values Returned

SS$_ILLSEQOP Connection not open

SS$_NORMAL Success, data was copied to internal buffer

SS$_THIRDPARTY Software was shut down (connection closed)

SS$_TIMEOUT Connection timed-out (connection closed)

SS$_VCBROKEN Connection broken (connection closed)

TEL_SEND_URGENT
Sends TELNET commands to the remote host using TCP urgent notification. Commands include option

commands and control functions (such as BREAK and AYT).

Format

ret-status.wlc.v = TEL_SEND_URGENT(ccb-ptr, buffer, byte-count);

Arguments

ccb-ptr

Address of a pointer to the CCB.

buffer

Address of the first byte of your data. The commands must be complete and correct. Command data

must include the IAC character(s) where appropriate.

byte-count

Address of an unsigned word containing the number of bytes in the command buffer.

Description

This routine is similar to the TEL_SEND_COMMAND() routine. The only difference is that

TEL_SEND_URGENT() sends data using TCP urgent notification.

Condition Values Returned

SS$_ILLSEQOP Connection not open

SS$_NORMAL Success, data was copied to internal buffer

SS$_THIRDPARTY Software was shut down (connection closed)

SS$_TIMEOUT Connection timed-out (connection closed)

SS$_VCBROKEN Connection broken (connection closed)

TEL_SET_CCB
Sets the value of a CCB field.

Format

ret-status.wlc.v = TEL_SET_CCB(ccb-ptr, field-code, value);

Arguments

ccb-ptr

Address of a pointer to the CCB. The CCB does not need to be open.

field-code

Address of an unsigned word containing the symbolic value for the CCB field. The symbolic definitions

for the CCB fields are in the TCPWARE_INCLUDE:CCBFLD.H file.

value

Address of a variable that receives the value of the CCB field. The data type of this variable depends on

the field requested in field-code.

Note: When you set the CCD_ASTRTN or the CCB_CMDRTN field, make sure that value is the

address of the address of the routine.

Description

The CCB field you requested is set to the value specified in value. The data type of value should be

the same as the field you specified.

Condition Values Returned

SS$_BADPARAM Bad field-code specified

SS$_NORMAL Normal, successful completion

User Command Processing
The user command processing routine is a routine that you write to process received TELNET

commands. TELNET commands include option-negotiating commands (such as WILL, WONT, DO, and

DONT) and control functions (such as AYT, EL, and BREAK).

The TEL_RECEIVE_DATA routine calls your processing routine to process TELNET commands.

TELNET commands are processed before any data is returned in the TEL_RECEIVE_DATA call. For

example, the data stream shown in the below figure is returned to you in three calls to

TEL_RECEIVE_DATA.

D represents data bytes and C represents TELNET commands. Your command processing routine is

called four times at the beginning of call 2 and twice at the beginning of call 3. This ensures that any

change in the way data following a TELNET command is to be interpreted can go into effect before the

data is processed. Also, if data needs to be included in the data stream in place of the TELNET

command, it can be inserted before the beginning of the data buffer returned by the

TEL_RECEIVE_DATA routine.

Your routine should have the following call format:

your-routine (ccb-ptr.ma.r, buffer.rbu.ra, byte-count.rwu.r)

The routine is called with the following inputs:

• CCB pointer, by reference

• Address of the command buffer, as an array of bytes

• Size of the command buffer, by reference to an unsigned word

There are no outputs or return values.

One complete command at a time is passed to your command processing routine. Commands are passed

with the leading IAC character removed from them. For example, the command IAC value is passed

as value; IAC DO ECHO is passed as DO ECHO, and IAC SB subnegotiation IAC SE is

passed as SB. The subnegotiation command data is returned as is. No processing of IAC

characters is done.

10. SNMP Extendible Agent
API Routines

Introduction
This chapter is for application programmers. It describes the Application Programming Interface (API)

routines required for an application program to export private Management Information Bases (MIBs)

using the TCPware SNMP agent.

To be able to use your private Management Information Base (MIB) with TCPware's SNMP agent,

develop a shareable image that exports the following application programming interface routines, in

addition to routines you may need to access the MIB variables:

SnmpExtensionInit Called by the SNMPD agent after startup to initialize the MIB subagent

SnmpExtensionInitEx Registers multiple subtrees with the subagent (called by the SNMPD agent

at startup only if implemented)

SnmpExtensionQuery Completes the MIB subagent query (called by the SNMPD agent to handle

a get, getnext, or set request)

SnmpExtensionTrap Sends an enterprise-specific trap (called by the SNMPD agent when the

subagent alerts the agent that a trap needs to be sent)

The SNMP shareable images need to be configured for the SNMP agent to interact with them.

See the Configuration chapter of the Installation & Configuration Guide for details on configuring the

SNMP agent.

SNMP subagent developers should use the include file SNMP_COMMON.H found in the

TCPWARE_INCLUDE directory. This file defines the data structures the API uses.

For details on TCPware's SNMP agent, see Chapter 10, in the Management Guide.

Requirements
You require the following before using the SNMP extendible agent API routines:

• Working knowledge of SNMP; specifically, the following RFCs:

o RFC 1155, Structure and Identification of Management Information for TCP/IP-based

Internets

o RFC 1157, A Simple Network Management Protocol (SNMP)

o RFC 1213, Management Information Base for Network Management of TCP/IP-based

internets: MIB-II

• Working knowledge of OpenVMS shareable images

Linking the Extension Agent Image
To link the Extension Agent Image you need to create an option file:

VAX

!Note: Exclude SnmpExtensionInitEx if it is not needed.

!See the definition of this routine.

!

UNIVERSAL=SnmpExtensionInit, -

SnmpExtensionQuery, -

SnmpExtensionTrap, -

SnmpExtensionInitEx

SYS$SHARE:VAXCRTL/SHARE

!

!List your object/library files here

Alpha and Integrity

!Note: Exclude SnmpExtensionInitEx if it is not needed.

!See the definition of this routine.

!

SYMBOL_VECTOR=(SnmpExtensionInit=PROCEDURE, -

SnmpExtensionQuery=PROCEDURE, -

SnmpExtensionTrap=PROCEDURE, -

SnmpExtensionInitEx=PROCEDURE)

!

!List your object/library files here

Your link statement should then look like this:

$ LINK /SHARE=image-name option-file/OPT

image-name is the name of the shareable image you want to build, and option-file is the option

file mentioned above.

Installing the Extension Agent Image
You should copy the shareable image you build for your SNMP subagent to the SYS$SHARE directory.

CAUTION! Since the shareable image is loaded into the same process address space as the

SNMPD server, an access violation by the subagent shareable image can crash the server

application. Ensure the integrity of your shareable image by testing it thoroughly. Shareable image

errors can also corrupt the server's memory space or may result in memory or resource leaks.

Sample Code and Data Structures
Sample code is provided in the SYS$COMMON:[TCPWARE.EXAMPLES] directory in the files

SNMP_SUBAGENT.C and SNMP_SUBAGENT.H.

SNMP_SUBAGENT.H also defines the following data structures found in the subroutines:

• AsnOBJID

• RFC1157VarBindList

Debugging Code
SNMP subagent developers can use a debug logical, TCPWARE_SNMP_DEBUG to set certain debug

masks. Define the logical as follows and use the mask values from the below table:

$ DEFINE SYSTEM TCPWARE_SNMP_DEBUG mask

Mask Value Description

0010 Raw SNMP input

0020 Raw SNMP output

0040 ASN.1 encoded message input

0080 ASN.1 encoded message output

1000 SNMP Subagent Developer debug mask (prints events and statuses)

Subroutine Reference
The following pages include the subroutine descriptions.

SnmpExtensionInit
Initializes the SNMP subagent and registers the subagent in the SNMPD agent. The subagent calls this

routine at startup.

Format

status = SnmpExtensionInit(int trap-alert-routine, unsigned long time-zero-

reference, unsigned long *trap-event, AsnOBJID *supported-view)

Return Values

This routine returns TRUE if the subagent was successfully initialized; FALSE if initialization failed.

Arguments

trap-alert-routine

Address of the routine the subagent should call when it is ready to send a trap.

time-zero-reference

Time reference the SNMP agent provides, in hundredths of a second. Use C routines time() and

difftime() to calculate MIB uptime (in hundredths of a second).

trap-event

This parameter is reserved for future use.

supported-view

Prefix of the MIB tree the subagent supports.

SnmpExtensionInitEx
Registers multiple MIB subtrees with agent.

This routine is called multiple times, once for each MIB subtree that needs to be registered. If the routine

passes back the first or next MIB subtree, return with TRUE. If all the MIB subtrees were passed back,

return with FALSE.

Note: Only implement this routine if you have multiple MIB subtrees in your extendible agent.

The TCPware SNMP agent executes this routine if it exists and overwrites MIB information set by

SnmpExtensionInit.

Format

status = SnmpExtentionInitEx(AsnOBJID *supported-view);

Return Values

Returns TRUE if returning the first or next MIB subtree, FALSE if all of the MIB subtrees have been

passed back.

Arguments

supported-view

Prefix of the MIB tree the subagent supports.

Example

int SnmpExtensionInitEx(AsnOBJID *supportedView)

{

 int view1[] = {1, 3, 6, 1, 4, 1, 12, 2, 1 };

 int view2[] = {1, 3, 6, 1, 4, 1, 12, 2, 2 };

 int view3[] = {1, 3, 6, 1, 4, 1, 12, 2, 5 };

 static int whichView = 0;

 switch (whichView++)

 {

 case 0:

 supportedView->idLength = 9;

 memcpy (supportedView->ids, view1, 9* sizeof (int));

 break;

 case 1:

 supportedView->idLength = 9;

 memcpy (supportedView->ids, view2, 9* sizeof (int));

 break;

 case 2:

 supportedView->idLength = 9;

 memcpy (supportedView->ids, view3, 9* sizeof (int));

 break;

 default:

 return (0);

 }

 return (1);

}

SnmpExtensionQuery
Queries the SNMP subagent to get or set a variable in the MIB tree served by the subagent. This routine

is called by the SNMPD agent to handle a get, getnext, or set request.

Format

status = SnmpExtensionQuery (unsigned char *request-type, RFC1157VarBindList

var-bind-list, int error-status, int error-index);

Return Values

Returns TRUE if the operation successfully complete, FALSE if the operation could not be carried out

by the subagent; use error-status and error-index to provide more information.

Arguments

request-type

Identifies the type of request: GET, SET, or GET NEXT. These values are defined in

TCPWARE_ROOT:[TCPWARE.INCLUDE]SNMP_COMMON.H

var-bind-list

The list of name-value pairs used in the request. For a GET request the value is filled by the subagent

and for a SET request, the value is be used to change the current variable value in the subagent. (The

VarBindList structure is defined in RFC 1157 - see SNMP_SUBAGENT.H.)

error-status

Status of a failed operation. See SNMP_COMMON.H for error value names.

error-index

The index of the variable in the variable binding list for which the operation failed.

SnmpExtensionTrap
Sends a trap from the subagent. If the subagent wants to send a trap, it must first call the trap-

alert-routine (see the SnmpExtensionInit routine). The trap-alert-routine should

be called with two parameters (oid ids, oid idlength). For example:

If Process Software’s DNS process wants to send trap information to all the communities that are

interested then the DNS server must be running and the objectids passed are

1,3,6,1,4,1,105,1,2,1,1,1,3,1, and the length of 14.

• 1,3,6,1,4,1 is the default prefix

• 105 is the enterprise ID for Process Software

• 1,2,1,1,1 are the MIB object IDs for the DNS process

• 3,1 are the objectids for DNSUpTrap

The SNMP agent trap-alert-routine creates a table of all received trap MIBs. For each of these

entries, the agent then calls the subagent's SnmpExtensionTrap routine when it is ready to send the

trap. Note that the SNMP agent calls the subagent from inside the trap-alert-routine.

Format

status = SnmpExtensionTrap(AsnOBJID *enterprise, int generic-trap, int

*specific-trap, int *time-stamp, RFC1157VarBindList var-bind-list);

Return Values

Returns TRUE if there are more traps to be generated; FALSE if there are no more traps to be generated.

Arguments

enterprise

The prefix of the MIB for the enterprise sending the trap. (See the SNMP_SUBAGENT.H file.)

generic-trap

The generic enterprise trap ID.

specific-trap

The enterprise-specific trap number.

Note: Since an enterprise can have many traps, the combination of enterprise ID, generic trap, and

specific trap should give a unique identification for a trap.

time-stamp

The time at which the trap was generated.

var-bind-list

The list of name-value pairs. This list contains name and value of the MIB variable for which the trap is

generated.

11. ONC RPC Fundamentals

Introduction
TCPware provides two sets of ONC RPC Services for network programming:

• ONC RPC Services to be used with the DEC C Socket Library for DEC C

• ONC RPC Services to be used with TCPware's Socket Library for VAX C or DEC C

This chapter is for RPC programmers. It provides basic information you need to know before using

ONC RPC Services to write distributed applications, including:

• What ONC RPC Services are

• What components are in ONC RPC Services

• How ONC RPC clients and servers communicate

• Important ONC RPC concepts and terms

What Are ONC RPC Services?
ONC RPC Services are a set of software development tools that allow you to build distributed

applications on OpenVMS systems. These services are part of TCPware.

TCPware provides two types of ONC RPC Services:

• ONC RPC used with VAX C and the TCPware Socket Library

• RPC XDR used with DEC C and the DEC C Socket Library

The bold letters in the above list show the conventions this book uses to distinguish between the two

services.

TCPware Implementation
ONC RPC Services are based on the Open Network Computing Remote Procedure Call (RPC) protocols

developed by Sun Microsystems, Inc. These protocols are defined in the following Requests for

Comments (RFCs):

• RPC: Remote Procedure Call Protocol Specification, Version 2 (RFC 1057)

• XDR: External Data Representation Standard (RFC 1014)

Distributed Applications
A distributed application executes different parts of its programs on different hosts in a network.

Computers on the network share the processing workload, with each computer performing the tasks for

which it is best equipped.

For example, a distributed database application might consist of a central database running on a VMS

server and numerous client workstations. The workstations send requests to the server. The server

carries out the requests and sends the results back to the workstations. The workstations use the results

in other modules of the application.

RPCs allow programs to invoke procedures on remote hosts as if the procedures were local. ONC RPC

Services hides the networking details from the application.

ONC RPC Services facilitates distributed processing because it relieves the application programmer of

performing low-level network tasks such as establishing connections, addressing sockets, and converting

data from one machine's format to another.

Components of ONC RPC Services
ONC RPC Services comprises the following components:

• Run-time libraries (RTLs)

• RPCGEN compiler

• Port Mapper

• RPCINFO command

Run-Time Libraries (RTLs)
XDR: ONC RPC Services provides a single shareable RTL. The library contains:

• ONC RPC client and server routines

• XDR routines

ONC: ONC RPC Services provides two shareable RTLs, one for D_float numbers and one for G_float

numbers. Both libraries contain:

• ONC RPC client and server routines

• XDR routines

• Additional management routines that are unique to ONC RPC Services

The ONC RPC RTL Management Routines, Chapter 16, and the chapters that follow it describe the

RTLs in detail.

RPCGEN Compiler
RPCGEN is a compiler that creates the network interface portion of a distributed application. It

effectively hides from the programmer the details of writing and debugging low-level network interface

code. The RPCGEN Compiler, Chapter 14, describes how to use RPCGEN.

Port Mapper
The Port Mapper helps ONC RPC client programs connect to ports that are being used by ONC RPC

servers. A Port Mapper runs on each host that implements ONC RPC Services. These steps summarize

how the Port Mapper works:

1. ONC RPC servers register with the Port Mapper by telling it which ports they are using.

2. When an ONC RPC client needs to reach a particular server, it supplies the Port Mapper with the

numbers of the remote program and program version it wants to reach. The client also specifies a

transport protocol (UDP or TCP). (Identifying Remote Programs and Procedures provides

details on these numbers.)

3. The Port Mapper provides the correct port number for the requested service. This process is

called binding.

Once binding has taken place, the client does not have to call the Port Mapper for subsequent calls to the

same server. A service can register for different ports on different hosts. For example, a server can

register for port 800 on Host A and port 1000 on Host B. The Port Mapper is itself an ONC RPC server

and uses the ONC RPC RTL. It uses the UDPA and TCPA protocols for transports. The Port Mapper

plays an important role in disseminating messages for broadcast RPC. The Port Mapper is part of the

Network Control Process (NETCP). See the Broadcast RPC section for details.

RPCINFO Command
Use the RPCINFO command to:

• Request a listing of all programs that are registered with the Port Mapper.

• Call the null routine of any program.

You enter this command at the DCL prompt. (See RPCINFO Utility in Chapter 13, Building Distributed

Applications, for details.)

Client-Server Relationship
In ONC RPC, the terms client and server do not describe particular hosts or software entities. Rather,

they describe the roles of particular programs in a given transaction. Every ONC RPC transaction has a

client and a server. The client is the program that calls a remote procedure; the server is the program that

executes the procedure on behalf of the caller.

A program can be a client or a server at different times. The program's role merely depends on whether

it is making the call or servicing the call.

External Data Representation (XDR)
External Data Representation (XDR) is a standard that solves the problem of converting data from one

machine's format to another.

ONC RPC Services uses the XDR data description language to describe and encode data. Although

similar to the C language, XDR is not a programming language. It merely describes the format of data,

using implicit typing. XDR: External Data Representation Standard (RFC 1014) defines the XDR

language.

ONC RPC Processing Flow
Remote and local procedure calls share some similarities. In both cases, a calling process makes

arguments available to a procedure. The procedure uses the arguments to compute a result, then returns

the result to the caller. The caller uses the results of the procedure and resumes execution.

The below diagram shows the underlying processing that makes a remote procedure call different from a

local call.

The following steps describe the processing flow during a remote procedure call:

1. The client program passes arguments to the client stub procedure. (See Chapter 14, RPCGEN

Compiler, for details on how to create stubs.)

2. The client stub marshals the data by:

• Calling the XDR routines to convert the arguments from the local representation to XDR

• Placing the results in a packet

Using ONC RPC RTL calls, the client stub sends the packet to the UDP or TCP layer for

transmission to the server.

3. The packet travels on the network to the server, up through the layers to the server stub.

4. The server stub un-marshals the packet by converting the arguments from XDR to the local

representation. Then it passes the arguments to the server procedure.

Local Calls versus Remote Calls
This section describes some of the ways in which local and remote procedure calls handle system

crashes, errors, and call semantics.

Handling System Crashes
Local procedure calls involve programs that reside on the same host. Therefore, the called procedure

cannot crash independently of the calling program.

Remote procedure calls involve programs that reside on different hosts. Therefore, the client program

does not necessarily know when the remote host has crashed.

Handling Errors
If a local procedure call encounters a condition that prevents the call from executing, the local operating

system usually tells the calling procedure what happened.

If a remote procedure call cannot be executed for some reason (e.g., errors occur on the network or

remote host), the client might not be informed of what happened. You may want to build a signaling or

condition-handling mechanism into the application to inform the client of such errors.

ONC RPC returns certain types of errors to the client, such as those that occur when it cannot decode

arguments. The RPC server must be able to return processing-related errors, such as those that occur

when arguments are invalid, to the client. However, the RPC server may not return errors during batch

processing or broadcast RPC.

Call Semantics
Call semantics determine how many times a procedure executes.

Local procedures are guaranteed to execute once and only once.

Remote procedures have different guarantees, depending on which transport protocol is used.

XDR: The TCP transport guarantees execution once and only once as long as the server does not crash.

The UDP transport guarantees execution at least once. It relies on the XID cache to prevent a remote

procedure from executing multiple times.

ONC: The TCP and TCPA transports guarantee execution once and only once as long as the server

does not crash. The UDP and UDPA transports guarantee execution at least once. They rely on the XID

cache to prevent a remote procedure from executing multiple times.

See XID Cache for details on the XID cache.

Programming Interface
The ONC RPC RTL is the programming interface to RPC. You may think of this interface as containing

multiple levels.

The ONC RPC RTL reference chapters describe each routine.

The sample programs listed in the ONC RPC Sample Programs, Chapter 19, show how ONC RPC

routines are used at each level.

High-Level Routines
The higher-level RPC routines provide the simplest RPC programming interface. These routines call

lower-level RPC routines using default arguments, effectively hiding the networking details from the

application programmer.

When you use high-level routines, you sacrifice control over such tasks as client authentication, port

registration, and socket manipulation, but you gain the benefits of using a simpler programming

interface. Programmers using high-level routines can usually develop applications faster than they can

using low-level RPC routines.

You can use the RPCGEN compiler only when you use the highest-level RPC programming interface.

Mid-Level Routines
The mid-level routines provide the most commonly used RPC interface. They give the programmer

some control over networking tasks, but not as much control as the low-level routines permit.

For example, you can control memory allocation, authentication, ports, and sockets using mid-level

routines.

The mid-level routines require you to know procedure, program, and version numbers, as well as input

and output types. Output data is available for future use. You can use the registerrpc and

callrpc routines.

Low-Level Routines
The low-level routines provide the most complicated RPC interface, but they also give you the most

control over networking tasks such as client authentication, port registration, and socket manipulation.

These routines are used for the most sophisticated distributed applications.

ONC: These routines also allow you to use the TCPA and UDPA transports, as described below.

Transport Protocols
XDR and ONC RPC Services use the transport protocols listed in the below tale. The RPC client and

server must use the same transport protocol for a given transaction.

Protocols Characteristics

UDP

(XDR and ONC)

Unreliable datagram service

Connectionless

Used for broadcast RPC

Maximum broadcast message size in either direction on an Ethernet line: 1500

UDPA

(ONC only)

Execution is guaranteed at least once (see XID Cache)

Calls cannot be processed in batch

TCP

(XDR and ONC)

TCPA

(ONC only)

Reliable

Connection-oriented

Can send an unlimited number of bytes per RPC call

Execution is guaranteed once and only once

Calls can be processed in batch

No broadcasting

Note: For XDR, you must use the DEC C Socket Library with ONC RPC Services. For ONC, you

must use the TCPware Socket Library with ONC RPC Services.

XID Cache
The XID cache stores responses the server has sent. When the XID cache is enabled, the server does not

have to recreate every response to every request. Instead, the server can use the responses in the cache.

Thus, the XID cache saves computing resources and improves the performance of the server.

XDR: Only the UDP transports can use the XID cache. The reliability of the TCP transport generally

makes the XID cache unnecessary. UDP is inherently unreliable.

ONC: Only the UDP, UDPA, and TCPA transports can use the XID cache. The reliability of the TCP

and TCPA transports generally makes the XID cache unnecessary. UDP is inherently unreliable.

The below table shows how the XID caches differ for the UDP and UDPA/TCPA transports.

UDP Transport UDPA/TCPA Transports

Places every response

in the XID cache

Allows the server to specify which responses are to be cached, using the

svcudpa_enablecache and svctcpa_enablecache routines

XID cache cannot be

disabled

Requires you to disable the XID cache after use

Cache Entries
Each entry in the XID cache contains:

• The encoded response that was sent over the network.

• The internet address of the client that sent the request.

• The transaction ID that the client assigned to the request.

Cache Size
You determine the size of the XID cache. Consider these factors:

• How many clients are using the server.

• Approximately how long the cache should save the responses.

• How much memory you can allocate. Each entry requires about 8Kbytes.

The more active the server is, the less time the responses remain in the cache.

Execution Guarantees
As explained earlier in Local Calls Versus Remote Calls, remote procedures have different execution

guarantees, depending on which transport protocol is used. The XID cache affects the execution

guarantee.

XDR: The TCP transport guarantees execution once and only once as long as the server does not crash.

The UDP transport guarantees execution at least once. If the XID cache is enabled, a UDP procedure is

unlikely to execute more than once.

ONC: The TCP and TCPA transports guarantee execution once and only once as long as the server

does not crash. The UDP and UDPA transports guarantee execution at least once. If the XID cache is

enabled, a UDP or UDPA procedure is unlikely to execute more than once.

Enabling XID Cache
XDR: Use the svcudp_enablecache routine to enable the XID cache. This routine is described in

the ONC RPC RTL reference chapters.

ONC: Use the svcudp_enablecache,svcudpa_enablecache and

svctcpa_enablecache routines to enable the XID cache. Use the svcudpa_freecache and

svctcpa_freecache routines to disable the cache for a UDPA/TCPA server. These routines are

described in the ONC RPC RTL reference chapters.

Not enabling the XID cache saves memory.

Active Cache
The active cache maintains a list of active requests that the server is working on. All UDPA servers use

the active cache. A UDP server does not need an active cache because it can work on only one request at

a time.

XDR: TCP servers do not need an active cache because they do not receive duplicate requests.

ONC: TCP and TCPA servers do not need an active cache because they do not receive duplicate

requests. When a UDPA server receives a request, it searches the active cache for a match. If no match

is found, the server places the request in the active cache and processes it. If a match is found, the server

ignores the new request because it is already processing the request. When the server sends a response, it

removes the request from the active cache and may add it to the XID cache.

Broadcast RPC
Broadcast RPC allows the client to send a broadcast call to all Port Mappers on the network and wait for

multiple replies from ONC RPC servers.

For example, a host might use a broadcast RPC message to inform all hosts on a network of a system

shutdown.

The below table shows the differences between normal RPC and broadcast RPC.

Normal RPC Broadcast RPC

Client expects one answer Client expects many answers

Can use TCP or UDP Requires UDP

Server always responds to errors Server does not respond to errors;

Client does not know when errors

occur

Port Mapper is desirable, but not required if you use fixed port

numbers

Requires Port Mapper services

Broadcast RPC sends messages to only one port - the Port Mapper port - on every host in the network.

On each host, the Port Mappers pass the messages to the target ONC RPC server. The servers compute

the results and send them back to the client. See Broadcast RPC Sample Programs in Chapter 20, ONC

RPC Sample Programs, for a list of sample programs using broadcast RPC.

ONC RPC Batch Facilities
Normally, an ONC RPC client sends a remote procedure call, stops processing, and waits for the server

to reply. Some remote procedure calls, however, do not require a reply or acknowledgment. In these

cases, the client wastes time waiting for the server to respond.

ONC RPC batch facilities solve this problem by allowing the client to send many remote procedure calls

without waiting for replies.

ONC RPC Services performs batching by placing the client's messages to a particular server

sequentially in a pipeline. The server knows it does not have to respond to these messages. The client

sends a normal RPC call at the end of the batch sequence to "flush" the pipeline and let the server know

there are no more batch calls.

Batching decreases the amount of communication overhead used by the client and server. The client can

place many call messages in a buffer and send them to the server in one system call. The client can

generate new calls while the server processes previous calls.

Batch Requirements
All ONC RPC batch calls must meet these requirements (see Batch RPC Sample Programs in Chapter

20, ONC RPC Sample Programs, for an example of batching):

• Specify that the result of the call is to be decoded by the XDR routine at address zero

• Have a timeout of zero

• Use the TCP transport

Identifying Remote Programs and
Procedures
The ONC RPC client must uniquely identify the remote procedure it wants to reach. Therefore, all

remote procedure calls must contain these three fields:

• A remote program number

• The version number of the remote program

• A remote procedure number

Remote Program Numbers
A remote program is a program that implements at least one remote procedure. Remote programs are

identified by numbers that you assign during application development. Use the table below to determine

which program numbers are available. The numbers are in groups of hexadecimals.

Range Purpose

0 to 1FFFFFFF Defined and administered by Sun Microsystems. Should be identical for all sites.

Use only for applications of general interest to the Internet community.

20000000 to

3FFFFFFF

Defined by the client application program. Site-specific. Use primarily for new

programs.

40000000 to

5FFFFFFF

Use for applications that generate program numbers dynamically.

60000000 to

FFFFFFFF

Reserved for the future. Do not use.

Remote Version Numbers
Multiple versions of the same program may exist on a host or network. Version numbers distinguish one

version of a program from another. Each time you alter a program, remember to increment its version

number.

Remote Procedure Numbers
A remote program may contain many remote procedures. Remote procedures are identified by numbers

that you assign during application development. Follow these guidelines when assigning procedure

numbers:

• Use 1 for the first procedure in a program. (Procedure 0 should do nothing and require no

authentication to the server.)

• For each additional procedure in a program, increment the procedure number by one.

Additional Terms
Before writing RPC applications, you should be familiar with the below terms.

XDR and ONC

Term Definition

Channel An OpenVMS term referring to a logical path that connects a process to a physical device,

allowing the process to communicate with that device. A process requests OpenVMS to

assign a channel to a device. Refer to HP’s documentation for more information on

channels.

Client

handle

Information that uniquely identifies the server to which the client is sending the request.

Consists of the server's host name, program number, program version number, and

transport protocol.

See the following routines in the ONC RPC RTL Client Routines, Chapter 16:

XDR ONC

Term Definition Term Definition

Client handle authnone_create
authunix_create

authunix_create_default

clnt_create

clnttcp_create

clntudp_create

clnt_perror

Client handle authnone_create
authunix_create

authunix_create_default

clnt_create

clnttcp_create

clntudp_create

clnt_call

clnt_control

clnt_destroy

clnt_freeres

clnt_geterr

clnt_perror

XDR and ONC

Term Definition

Port An abstract point through which a datagram passes from the host layer to the application layer

protocols.

XDR

Term Definition

Server

handle

Information that uniquely identifies the server. Content varies according to the

transport being used. See the following routines in Chapter 18, ONC RPC RTL Server

Routines:

svcudp_create svctcp_create svc_destroy

svc_freeargs svc_getargs svc_getcaller

svc_register svc_sendreply svcerr_ routines

ONC

Term Definition

Server

handle

Information that uniquely identifies the server. Content varies according to the

transport being used. See the following routines in Chapter 18, ONC RPC RTL Server

Routines:

svcudp_create svcudpa_create svctcp_create

svctcpa_create svc_destroy svc_freeargs

svc_getargs svc_register

svc_sendreply svcerr_ routines

XDR and ONC

Term Definition

Socket An abstract point through which a process gains access to the Internet. A process must

open a socket and bind it to a specific destination. Note: The TCPware Socket Library

must be used with ONC RPC Services.

12. Building Distributed
Applications with RPC

Introduction
This chapter is for RPC programmers. It explains:

• What components a distributed application contains

• How to use ONC RPC to develop a distributed application, step by step

• How to use the RPCINFO utility

Distributed Application Components
The below table lists the components of a distributed application.

Component Description

Main program

(client)

An ordinary main program that calls a remote procedure as if local

Network interface Client and server stubs, header files, XDR routines for input arguments and

results

Server procedure Carries out the client's request (at least one is required)

These components may be written in any high-level language. The ONC RPC Run-Time Library (RTL)

routines are written in C language.

What You Need to Do
The following steps summarize what you need to do to build a distributed application:

1. Design the application.

2. Write an RPC interface definition. Compile it using RPCGEN, then edit the output files as

necessary. (This step is optional. An RPC interface definition is not required. If you do not write

one, proceed to step 3.)

3. Write any necessary code that RPCGEN did not generate.

4. Compile the RPCGEN output files, server procedures, and main program using the appropriate

language compiler(s).

5. Link the object code, making sure you link in the ONC RPC RTL.

6. Start the Port Mapper on the server host.

7. Execute the client and server programs.

Step 1: Design the Application
You must write a main (client) program and at least one server procedure. The network interface,

however, may be hand-written or created by RPCGEN. The network interface files contain client and

server stubs, header files, and XDR routines. You may edit any files that RPCGEN creates.

When deciding whether to write the network interface yourself, consider these factors:

Is execution time

critical?

Your hand-written code may execute faster than code that RPCGEN creates.

Which RPC

interface layer do

you want to use?

RPCGEN permits you to use only the highest layer interface. If you want to use

the lower layers, you must write original code. The ONC RPC Fundamentals,

Chapter 12, describes the characteristics of each RPC interface layer.

Which transport

protocol do you

want to use?

ONC: If you use an asynchronous transport (UDPA or TCPA), you must either write original code for

the server stubs or edit the RPCGEN output.

You may write your own XDR programs, but it is usually best to let RPCGEN handle these.

Step 2: Write and Compile the Interface Definition
An interface definition is a program the RPCGEN compiler accepts as input. The RPCGEN Compiler,

Chapter 14, explains exactly what interface definitions must contain.

Interface definitions are optional. If you write the all of the network interface code yourself, you do not

need an interface definition.

You must write an interface definition if you want RPCGEN to generate network interface code.

After compiling the interface definition, edit the output file(s).

If you are not writing an interface definition, skip this step and proceed to step 3.

Step 3: Write the Necessary Code
Write any necessary code that RPCGEN did not create for you. The below table lists the texts you may

use as references.

Reference Purpose

RFC 1057 Defines the RPC language. Use for writing interface

definitions.

RFC 1014 Defines the XDR language. Use for writing XDR filter

routines.

The ONC RPC RTL Client Routines

chapter and those that follow

Defines each routine in the ONC RPC RTL. Use for writing

stub procedures and XDR filter routines.

Building a Structure

If an input argument or result is not an integer, you need to create a structure for it in the RPCGEN input

file. RPCGEN converts the structure to C format and creates XDR code to encode and decode it.

The TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]GETSYI.X file provides a sample interface

definition containing a structure.

Step 4: Compile All Files
Compile the RPCGEN output files, server procedures, and main program separately using the appropriate

language compiler(s):

XDR: DEC C (VAX, Alpha and Integrity):

$ CC /STANDARD=RELAXED /WARNING=DISABLE=(IMPLICITFUNC) filename.C

ONC: VAX C:

$ CC filename.C

ONC: DEC C (VAX):

$ CC /STANDARD=VAXC filename.C

ONC: DEC C (Alpha and Integrity):

$ CC /STANDARD=VAXC /NOMEMBER_ALIGN /ASSUME=NOALIGN filename.C

FORTRAN (VAX):

$ FORTRAN filename.FOR

FORTRAN (Alpha and Integrity):

$ FORTRAN /NOALIGN /WARNING=(DECLARATIONS,ALIGN) filename.FOR

Step 5: Link the Object Code
Link the object code files. Make sure you link in the ONC RPC RTL. Use the following command:

XDR: DEC C (VAX, Alpha and Integrity):

$ LINK filenames, SYS$INPUT /OPTIONS

UCX$RPCXDR_SHR /SHARE

SYS$SHARE:DECC$SHR /SHARE

Ctrl+Z

ONC: VAX:

$ LINK filenames, SYS$INPUT /OPTIONS

SYS$SHARE:VAXCRTL/SHARE

SYS$SHARE:TCPWARE_RPCLIB_SHR/SHARE

Ctrl+Z

ONC: Alpha and Integrity:

$ LINK filenames, SYS$INPUT /OPTIONS

UCX$RPCXDR_SHR /SHARE

SYS$SHARE:DECC$SHR /SHARE

Ctrl+Z

After entering the command, press Ctrl+Z.

To avoid repetitive data entry, you may create an OpenVMS command procedure to execute these

commands.

Step 6: Start the Port Mapper
The Port Mapper must be running on the server host. If it is not running, use the NETCU ADD

SERVICE command to start it. See Chapter 2, NETCU Commands of the NETCU Command Reference

manual for details on this command.

Step 7: Execute the Client and Server Programs
Perform these steps:

1. Run the server program interactively to debug it, or using the /DETACHED qualifier. Refer to the

OpenVMS documentation for details.

2. Run the client main program.

Using Asynchronous Transports
ONC: ONC RPC provides two asynchronous transport protocols: TCPA and UDPA. These protocols

allow you to write multi-threaded servers that can process multiple requests in parallel.

Only an asynchronous service can benefit from using an asynchronous transport.

For example, you would use an asynchronous transport for a service that performs a lot of asynchronous

file I/O by issuing QIOs. You would not use an asynchronous transport for a service that performs a lot

of synchronous file I/O.

Client processes cannot use TCPA and UDPA.

The asynchronous transport protocols are specific to TCPware.

The ONC RPC Fundamentals, Chapter 12, explains the differences between each transport protocol.

Writing an Asynchronous Server
ONC: This section explains how to write an asynchronous server.

Before You Begin
1. Decide how many threads the server will support. The number of threads determines the number

of requests the server can handle in parallel. The server can parallel process as many requests as

it has threads.

2. Choose the TCPA and/or UDPA transport protocol. (A server can support both.)

3. Determine:

• The size of the XID cache. Generally, this is at least the number of UDPA or TCPA threads.

• Which procedures, if any, the XID cache will contain responses for.

Writing the Code
ONC: Write a program that performs the following steps:

1. To set up the server:

a. Call svcudpa_create and/or svctcpa_create for each thread. Save the return

values for later use. Use the svc_getchan routine after the first call and specify the

returned value in subsequent calls.

b. If you are enabling the XID cache, call svcudpa_enablecache and/or

svctcpa_enablecache for each thread. Use the result of the first call to

svcudpa_enablecache/svctcpa_enablecache as input to successive calls to

that routine, so that all threads use the same cache.

c. Call the svc_register routine once for each transport to register the service.

2. Put the main code in "hibernation" by calling SYS$HIBER instead of svc_run. SYS$HIBER

is an OpenVMS system service that accepts no input arguments.

3. To shut down the server:

a. Perform any shutdown steps that are specific to your server.

b. Call svctcpa_shutdown once for all TCPA threads.

c. Call svcudpa_shutdown once for all UDPA threads.

d. Call svc_destroy once for each thread.

How Asynchronous Transports Affect Memory
ONC: Asynchronous transports use more memory than synchronous transports because each service

has more than one thread.

When TCPA receives requests greater than 4Kbytes, it uses significantly more memory than TCP uses

for the same size requests. TCP reads in 4Kbytes of data, processes the data, then reads more data as

necessary. TCPA reads all of the data before calling the server dispatch routine.

Asynchronous System Traps
ONC: All UDPA and TCPA servers use asynchronous system traps (ASTs). Refer to the Guide to VMS

Programming Resources for complete information on ASTs.

When using ASTs, follow these guidelines:

• Do not permit the main program to disable ASTs for long periods of time. If the program

disables ASTs before it calls SYS$HIBER, the server does not respond to requests.

• The AST quota for the server process must allow at least one AST for each thread.

• The dispatch routine is called as a user-mode AST. This means a program cannot do

synchronous waiting when an AST is required to wake up the program.

• Only one AST can be active at a time.

RPCINFO Utility
RPCINFO is an ONC RPC utility that allows you to:

• Request a listing of all programs registered with a Port Mapper.

• Call the NULL routine of any program

RPCINFO supports both the UDP and TCP protocols.

Requesting a Program Listing
To request a listing of all programs that are registered with the Port Mapper, enter the RPCINFO

command in the following format at the DCL prompt:

RPCINFO -p [-u | -t][host-name]

-p Calls the Port Mapper.

-u Uses the UDP transport to send the request. This is the default if you do not specify a

transport.

-t Uses the TCP transport to send the request.

host-

name
Specifies the domain name of the host on which the Port Mapper resides.

If you omit this parameter, RPCINFO uses the name of the local host.

Below is an example:

$ rpcinfo -p hermes

 Program Version Protocol Port

 ------- ------- -------- ----

 100000 2 udp 111 rpcbind

 100000 2 tcp 111 rpcbind

 100005 1 udp 2049 mountd

Calling a NULL Routine
To call the NULL routine of a program, enter the RPCINFO command in the following format at the

DCL prompt:

RPCINFO [-u | -t] host-name program[version]

-u Uses the UDP transport to send the request.

 If you do not specify a trans port, this is the default.

-t Uses the TCP transport to send the request.

host-name Specifies the domain name of the target host.

program Specifies the program number of the target program.

Version Specifies the version number of the target program.

If you omit the version, the default is 1.

For example, suppose you enter the following command:

$ RPCINFO ETA 100000 2

The following message displays if the call completes successfully:

Version 2 of program 100000 successfully called

13. RPCGEN Compiler

Introduction
This chapter is for RPC programmers.

What Is RPCGEN?
RPCGEN is the RPC Protocol Compiler. This compiler creates the network interface portion of a

distributed application, effectively hiding from the programmer the details of writing and debugging

low-level network interface code.

You are not required to use RPCGEN when developing a distributed application. If speed and flexibility

are critical to your application, you can write the network interface code yourself, using ONC RPC Run-

Time Library (RTL) calls where they are needed.

Compiling with RPCGEN is one step in developing distributed applications. See Chapter 13, Building

Distributed Applications, for a complete description of the application development process.

RPCGEN allows you to use the highest layer of the RPC programming interface. The ONC RPC

Fundamentals, Chapter 12, provides details on these layers.

Software Requirements
XDR: The following software must be installed on your system before you can use RPCGEN:

• VMS Version 5.5-2 or later

• DEC C compiler Version 3.2 or later

ONC: The following software must be installed on your system before you can use RPCGEN:

• VMS Version 5.5-2 or later

• VAX C compiler Version 3.0 or later

Input Files
The RPCGEN compiler accepts as input programs called interface definitions, written in RPC Language

(RPCL), an extension of XDR language. RFC 1057 and RFC 1014 describe these languages in detail.

An interface definition must always contain the following information:

• Remote program number

• Version number of the remote program

• Remote procedure number(s)

• Input and output arguments

The below example shows a sample interface definition from the

TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]PRINT.X file.

/*

** RPCGEN input file for the print file RPC batching example.

**

** This file is used by RPCGEN to create the files PRINT.H and PRINT_XDR.C

** The client and server files were developed from scratch.

*/

const MAX_STRING_LEN = 1024; /* maximum string length */

/*

** This is the information that the client sends to the server

*/

struct a_record

{

 string ar_buffer< MAX_STRING_LEN>;

};

program PRINT_FILE_PROG

{

 version PRINT_FILE_VERS_1

 {

 void PRINT_RECORD(a_record) = 1;

 u_long SHOW_COUNT(void) = 2;

 } = 1;

} = 0x20000003;

/* end file PRINT.X */

The default extension for RPCGEN input files is .X.

You do not need to call the ONC RPC RTL directly when writing an interface definition. RPCGEN

inserts the necessary library calls in the output file.

Output Files
RPCGEN output files contain code in C language. The below table lists the RPCGEN output files and

summarizes their purpose. You can edit RPCGEN output files during application development. The

TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC] directory provides sample RPCGEN output files.

File Purpose

Client and server

stub calls

Interface between the network and the client and server programs. Stubs use RPC

RTL to communicate with the network.

XDR routines Convert data from a machine's local data format to XDR format, and vice versa.

Header Contains common definitions, such as those needed for any structures being

passed.

Invoking RPC explains how to request specific output files.

The below table shows the conventions you should use to name output files.

File Output Filename

Client stub inputname_CLNT.C

Server stub inputname_SVC.C

Header file inputname.H

XDR filter routines inputname_XDR.C

inputname is the name of the input file. For example, if the input file is TEST.X, the server stub is

TEST_SVC.C.

When you use the RPCGEN command to create all output files at once, RPCGEN creates the output

filenames listed in the above table by default. When you want to create specific kinds of output files,

you must specify the names of the output files in the command line.

Preprocessor Directives
RPCGEN runs the input files through the C preprocessor before compiling. You can use the macros

listed in the below table with the #ifdef preprocessor directive to indicate that specific lines of code in

the input file are to be used only for specific RPCGEN output files.

File Macro

Client stub RPC_CLNT

Server stub RPC_SVC

Header file RPC_HDR

XDR filter routines RPC_XDR

Invoking RPCGEN
This section explains how to invoke RPCGEN to create:

• All output files at once

• Specific output files

• Server stubs for either the TCP or UDP transport

Creating All Output Files at Once
This command creates all four RPCGEN output files at once:

$ RPCGEN input

Where input is the name of the file containing the interface definition.

In the following example, RPCGEN creates the output files PROGRAM.H, PROGRAM_CLNT.C,

PROGRAM_SVC.C, and PROGRAM_XDR.C:

$ RPCGEN PROGRAM.X

Creating Specific Output Files
This command creates only the RPCGEN output file that you specify:

RPCGEN {-c |-h | -l | -m}[-o output]input

-c Creates an XDR filter file (_XDR.C)

-h Creates a header file (.H)

-l Creates a client stub (_CLNT.C)

-m Creates a server stub (_SVC.C) that uses both the UDP and TCP transports

-o Specifies an output file (or the terminal if no output file is given)

output Name of the output file

input Name of an interface definition file with a .X extension

Follow these guidelines:

• Specify just one output file (-c, -h, -l, or -m) in a command line.

• If you omit the output file, RPCGEN sends output to the terminal screen.

Examples:
• RPCGEN -h PROGRAM

RPCGEN accepts the file PROGRAM.X as input and sends the header file output to the screen,

because no output file is specified.

• RPCGEN -l -o PROGRAM_CLNT.C PROGRAM.X

RPCGEN accepts the PROGRAM.X file as input and creates the PROGRAM_CLNT.C client stub

file.

• RPCGEN -m -o PROGRAM_SVC.C PROGRAM.X

RPCGEN accepts the PROGRAM.X file as input and creates the PROGRAM_SVC.C server stub

file. The server can use both the UDP and TCP transports.

Creating Server Stubs for TCP or UDP Transports
This command creates a server stub file for either the TCP or UDP transport:

RPCGEN -s {udp | tcp}[-o output]input

-s Creates a server (_SVC.C) that uses either the UDP or TCP transport (with -s, you must

specify either udp or tcp; do not also use -m)

udp Creates a UDP server

tcp Creates a TCP server

-o Specifies an output file (or the terminal if no output file is given)

output Name of the output file

input Name of an interface definition file with a .X extension

If you omit the output file, RPCGEN sends output to the terminal screen.

In this example, RPCGEN accepts the PROGRAM.X file as input and creates the PROGRAM_SVC.C

output file, containing a TCP server stub:

$ RPCGEN -s tcp -o PROGRAM_SVC.C PROGRAM.X

Error Handling
RPCGEN stops processing when it encounters an error. It indicates which line the error is on.

Restrictions
RPCGEN does not support the following:

• The syntax int x, y; . You must write this as int x; int y;

• Asynchronous transports

14. RPC RTL Management
Routines

Introduction
This chapter is for RPC programmers. It introduces RPC Run-Time Library (RTL) conventions and

documents the management routines in the RPC RTL. These routines are the programming interface to

RPC.

Management Routines
There are two types of services with RTL:

• ONCRPC used with VAX C and the TCPware Socket Library

• RPCXDR used with DEC C and the HP Socket Library

The bold letters in the above list show the conventions this book uses to distinguish between the two

services.

The RPC RTL contains:

• RPC management routines

• DEC C: RPC client and server routines for the UDP and TCP transport layers

• VAX C: RPC client and server routines for the UDP, UDPA, TCP, and TCPA transport layers

• DEC C: On VAX, Alpha and I64 systems, RPC provides a single shareable image accessed via

the UCX$RPCXDR_SHR logical. This shareable image contains routines for all of the DEC C

floating-point types. The correct routines will automatically be called based on the compiler

options used to compile the RPC application. See the DEC C documentation for how to use the

floating-point compiler options.

• VAX C: On VAX systems, RPC provides two shareable RTLs:

o A D_float library, for standard double-precision real numbers between 10-38 and 10+38.

This library is in the SYS$SHARE:TCPWARE_RPCLIB_SHR.EXE file.

o A G_float library, for double-precision real numbers between 10-308 and 10+308. This

library is in the SYS$SHARE:TCPWARE_RPCLIBG_SHR.EXE file.

• DEC C: On Alpha and I64 systems, ONC RPC provides three shareable RTLs:

o A D_float library, for standard double-precision real numbers between 10-38 and 10+38.

This library is in the SYS$SHARE:TCPWARE_RPCLIBD_SHR.EXE file.

o A G_float library, for double-precision real numbers between 10-308 and 10+308. This

library is in the SYS$SHARE:TCPWARE_RPCLIB_SHR.EXE file.

o A T_float library, for IEEE double-precision real numbers between 10-308 and 10+308.

This library is in the SYS$SHARE:TCPWARE_RPCLIBT_SHR.EXE file.

• VAX C: Invoke these libraries by using the appropriate qualifiers when you compile your

application programs. See your HP VAX documentation for instructions on compiling.

Chapter 13, Building Distributed Applications with RPC, explains how to link in the RPC RTL.

Routine Name Conventions
In this chapter, all routines are documented according to their standard UNIX names. Routines that are

unique to TCPware have UNIX-style names.

If you are writing code in C language, you may use the routine names used in this chapter. If you are

writing code in a different language, however, you must use the TCPware names defined in the

SYS$COMMON:[TCPWARE.INCLUDE.RPCOLD]:ONCRPC_FUNC.H file. These names all begin

with the letters ONCRPC.

Header Files
All RPC programs include the file named RPC.H. Locations for this file are:

• VAX C: SYS$COMMON:[TCPWARE.INCLUDE.RPCOLD]: RPC.H

• DEC C: UCX$RPC:RPC.H

The RPC.H file includes the files listed in the below table.

Filename Purpose

Pertains to DEC C and VAX C

AUTH.H Used for authentication.

AUTH_UNIX.H Contains XDR definitions for UNIX-style authentication.

CLNT.H Contains various RPC client definitions.

IN.H Defines structures for the internet and socket addresses (in_addr and

sockaddr_in). This file is part of the C Socket Library.

RPC_MSG.H Defines the RPC message format.

SVC.H Contains various RPC server definitions.

SVC_AUTH.H Used for server authentication.

TYPES.H Defines UNIX C data types.

XDR.H Contains various XDR definitions.

Pertains to VAX C only

ONCRPC_CONST.H Defines RPC characteristics and other constants.

ONCRPC_FUNC.H Maps ONCRPC routine names with their UNIX counterparts.

ONCRPC_STRUCT.H Defines structures for the RPC client and server counters.

Pertains to DEC C only

NETDB.H Defines structures and routines to parse /etc/rpc.

There is an additional header file not included by RPC.H that is used by xdr_pmap and

xdr_pmaplist routines. The file name is pmap_prot.h, and the location is:

VAX C: SYS$COMMON:[TCPWARE.INCLUDE.RPCOLD]:PMAP_PROT.H

DEC C: UCX$RPC:PMAP_PROT.H

Boolean Values
Many ONC RPC routines return TRUE or FALSE values. In C, FALSE is zero, and TRUE is any other

value.

TCPware/Sun Implementation
Differences
ONC RPC services are based on the Open Network Computing Remote Procedure Call protocols

originally developed by Sun Microsystems. This section lists the ways in which the TCPware's

implementation of ONC RPC services differs from Sun's implementation of RPC.

• DEC C: TCPware provides the following management routines:

o get_myaddress

o getrpcbynumber

o getrpcport

• VAX C: TCPware provides the following management routines:

o ONCRPC_GET_CHAR

o ONCRPC_SET_CHAR

o ONCRPC_GET_STATS

These routines allow you to retrieve and maintain information that describes how a process is

using ONC RPC. Sun does not provide these routines.

• VAX C: TCPware does not support the following Sun routines:

o svcstdio_create

o svcraw_create

o clntraw_create

These routines deal with transports that the OpenVMS environment does not support.

• The svcfd_create routine provided by TCPware supports only TCP sockets. The Sun

version supports file descriptors, including stdin and stdout.

• In TCPware, the global variable svc_fdset contains an array of structures, where each

element is a socket pointer and a service handle. Sun implements this variable as a bit mask with an

associated array of service handles.

• The authunix_create_default routine provided by TCPware creates credentials based

on the VAX C geteuid and getegid routines.

• TCPware provides the pmap_freemaps routine to free the memory that was allocated by the

pmap_getmaps routine. Sun requires the programmer to know the internals of the pmaplist

structure and free the memory himself.

• TCPware provides the xdr_netobj routine. This routine encodes and decodes netobj, an

aggregate data structure that is opaque and contains a counted array of 1024 bytes.

• TCPware provides the xdr_netobj routine. This routine encodes and decodes netobj, an

aggregate data structure that is opaque and contains a counted array of 1024 bytes.

• ONC: TCPware provides asynchronous transports, with the following routines:

o svctcpa_create

o svctcpa_getxdrs

o svcudpa_enablecache

o svctcpa_shutdown

o svcudpa_bufcreate

o svcudpa_freecache

o svctcpa_enablecache

o svcudpa_create

o svcudpa_getxdrs

o svctcpa_freecache

o svcudpa_shutdown

Sun does not provide asynchronous transports.

• VAX C: TCPware provides the following macros:

o svc_getchan

o svc_getport

Sun does not provide these macros.

• The TCPware RPCGEN compiler gives the input file a default extension of .X if no extension is

specified. The Sun RPCGEN compiler requires you to enter the .X extension.

• The TCPware RPCGEN compiler accepts input only from a file, not from the terminal. The Sun

RPCGEN compiler accepts both types of input.

• The TCPware RPCINFO command supports the TCP and UDP protocol for any request. The

Sun version supports only the UDP protocol when you use RPCINFO to request a Port Mapper

listing.

Management Routines
RPC management routines retrieve and maintain information that describes how a process is using RPC.

This section describes each management routine and function in detail. The following information is

provided for each routine:

• Format

• Arguments

• Description

• Diagnostics, or status codes returned, if any

get_myaddress
Returns the internet address of the local host.

Format

void get_myaddress(struct sockaddr_in *addr);

Argument

addr

Address of a sockaddr_in structure that will be loaded with the host internet address. The port

number is always set to htons(PMAPPORT).

Description

The get_myaddress routine returns the internet address of the local host without doing any name

translation or DNS lookups.

getrpcbynumber
Gets an RPC entry. (DEC C only.)

Format

struct rpcent *getrpcbynumber(int number)

Argument

number

Program name or number.

Description

The getrpcbynumber routine returns a pointer to an object with the following structure containing

the broken-out fields of a line in the RPC program number database.

struct rpcent

{

 char *r_name; /* name of server for this RPC program */

 char **r_aliases; /* alias list */

 long r_number; /* RPC program number */

};

The members of this structure are:

r_name Name of the server for this RPC program

r_aliases Zero-terminated list of alternate names for the RPC program

r_number RPC program number for this service

The getrpcbynumber routine sequentially searches from the beginning of the file until a matching

RPC program name or program number is found, or until an EOF is encountered.

Diagnostics

A NULL pointer is returned on EOF or error.

getrpcport
Gets an RPC port number. (DEC C only.)

Format

int getrpcport(char *host, int prognum, int versnum, int proto)

Arguments

host

Host running the RPC program.

prognum

Program number.

proto

Protocol name. Must be IPPROTO_TCP or IPPROTO_UDP.

Description

The getrpcport routine returns the port number for version versnum of the RPC program

prognum running on host and using protocol proto.

It returns 0 if it cannot contact the portmapper, or if prognum is not registered. If prognum is

registered but not with versnum, it still returns a port number (for some version of the program),

indicating that the program is indeed registered. The version mismatch is detected on the first call to the

service.

ONCRPC_GET_CHAR
Returns the characteristic values of an RPC client or server process. (VAX C only.)

Format

u_long ONCRPC_GET_CHAR(u_long code, void *value)

Arguments

code

Characteristic being returned. The following text describes each code.

RPCCHAR_ _AC_SIZE - Alters the number of entries in the active cache. This code is for

UDPA transports only. If you try to set RPCCHAR__AC_SIZE when a UDPA transport is

active, then RPC_SET_CHAR returns the SS$_DEVACTIVE error code. The type is u_short

*value. The default is 20.

RPCCHAR_ _CHECKSUM - Enables or disables checksums for outgoing packets. The receiver

checks packets if the sender generates a checksum. Disabling checksums improves performance

but reduces data integrity. This code is for UDPA servers only. Valid values are

RPCCKSUM__ENABLE and RPCCKSUM__DISABLE. The type is u_long *value. The

default is RPCCKSUM__ENABLE.

RPCCHAR_ _DEBUG - Enables the printing of messages that indicate what RPC is doing. All

logging messages go to SYS$OUTPUT. The type is u_long *value. The default is 0.

These are the mask values for RPCCHAR__DEBUG:

RPCDBG_ _XDR Prints a message indicating which XDR routines are being used.

RPCDBG_ _XID Prints a message each time the XID cache is referenced. The

message indicates the type of operation being per formed on the

XID cache. For UDP and UDPA servers only.

RPCDBG_ _ACTIVE_CA Prints a message each time the active cache is referenced. The

message indicates the type of operation being per formed on the

active cache. For UDPA servers only.

RPCDBG_ _GENERAL Prints general messages about the activities of RPC RTL routines.

RPCDBG_ _RAW_RCV Prints, in hexadecimal and ASCII, the contents of packets that were

received.

RPCDBG_ _RAW_SEND Prints, in hexadecimal and ASCII, the contents of packets that were

sent.

RPCDBG_ _AUTH Prints authentication processing information.

RPCDBG_ _MEMORY Tracks memory allocation for the RPC RTL.

RPCCHAR_ _DEFPORTS - If an RPC program does not specify a port to use, RPC assigns it a

port. The RPCCHAR_ _DEFPORTS code determines whether RPC tries to use privileged ports

(600 to 1023) or non-privileged ports (1024 and greater). The type is u_long *value. Values

are RPCPORTS_ _PRIVILEGE and RPCPORTS_NORMAL. RPCPORTS_PRIVILEGE is the

default, which means the application uses a privileged port if it has sufficient privileges,

otherwise it uses a non-privileged port.

RPCCHAR_ _FATALRTN - Calls an error-handling routine when the TCPA or UDPA transports

detect a fatal error. The OpenVMS error status code is passed to the error-handling routine. If

*value is zero, the default value is used. The type is void (**value)(u_long

status). The default is SYS$EXIT.

value

Address where the routine places the characteristic value.

Description

The characteristic values are defined as constants in the RPC_CONST.H file. Each process using the

RPC library has its own copy of these values. The ONCRPC_GET_CHAR routine retrieves these values.

Example

u_long debug;

oncrpc_get_char(RPCCHAR__DEBUG, &debug);

printf("The debugging value is %08X", debug);

This example prints a message that shows the present debugging value for RPC. The message goes to

SYS$OUTPUT.

Diagnostics

SS$_NORMAL Routine executed successfully.

SS$_BADPARAM code is invalid.

SS$_ACCVIO value is a null address.

ONCRPC_GET_STATS
Returns counters for memory usage, the RPC server, or the RPC client. (VAX C only.)

Format

u_long ONCRPC_GET_STATS(u_long code, u_char *buffer)

Arguments

code

These codes are valid:

RPCSTAT_ _ZERO Zeros out the client or server counters.

RPCSTAT_ _CLIENT Retrieves client counters.

RPCSTAT_ _SERVER Retrieves server counters.

RPCSTAT_ _MEMORY Retrieves memory counters.

The below example shows how to use the RPCSTAT_ _ZERO code in combination with the other

codes to zero-out the client and server counters after they are retrieved. You cannot zero-out memory

counters.

buffer

Address of the structure to receive the requested counters. These structures are defined in the

RPC_STRUCT.H file. The length of the buffer equals the size of the structures. These are the structures:

/*

** Statistics structure (server)

*/

typedef struct

{

 time_tzero_time; /* # seconds since zeroed*/

 u_longrecvs, /* # receives*/

 recv_errs, /* # bad receives*/

 xmits, /* # transmits*/

 xmit_errs, /* # transmit errors*/

 xerr_badlen /* # calls w/body too small*/

 xerr_nullrecv, /* # empty calls*/

 xerr_auth_weak, /* # weak auth errors*/

 xerr_auth_other, /* # other auth errors*/

 xerr_decode, /* # decode errors

 xerr_noproc, /* # no procedure errors*/

 xerr_noprog, /* # no program errors*/

 xerr_novers, /* # no matching version errors*/

 xerr_systemerr, /* # other system errors*/

 xid_hits, /* # replies sent from xid cache*/

 xid_saves, /* # replies cached*/

 duprcvs; /* # calls found in active cache*/

} svc_counters;

/*

** Statistics structure (client)

*/

typedef struct

{

 time_t zero_time; /* # seconds since zeroed*/

 u_long recvs, /* # receives */

 recv_errs, /* # receive errors*/

 badxid, /* # xid mismatches*/

 xmits, /* # transmits*/

 xmit_errs /* # transmit errors*/

 newcred, /* # new credentials (always 0)*/

 retrans, /* # retransmissions*/

 timeout, /* # timeouts*/

 wait; /* (always 0)*/

} clnt_counters;

/*

** Memory statistics structure

*/

typedef struct

{

 u_long no_mallocs, /* # times memory was allocated*/

 no_frees, /* # times memory was freed*/

 mem_in_use; /* # bytes of memory in use*/

} mem_counters;

Description

The ONCRPC_GET_STATS routine returns counters for this process only.

Example

clnt_counters cstats;

oncrpc_get_stats(RPCSTAT__CLIENT | RPCSTAT__ZERO, &cstats);

/* cstats now contains the client statistics */

This example retrieves client counters, then zeros them out.

Diagnostics

SS$_NORMAL Routine successfully returned the counters.

SS$_BADPARAM code is invalid.

SS$_ACCVIO buffer is a null address.

ONCRPC_SET_CHAR
Defines the values of characteristics for each RPC client and server process. (VAX C only.)

Format

u_long ONCRPC_SET_CHAR(u_long code, void *value)

Arguments

code

Characteristic being set. See the ONCRPC_GET_CHAR routine for a description of each code.

value

Address of the characteristic value.

Description

Use the ONCRPC_SET_CHAR routine to define characteristic values for RPC processes. Each RPC

process has its own values. Codes and values are defined as constants in the RPC_CONST.H file.

Example

void exit_routine (u_long status)

{

 exit(status);

}

main()

{

 void (*fatal_routine)();

 fatal_routine = exit_routine;

 /* fatal_routine is the address of exit_routine */

 oncrpc_set_char(RPCCHAR__FATALRTN, &fatal_routine);

}

Sets the exit routine to be called when the TCPA or UDPA transport detects a fatal error.

Diagnostics

SS$_NORMAL Routine executed successfully.

SS$_ACCVIO value is a null address.

SS$_BADPARAM code is invalid.

SS$_DEVACTIVE A process tried to change the size of the active cache while the UDPA transport

was active.

15. ONC RPC RTL Client
Routines

Introduction
This chapter is for RPC programmers. It documents the client routines in the ONC RPC Run-Time

Library (RTL). These routines are the programming interface to ONC RPC.

Common Arguments
Many client, Port Mapper, and server routines use the same arguments.

The below table lists these arguments and defines their purpose. Arguments that are unique to each

routine are documented together with their respective routines in this and the following chapters

Argument Purpose

args_ptr Address of the buffer to contain the decoded RPC arguments.

auth RPC authentication client handle created by the authnone_create,

authunix_create, or authunix_create_default routine.

clnt Client handle returned by any of the client create routines.

in Input arguments for the service procedure.

inproc XDR routine that encodes input arguments.

out Results of the remote procedure call.

outproc XDR routine that decodes output arguments.

procnum Number of the service procedure.

prognum Program number of the service program.

protocol Transport protocol for the service. Must be IPPROTO_UDP or IPPROTO_TCP.

s String containing the message of your choice. The routines append an error message to

this string.

sockp Socket to be used for this remote procedure call. If sockp is RPC_ANYSOCK, the routine

creates a new socket and defines sockp. The clnt_destroy() routine closes the

socket.

If sockp is a value other than RPC_ANYSOCK, the routine uses this socket and ignores

the internet address of the server.

versnum Version number of the service program.

xdr_args XDR procedure that describes the RPC arguments.

xdrs Structure containing XDR encoding and decoding information.

xprt RPC server handle.

Client Routines
The client routines are called by the client main program or the client stub procedures.

The following sections describe each client routine in detail.

auth_destroy
A macro that destroys authentication information associated with an authentication handle.

Format

void auth_destroy(AUTH *auth);

Argument

auth

RPC authentication client handle created by the authnone_create, authunix_create, or

authunix_create_default routine.

Description

Use auth_destroy to free memory that was allocated for authentication handles. This routine

undefines the value of auth by deallocating private data structures.

Do not use this memory space after auth_destroy has completed. You no longer own it.

authnone_create
Creates and returns a null RPC authentication handle for the client process.

Format

AUTH *authnone_create();

Arguments

None.

Description

This routine is for client processes that require no authentication. RPC uses it as a default when it creates

a client handle.

authunix_create
Creates and returns an RPC authentication handle for the client process. Use this routine when the server

requires UNIX-style authentication.

Format

AUTH *authunix_create(char *host, int uid,int gid,int len,int gids);

Arguments

host

Address of the name of the host that created the authentication information. This is usually the local host

running the client process.

uid

User ID of the person who is executing this process.

gid

User's group ID.

len

Number of elements in the *gids array.

gids

Address of the array of groups to which the user belongs.

Description

Since the client does not validate the uid and gid, it is easy to impersonate an unauthorized user.

Choose values the server expects to receive. The application must provide OpenVMS-to-UNIX

authorization mapping.

You can use a Socket Library lookup routine to get the host name.

authunix_create_default
Calls the authunix_create routine and provides default values as arguments.

Format

AUTH *authunix_create_default();

Arguments

See below.

Description

Like the authunix_create routine, authunix_create_default provides UNIX-style

authentication for the client process. However, authunix_create_default does not require you

to enter any arguments. Instead, this routine provides default values for the arguments used by

authunix_create, listed in the below table.

Argument Default Value

host local host domain name

uid getuid()

gid getgid()

len 0

gids 0

This routine is provided to ensure compatibility with ONC RPC. You can replace this call with

authunix_create and provide appropriate values.

Example

 auth_destroy(client->cl_auth);

 client->cl_auth = authunix_create_default();

This example overrides the authnone_create routine, where client is the value returned by the

clnt_create, clntraw_create, clnttcp_create, or clntudp_create routine.

callrpc
Calls the remote procedure identified by the routine's arguments.

Format

int callrpc (char *host, u_long prognum, u_long versnum, u_long procnum,

xdrproc_t inproc, u_char *in, xdrproc_t outproc, u_char *out);

Arguments

host

Host where the procedure resides.

prognum, versnum, procnum, inproc, in, outproc, out

See the Common Arguments section for a description of the above arguments.

Description

The callrpc routine performs the same functions as the clnt_create, clnt_call, and

clnt_destroy routines.

Since the callrpc routine uses the UDP transport protocol, messages can be no larger than 8Kbytes.

This routine does not allow you to control timeouts or authentication.

If you want to use the TCP transport, use the clnt_create or clnttcp_create routine.

Diagnostics

The callrpc routine returns zero if it succeeds, and the value of enum clnt_stat cast to an

integer if it fails.

You can use the clnt_perrno routine to translate failure status codes into messages.

clnt_broadcast
Broadcasts a remote procedure call to all local networks, using the broadcast address.

Format

enum clnt_stat clnt_broadcast(u_long prognum, u_long versnum, u_long

procnum, xdrproc_t inproc, u_char *in, xdrproc_t outproc, u_char *out,

resultproc_t eachresult);

Arguments

prognum, versnum, procnum, inproc, in, outproc, out

See the Common Arguments section for a description of the above arguments.

eachresult

Each time clnt_broadcast receives a response, it calls the eachresult routine. If

eachresult returns zero, clnt_broadcast waits for more replies. If eachresult returns a

nonzero value, clnt_broadcast stops waiting for replies. The eachresult routine uses this form:

int eachresult(u_char *out, sockaddr_in *addr)

out Contains the results of the remote procedure call, in the local data format.

*addr Address of the host that sent the results.

Description

The clnt_broadcast routine performs the same functions as the callrpc routine. However,

clnt_broadcast sends a message to all local networks, using the broadcast address. The

clnt_broadcast routine uses the UDP protocol.

The below table indicates how large a broadcast message can be.

Line Maximum Size

Ethernet 1500 bytes

proNet 2044 bytes

Example

The TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]SYSINFO.C file provides a sample program

using clnt_broadcast.

Diagnostics

This routine returns diagnostic values defined in the CLNT.H file for enumclnt_stat.

clnt_call
A macro that calls a remote procedure.

Format

enum clnt_stat clnt_call(CLIENT *clnt, u_long procnum, xdrproc_t inproc,

u_char *in, xdrproc_t outproc, u_char *out, struct timeval tout);

Arguments

clnt, procnum, inproc, in, outproc, out

See the Common Arguments section for a description of the above arguments.

tout

Time allowed for the results to return to the client, in seconds and microseconds. If you use the

clnt_control routine to change the CLSET_TIMEOUT code, this argument is ignored.

Description

Use the clnt_call routine after using clnt_create. After you have finished with the client

handle, use the clnt_destroy routine. You can use the clnt_perror routine to print messages for

any errors that occurred.

Diagnostics

This routine returns diagnostic values defined in the CLNT.H file for enumclnt_stat.

clnt_control
A macro that changes or retrieves information about an RPC client process.

Format

bool_t clnt_control(CLIENT *clnt, u_long code, void *info);

Arguments

clnt

Client handle returned by any of the client create routines.

code

Code listed in the below table:

Code Type Purpose

CLSET_TIMEOUT struct timeval Set total timeout

CLGET_TIMEOUT struct timeval Get total timeout

CLSET_RETRY_TIMEOUT* struct timeval Set retry timeout

CLGET_RETRY_TIMEOUT* struct timeval Get retry timeout

CLGET_SERVER_ADDR struct sockaddr_in Get server address

* Valid only for the UDP transport protocol.

The timeval is specified in seconds and microseconds. The total timeout is the length of time that the

client waits for a reply. The default total timeout is 25 seconds.

The retry time is the length of time that UDP waits for the server to reply before transmitting the request.

The default retry timeout is 5 seconds. You might want to increase the retry time if your network is

slow.

For example, suppose the total timeout is 10 seconds and the retry time is five seconds. The client sends

the request and waits five seconds. If the client does not receive a reply, it sends the request again. If the

client does not receive a reply within five seconds, it does not send the request again.

If you use CLSET_TIMEOUT to set the timeout, the clnt_call routine ignores the timeout parameter

it receives for all future calls.

info

Address of the information being changed or retrieved.

Diagnostics

This routine returns TRUE if it succeeds, and FALSE if it fails.

clnt_create
Creates an RPC client handle.

Format

CLIENT *clnt_create(char *host, u_long prognum, u_long versnum, char

*proto);

Arguments

host

Address of the string containing the name of the remote host where the server is located.

prognum, versnum

See the Common Arguments section for a description of the above arguments.

proto

Address of a string containing the name of the transport protocol. Valid values are UDP and TCP. The

ONC RPC Fundamentals chapter explains the advantages and disadvantages of each transport protocol.

Description

The clnt_create routine creates an RPC client handle for prognum. An RPC client handle is a

structure containing information about the RPC client. The client can use the UDP or TCP transport

protocol.

This routine uses the Port Mapper. You cannot control the local port.

The default sizes of the send and receive buffers are 8800 bytes for the UDP transport, and 4000 bytes

for the TCP transport.

The retry time for the UDP transport is five seconds.

Use the clnt_create routine instead of the callrpc or clnt_broadcast routines if you want

to use one of the following:

• The TCP transport

• An authentication other than null

• More than one active client at the same time

You can also use clntraw_create to use the IP protocol, clnttcp_create to use the TCP

protocol, or clntudp_create to use the UDP protocol.

The clnt_create routine uses the global variable rpc_createerr. rpc_createerr is a

structure that contains the most recent service creation error. Use rpc_createerr if you want the

client program to handle the error. The value of rpc_createerr is set by any RPC client creation

routine that does not succeed.

The rpc_createerr variable is defined in the CLNT.H file.

Example

The TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]GETSYI_CLNT_CALL.C file provides a

sample program that uses clnt_create.

Diagnostics

The clnt_create routine returns the address of the client handle, or zero (if it could not create the

client handle).

If the clnt_create routine fails, you can use the clnt_pcreateerror or

clnt_spcreateerror routines to obtain diagnostic information.

clnt_destroy
A macro that destroys an RPC client handle.

Format

void clnt_destroy(CLIENT *clnt);

Argument

clnt

Client handle returned by any of the client create routines.

Description

The clnt_destroy routine destroys the client's RPC handle by deallocating all memory related to the

handle. The client is undefined after the clnt_destroy call.

If the clnt_create routine had previously opened a socket, this routine closes the socket. Otherwise,

the socket remains open.

Example

The TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]GETSYI_CLNT_CALL.C file provides a

sample program that uses clnt_destroy.

clnt_freeres
A macro that frees the memory that was allocated when the RPC results were decoded.

Format

bool_t clnt_freeres(CLIENT *clnt, xdrproc_t xdr_res, char *res_ptr);

Arguments

clnt

Client handle returned by any of the client create routines.

xdr_res

Address of the XDR procedure that describes the RPC results.

res_ptr

Address of the RPC results.

Description

The clnt_freeres routine calls the xdr_free routine.

Example

The TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]GETSYI_CLNT_CALL.C file provides a

sample program that uses clnt_freeres.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

clnt_geterr
A macro that returns an error code indicating why an RPC call failed.

Format

void clnt_geterr(CLIENT *clnt, struct rpc_err *errp);

Arguments

clnt

Client handle returned by any of the client create routines.

errp

Address of the structure containing information that indicates why an RPC call failed. This information

is the same as clnt_stat contains, plus one of the following: the C error number, the range of server

versions supported, or authentication errors.

Description

This routine is primarily for internal diagnostic use.

Example

#define PROGRAM 1

#define VERSION 1

 CLIENT *clnt;

 struct rpc_err err;

 clnt = clnt_create("server name", PROGRAM, VERSION, "udp");

 /* calls to RPC library */

 clnt_geterr(clnt, &err);

This example creates a UDP client handle and performs some additional RPC processing. If an RPC call

fails, clnt_geterr returns the error code.

clnt_pcreateerror / clnt_spcreateerror
Return a message indicating why RPC could not create a client handle.

Format

void clnt_pcreateerror(char *s);

char *clnt_spcreateerror(char *s);

Argument

s

String containing the message of your choice. The routines append an error message to this string.

Description

The clnt_pcreateerror routine prints a message to SYS$OUTPUT.

The clnt_spcreateerror routine returns the address of a string. Use this routine if:

• You want to save the string.

• You do not want to use printf to print the message.

• The message format is different from the one that clnt_perrno supports.

The clnt_spcreateerror routine overwrites the string it returns, unless you save the results.

Use these routines when the clnt_create, clntraw_create, clnttcp_create, or

clntudp_create routine fails.

clnt_perrno / clnt_sperrno
Return a message indicating why the callrpc or clnt_broadcast routine failed to create a client

handle.

Format

void clnt_perrno(enum clnt_stat stat);

char *clnt_sperrno(enum clnt_stat stat);

Argument

stat

Appropriate error condition. Values for stat are defined in the CLNT.H file.

Description

The clnt_perrno routine prints a message to SYS$OUTPUT.

The clnt_sperrno routine returns the address of a string. Use this routine instead if:

• You want to save the string.

• You do not want to use printf to print the message.

• The message format is different from the one that clnt_perrno supports.

To save the string, copy it into your own memory space.

clnt_perror / clnt_sperror
Return a message if the clnt_call routine fails.

Format

void clnt_perror(CLIENT *clnt, char *s);

char *clnt_sperror(CLIENT *clnt, char *s);

Arguments

clnt, s

See the Common Arguments section for a description of the above arguments.

Description

Use these routines after clnt_call.

The clnt_perror routine prints an error message to SYS$OUTPUT.

The clnt_sperror routine returns a string. Use this routine if:

• You want to save the string.

• You do not want to use printf to print the message.

• The message format is different from the one that clnt_perror supports.

The clnt_sperror routine overwrites the string with each call. Copy the string into your own

memory space if you want to save it.

clntraw_create
Returns an RPC client handle. The remote procedure call uses the IP transport.

Format

CLIENT *clntraw_create(struct sockaddr_in *addr, u_long prognum, u_long

versnum, int *sockp, u_long sendsize, u_long recvsize);

Arguments

addr, prognum, versnum

See the Common Arguments section for a description of the above arguments.

sockp

Socket to be used for this remote procedure call. sockp can specify the local address and port number. If

sockp is RPC_ANYSOCK, then a port number is assigned. The example shown for the

clntudp_create routine shows how to set up sockp to specify a port. See Common Arguments for

a description of sockp and RPC_ANYSOCK.

addr

Internet address of the host on which the server resides.

sendsize

Size of the send buffer. If you enter a value less than 100, then 4000 is used as the default.

recvsize

Size of the receive buffer. If you enter a value less than 100, then 4000 is used as the default.

Description

The clntraw_create routine creates an RPC client handle for addr, prognum, and versnum.

The client uses the IP transport. The routine is similar to the clnt_create routine, except

clnttcp_create allows you to specify a socket and buffer sizes. If you specify the port number as

zero by using addr->sin_port, the Port Mapper provides the number of the port on which the

remote program is listening.

The transport used to pass messages to the service is actually a buffer within the process's address space,

so the corresponding RPC server should live in the same address space (see also svcraw_create).

This allows simulation of RPC and getting RPC overheads, such as round-trip times, without kernel

interference.

The clnttcp_create routine uses the global variable rpc_createerr, which is a structure that

contains the most recent service creation error. Use rpc_createerr if you want the client program to

handle the error. The value of rpc_createerr is set by any RPC client creation routine that does not

succeed. The rpc_createerr variable is defined in the CLNT.H file.

Diagnostics

The clntraw_create routine returns the address of the client handle, or zero (if it could not create

the client handle). If the routine fails, use the clnt_pcreateerror or clnt_spcreateerror

routine to obtain additional diagnostic information.

clnttcp_create
Returns an RPC client handle. The remote procedure call uses the TCP transport.

Format

CLIENT *clnttcp_create(struct sockaddr_in *addr, u_long prognum, u_long

versnum, int *sockp, u_long sendsize, u_long recvsize);

Arguments

addr, prognum, versnum

See the Common Arguments section for a description of the above arguments.

sockp

Socket to be used for this remote procedure call. sockp can specify the local address and port number.

If sockp is RPC_ANYSOCK, then a port number is assigned. The example shown for the

clntudp_create routine shows how to set up sockp to specify a port. See Common Arguments for

a description of sockp and RPC_ANYSOCK.

addr

Internet address of the host on which the server resides.

sendsize

Size of the send buffer. If you enter a value less than 100, then 4000 is used as the default.

recvsize

Size of the receive buffer. If you enter a value less than 100, then 4000 is used as the default.

Description

The clnttcp_create routine creates an RPC client handle for addr, prognum, and versnum.

The client uses the TCP transport. The routine is similar to the clnt_create routine, except

clnttcp_create allows you to specify a socket and buffer sizes. If you specify the port number as

zero by using addr->sin_port, the Port Mapper provides the number of the port on which the

remote program is listening.

The clnttcp_create routine uses the global variable rpc_createerr. rpc_createerr is a

structure that contains the most recent service creation error. Use rpc_createerr if you want the

client program to handle the error. The value of rpc_createerr is set by any RPC client creation

routine that does not succeed. The rpc_createerr variable is defined in the CLNT.H file.

Diagnostics

The clnttcp_create routine returns the address of the client handle, or zero (if it could not create

the client handle). If the routine fails, use the clnt_pcreateerror or clnt_spcreateerror

routine to obtain additional diagnostic information.

clntudp_create / clntudp_bufcreate
Returns an RPC client handle. The remote procedure call uses the UDP transport.

Format

CLIENT *clntudp_create (struct sockaddr_in *addr, u_long prognum, u_long

versnum, struct timeval wait, int *sockp);

CLIENT *clntudp_bufcreate (struct sockaddr_in *addr, u_long prognum, u_long

versnum, struct timeval wait, int *sockp, u_long sendsize, u_long recvsize);

Arguments

addr

Internet address of the host on which the server resides.

prognum, versnum, sockp

See the Common Arguments section for a description of the above arguments.

wait

Time interval the client waits before resending the call message. This value changes the

CLSET_RETRY_TIMEOUT code. The clnt_call routine uses this value.

sendsize

Size of the send buffer. If you enter a value less than 100, then 4000 is used as the default.

recvsize

Size of the receive buffer. If you enter a value less than 100, then 4000 is used as the default.

Description

These routines create an RPC client handle for addr, prognum, and versnum. The client uses the

UDP transport protocol.

If you specify the port number as zero by using addr->sin_port, the Port Mapper provides the

number of the port on which the remote program is listening.

Note: Use the clntudp_create routine only for procedures that handle messages shorter than

8K bytes. Use the clntudp_bufcreate routine for procedures that handle messages longer

than 8K bytes.

The clntudp_create routine uses the global variable rpc_createerr. rpc_createerr is a

structure that contains the most recent service creation error. Use rpc_createerr if you want the

client program to handle the error. The value of rpc_createerr is set by any RPC client creation

routine that does not succeed.

The rpc_createerr variable is defined in the CLNT.H file.

Example

main()

{

 int sock;

 u_long prog = PROGRAM, vers = VERSION;

 CLIENT *clnt;

 struct sockaddr_in local_addr, remote_addr;

 struct timeval timeout = { 35, 0}, retry = { 5, 0};

 remote_addr.sin_family = AF_INET;

 remote_addr.sin_port = 0; /* consult the remote port mapper */

 remote_addr.sin_addr.s_addr = 0x04030201; /* internet addr 1.2.3.4 */

 local_addr.sin_family = AF_INET;

 local_addr.sin_port = 12345; /* use port 12345 */

 local_addr.sin_addr.s_addr = 0x05030201; /* internet addr 1.2.3.5 */

 sock = socket(AF_INET, SOCK_DGRAM, 0);

 /* bind the socket to the local addr */

 bind(sock, &local_addr, sizeof(local_addr));

 /* create a client that uses the local IA and port given above */

 clnt = clntudp_create(&remote_addr, prog, vers, retry, &sock);

 /* use a connection timeout of 35 seconds, not the default */

 clnt_control(clnt, CLSET_TIMEOUT, &timeout);

 /*call the server here*/

}

This example defines a socket structure, binds the socket, and creates a UDP client handle.

Diagnostics

These routines return the address of the client handle, or zero (if they cannot create the client handle).

If these routines fail, you can obtain additional diagnostic information by using the

clnt_pcreateerrror or clnt_spcreateerror routine.

16. ONC RPC RTL Port
Mapper Routines

Introduction
This chapter is for RPC programmers. It documents the port mapper routines in the ONC RPC Run-

Time Library (RTL). These routines are the programming interface to ONC RPC.

Port Mapper Routines
Port Mapper routines provide a simple callable interface to the Port Mapper. They allow you to request

Port Mapper services and information about port mappings. The below table summarizes the purpose of

each Port Mapper routine.

Routine Purpose

pmap_freemaps Frees memory that was allocated by the pmap_getmaps() routine.

pmap_getmaps Returns a list of Port Mappings for the specified host.

pmap_getport Returns the port number on which a specified service is waiting.

pmap_rmtcall Requests the Port Mapper on a remote host to call a procedure on that host.

pmap_set Registers a remote service with a remote port.

pmap_unset Unregisters a service so it is no longer mapped to a port.

Port Mapper Arguments
Port Mapper routines use many of the same arguments as client routines.

See the table in the first section of the ONC RPC RTL Client Routines chapter for a list of these

arguments.

Routine Descriptions
The following sections describe each Port Mapper routine in detail.

pmap_freemaps
Frees memory that was allocated by the pmap_getmaps routine.

Format

void pmap_freemaps(struct pmaplist *list);

Argument

list

Address of a structure containing the list returned by the pmap_getmaps routine.

Description

Call the pmap_freemaps routine when the list returned by pmap_getmaps is no longer needed. Do

not call pmap_freemaps to free a list that you created.

pmap_getmaps
Returns a list of port mappings for the specified host.

Format

struct pmaplist *pmap_getmaps(struct sockaddr_in *addr);

Argument

addr

Address of a structure containing the internet address of the host whose Port Mapper is being called.

Description

The pmap_getmaps routine returns a list of current RPC server-to-Port Mappings on the host at

addr. The list structure is defined in the PMAP_PROT.H file.

The RPCINFO command uses this routine.

Diagnostics

If an error occurs (for example, pmap_getmaps cannot get a list of Port Mappings, the internet

address is invalid, or the remote Port Mapper does not exist), the routine returns either NULL or the

address of the list.

pmap_getport
Returns the port number on which a specified service is waiting.

Format

u_short pmap_getport(struct sockaddr_in *addr, u_long prognum, u_long

versnum, u_long protocol);

Arguments

addr

Address of a structure containing the internet address of the remote host on which the server resides.

prognum, versnum, protocol

See the Common Arguments section in the ONC RPC RTL Client Routines chapter for a list of these

arguments.

Diagnostics

If the requested mapping does not exist or the routine fails to contact the remote Port Mapper, the

routine returns either the port number or zero.

The pmap_getport routine uses the global variable rpc_createerr. rpc_createerr is a

structure that contains the most recent service creation error. Use rpc_createerr if you want the

service program to handle the error. The value of rpc_createerr is set by any RPC server creation

routine that does not succeed.

The rpc_createerr variable is defined in the CLNT.H file.

pmap_rmtcall
Requests the Port Mapper on a remote host to call a procedure on that host.

Format

enum clnt_stat pmap_rmtcall(struct sockaddr_in *addr, u_long prognum, u_long

versnum, u_long procnum, xdrproc_t inproc, u_char *in, xdrproc_t outproc,

u_char *out, struct timeval tout, u_long *portp);

Arguments

addr

Address of a structure containing the internet address of the remote host on which the server resides.

prognum, versnum, procnum, inproc, in, outproc, out

See the Common Arguments section in the ONC RPC RTL Client Routines chapter for a list of these

arguments.

tout

Time allowed for the results to return to the client, in seconds and microseconds.

portp

Address where pmap_rmtcall will write the port number of the remote service.

Description

The pmap_rmtcall routine allows you to get a port number and call a remote procedure in one call.

The routine requests a remote Port Mapper to call a prognum, versnum, and procnum on the Port

Mapper's host. The remote procedure call uses the UDP transport.

If pmap_rmtcall succeeds, it changes portp to contain the port number of the remote service.

After calling the pmap_rmtcall routine, you may call the clnt_perrno routine.

Example

The TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]GETSYI_CLNT_RMTCALL.C file provides a

sample program using pmap_rmtcall.

Diagnostics

This routine returns diagnostic values defined in the CLNT.H file for enumclnt_stat.

pmap_set
Registers a remote service with a remote port.

Format

bool_t pmap_set(u_long prognum, u_long versnum, u_long protocol, u_short

port);

Arguments

prognum, versnum, protocol

See the Common Arguments section in the ONC RPC RTL Client Routines chapter for a list of these

arguments.

port

Remote port number.

Description

The pmap_set routine calls the local Port Mapper to tell it which port and protocol the

prognum, versnum is using.

You are not likely to use pmap_set, because svc_register calls it.

Diagnostics

The pmap_set routine returns TRUE if it succeeds, and FALSE if it fails.

pmap_unset
Unregisters a service so it is no longer mapped it to a port.

Format

bool_t pmap_unset(u_long prognum, u_long versnum);

Arguments

prognum, versnum

See the Common Arguments section in the ONC RPC RTL Client Routines chapter for a list of these

arguments.

Description

The pmap_unset routine calls the local Port Mapper and, for all protocols, removes the prognum and

versnum from the list that maps servers to ports.

You are not likely to use pmap_unset, because svc_unregister calls it.

Example

The GETSYI_PROC_A.C and GETSYI_SVC.C files provide sample programs using the

pmap_unset routine.

These files are in the TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC] directory.

Diagnostics

The pmap_unset routine returns TRUE if it succeeds, FALSE if it fails.

17. ONC RPC RTL Server
Routines

Introduction
This chapter is for RPC programmers. It documents the server routines in the ONC RPC Run-Time

Library (RTL). These routines are the programming interface to ONC RPC.

Server Routines
The server routines are called by the server program or the server stub procedures. The below table lists

each server routine and summarizes its purpose.

Routine Purpose

registerrpc Performs creation and registration tasks for server.

svc_destroy Macro that destroys RPC server handle.

svc_freeargs Macro that frees memory allocated when RPC arguments were decoded.

svc_getargs Macro that decodes RPC arguments.

svc_getcaller Macro that returns address of client that called server.

svc_getchan Macro that returns channel of server handle.

svc_getport Macro that returns port associated with server handle.

svc_getreqset Reads data for each server connection.

svc_register Adds specified server to list of active servers, and registers service program

with Port Mapper.

svc_run Waits for RPC requests and calls svc_getreqset routine to dispatch to

appropriate RPC service program.

svc_sendreply Sends results of remote procedure call to client.

svc_unregister Calls Port Mapper to unregister specified program and version for all

protocols.

svcerr_auth Sends error code when server cannot authenticate client.

svcerr_decode Sends error code to client if server cannot decode arguments.

svcerr_noproc Sends error code to client if server cannot implement requested procedure.

svcerr_noprog Sends error code to client when requested program is not registered with

Port Mapper.

svcerr_progvers Sends error code to client when requested program is registered with Port

Mapper, but requested version is not registered.

svcerr_systemerr Sends error code to client when server encounters error not handled by

particular protocol.

svcerr_weakauth Sends error code to client when server cannot perform remote procedure

call because it received insufficient (but correct) authentication parameters.

svcfd_create Returns address of structure containing server handle for specified TCP

socket.

svctcp_create Returns address of server handle that uses TCP transport.

svctcpa_create Returns address of server handle that uses TCPA transport.

svctcpa_enablecache Enables XID cache for specified TCPA transport server.

svctcpa_freecache Deallocates TCPA XID cache.

svctcpa_getxdrs Returns XDR structure associated with server handle.

svctcpa_shutdown Cancels all outstanding I/O on channel associated with server handle.

svcudp_bufcreate Returns address of server handle that uses UDP transport. For procedures

that pass messages longer than 8Kbytes.

svcudp_create Returns address of server handle that uses UDP transport. For procedures

that pass messages shorter than 8Kbytes.

svcudp_enablecache Enables XID cache for specified UDP transport server.

svcudpa_bufcreate Returns address of server handle that uses UDPA transport. For procedures

that pass messages longer than 8Kbytes.

svcudpa_create Returns address of server handle that uses UDPA transport. For procedures

that pass messages shorter than 8Kbytes.

svcudpa_enablecache Enables XID cache for specified UDPA transport server.

svcudpa_freecache Deallocates UDPA XID cache.

svcudpa_getxdrs Returns XDR structure associated with server handle.

svcudpa_shutdown Cancels all outstanding I/O on channel associated with the server handle.

xprt_register Adds UDP or TCP server socket to list of sockets.

xprt_unregister Removes UDP or TCP server socket from list of sockets.

Routine Descriptions
The following sections describe each server routine in detail.

registerrpc
Performs creation and registration tasks for the server.

Format

int registerrpc(u_long prognum, u_long versnum, u_long procnum,

u_char *(*procname) (), xdrproc_t inproc, xdrproc_t outproc);

Arguments

prognum, versnum, procnum, inproc, outproc

See the Common Arguments section in the ONC RPC RTL Client Routines chapter for a list of these

arguments.

procname

Address of the routine that implements the service procedure. The routine uses the following format:

u_char *procname(out);

u_char *out;

where out is the address of the data decoded by outproc.

Description

The registerrpc routine performs the following tasks for a server:

• Creates a UDP server handle.

• Calls the svc_register routine to register the program with the Port Mapper.

• Adds prognum, versnum, and procnum to an internal list of registered procedures. When the

server receives a request, it uses this list to determine which routine to call.

A server should call registerrpc for every procedure it implements, except for the NULL

procedure.

Example

The GETSYI_SVC_REG.C file provide a sample program using the registerrpc routine. This file

is in the TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC] directory.

Diagnostics

The registerrpc routine returns zero if it succeeds, and -1 if it fails.

svc_destroy
Macro that destroys the RPC server handle.

Format

void svc_destroy(SVCXPRT *xprt);

Argument

xprt

RPC server handle.

Description

The svc_destroy routine destroys xprt by deallocating private data structures. After this call,

xprt is undefined.

If the server creation routine received RPC_ANYSOCK as the socket, svc_destroy closes the socket.

Otherwise, you must close the socket.

Example

The TCPWARE_ROOT[TCPWARE.EXAMPLES.RPC]GETSYI_PROC_A.C file provides a sample

program using the svc_destroy routine.

svc_freeargs
Macro that frees the memory that was allocated when the RPC arguments were decoded.

Format

bool_t svc_freeargs (SVCXPRT *xprt, xdrproc_t xdr_args, char *args_ptr);

Arguments

xprt, xdr_args, args_ptr

See the Common Arguments section in the ONC RPC RTL Client Routines chapter for a list of these

arguments.

Description

The svc_freeargs routine calls the xdr_free routine.

Example

The GETSYI_PROC_A.C and GETSYI_SVC.C files provide sample programs that use the

svc_freeargs routine. These files are in the TCPWARE:[TCPWARE.EXAMPLES.RPC] directory.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

svc_getargs
Macro that decodes the RPC arguments.

Format

bool_t svc_getargs(SVCXPRT *xprt, xdrproc_t xdr_args, u_char *args_ptr);

Arguments

xprt, xdr_args, args_ptr

See the Common Arguments section in the ONC RPC RTL Client Routines chapter for a list of these

arguments.

Example

The GETSYI_PROC_A.C and GETSYI_SVC.C files provide sample programs that use the

svc_getargs routine.

These files are in the TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC] directory.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

svc_getcaller
Macro that returns the address of the client that called the server.

Format

struct sockaddr_in *svc_getcaller(SVCXPRT *xprt);

Argument

xprt

RPC server handle.

svc_getchan
Macro that returns the channel associated with the server handle.

Format

u_short svc_getchan(SVCXPRT *xprt);

Argument

xprt

RPC server handle.

Description

Use svc_getchan when multiple servers are listening on the same channel and port.

Example

The TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]GETSYI_PROC_A.C file provides a sample

program that uses svc_getchan.

svc_getport
Macro that returns the port associated with the server handle.

Format

u_short svc_getport(SVCXPRT *xprt);

Argument

xprt

RPC server handle.

Description

Use svc_getport when you want to know what port the server is listening on. You can use this

macro with synchronous and asynchronous transports.

Example

The TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]GETSYI_PROC_A.C file provides a sample

program that uses svc_getport.

svc_getreqset
Reads data for each server connection.

Format

void svc_getreqset(int rdfds);

Argument

rdfds

Address of the read socket descriptor array. This array is returned by the select routine.

Description

The server calls svc_getreqset when it receives an RPC request. The svc_getreqset routine

reads in data for each server connection, then calls the server program to handle the data.

The svc_getreqset routine does not return a value. It finishes executing after all rdfds sockets

have been serviced.

You are unlikely to call this routine directly, because the svc_run routine calls it. However, there are

times when you cannot call svc_run. For example, suppose a program services RPC requests and

reads or writes to another socket at the same time. The program cannot call svc_run. It must call

select and svc_getreqset.

The svc_getreqset routine is for servers that implement custom asynchronous event processing, do

not use the svc_run routine.

You may use the global variable svc_fdset with svc_getreqset. The svc_fdset variable lists

all sockets the server is using. It contains an array of structures, where each element is a socket pointer

and a service handle. It uses the following format:

struct sockarr svc_fdset [MAXSOCK +1];

This is how to use svc_fdset: first, copy the socket handles from svc_fdset into a temporary

array that ends with a zero. Pass the array to the select routine. The select routine overwrites the

array and returns it. Pass this array to the svc_getreqset routine.

You may use svc_fdset when the server does not use svc_run.

The svc_fdset variable is not compatible with UNIX.

Example

#define MAXSOCK 10

 int readfds[MAXSOCK+1], /* sockets to select from */

 i, j;

 for (i = 0, j = 0; i < MAXSOCK; i++)

 if ((svc_fdset[i].sockname != 0) && (svc_fdset[i].sockname != 1))

 readfds[j++] = svc_fdset[i].sockname;

 readfds[j] = 0; /* list of sockets ends w/ a zero */

 switch (select(0, readfds, 0, 0, 0))

 {

 case -1: /* an error happened */

 case 0: /* time out */

 break;

 default: /* 1 or more sockets ready for reading */

 errno = 0;

 ONCRPC_SVC_GET_REQSET(readfds);

 if (errno == ENETDOWN || errno == ENOTCONN)

 sys$exit (SS$_THIRDPARTY);

 }

svc_register
Adds the specified server to a list of active servers, and registers the service program with the Port

Mapper.

Format

bool_t svc_register(SVCXPRT *xprt, u_long prognum, u_long versnum, void

(*dispatch) (), u_long protocol);

Arguments

xprt, prognum, versnum

See the Common Arguments section in the ONC RPC RTL Client Routines chapter for a list of these

arguments.

dispatch

Routine that svc_register calls when the server receives a request for prognum, versnum. This

routine determines which routine to call for each server procedure. This routine uses the following form:

void dispatch(struct svc_req *request, SVCXPRT *xprt)

The svc_getreqset and svc_run routines call dispatch.

protocol

Must be IPPROTO_UDP, IPPROTO_TCP, or zero. Zero indicates that you do not want to register the

server with the Port Mapper.

Example

The GETSYI_PROC_A.C and GETSYI_SVC.C files provide sample programs that use the

svc_register routine.

These files are in the TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC] directory.

Diagnostics

The svc_register routine returns TRUE if it succeeds and FALSE if it fails.

svc_run
Waits for RPC requests and calls the svc_getreqset routine to dispatch to the appropriate RPC service

program.

Format

void svc_run();

Arguments

None.

Description

The svc_run routine calls the select routine to wait for RPC requests. When a request arrives,

svc_run calls the svc_getreqset routine. Then svc_run calls select again.

The svc_run routine never returns.

You may use the global variable svc_fdset with svc_run. See the svc_getreqset routine for

more information on svc_fdset.

Examples

These files contain sample programs that use svc_run:

• GETSYI_SVC.C

• GETSYI_SVC_REG.C

• PRINT_SVC.C

• SYSINFO_SVC.C

These files are in the TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC] directory.

svc_sendreply / svc_sendreply_dq
Sends the results of a remote procedure call to the client.

Format

XDR ONC:

bool_t svc_sendreply(SVCXPRT *xprt, xdrproc_t outproc, u_char *out);

ONC:

bool_t svc_sendreply_dq(SVCXPRT *xprt, xdrproc_t outproc, u_char *out);

Arguments

xprt, outproc, out

See the Common Arguments section in the ONC RPC RTL Client Routines chapter for a list of these

arguments.

Description

Both routines send the results of a remote procedure call to the client.

The svc_sendreply_dq routine, however, does not queue a read and is for UDPA and TCPA

servers only.

Examples

These files contain sample programs that use svc_sendreply:

• SYSINFO_SVC.C

• PRINT_SVC.C

• GETSYI_PROC_A.C

• GETSYI_SVC.C

These files are in the TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC] directory.

Diagnostics

These routines return TRUE if they succeed and FALSE if they fail.

svc_unregister
Calls the Port Mapper to unregister the specified program and version for all protocols. The program and

version are removed from the list of active servers.

Format

void svc_unregister(u_long prognum, u_long versnum);

Arguments

prognum, versnum

See the Common Arguments section in the ONC RPC RTL Client Routines chapter for a list of these

arguments.

Example

The TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]GETSYI_PROC_A.C file contains a sample

program that uses the svc_unregister routine.

svcerr_auth

svcerr_decode
svcerr_noproc
svcerr_noprog
svcerr_progvers
svcerr_systemerr
svcerr_weakauth
Sends various error codes to the client process.

Format

void svcerr_auth(SVCXPRT *xprt, enum auth_stat why);

void svcerr_decode(SVCXPRT *xprt);

void svcerr_noproc(SVCXPRT *xprt);

void svcerr_noprog(SVCXPRT *xprt);

void svcerr_progvers(SVCXPRT *xprt, u_long low-vers, u_long high-vers);

void svcerr_systemerr(SVCXPRT *xprt);

void svcerr_weakauth(SVCXPRT *xprt);

Arguments

xprt

RPC server handle.

why

Error code defined in the AUTH.H file.

low-vers

Lowest version number in the range of versions that the server supports.

high-vers

Highest version in the range of versions that the server supports.

Description

svcerr_auth

See svc_getreqset. Calls svcerr_auth when it cannot authenticate a client. The

svcerr_auth routine returns an error code (why) to the caller.

svcerr_decode

Sends an error code to the client if the server cannot decode the arguments.

svcerr_noproc

Sends an error code to the client if the server does not implement the requested procedure.

svcerr_noprog

Sends an error code to the client when the requested program is not registered with the Port Mapper.

Generally, the Port Mapper informs the client when a server is not registered. Therefore, the server is

unlikely to use this routine.

svcerr_progvers

Sends an error code to the client when the requested program is registered with the Port Mapper, but the

requested version is not registered.

svcerr_systemerr

Sends an error code to the client when the server encounters an error that is not handled by a particular

protocol.

svcerr_weakauth

Sends an error code to the client when the server cannot perform a remote procedure call because it

received insufficient (but correct) authentication parameters. This routine calls the svcerr_auth

routine. The value of why is AUTH_TOOWEAK, which means "access permission denied."

svcfd_create
Returns the address of a structure containing a server handle for the specified TCP socket.

Format

SVCXPRT *svcfd_create(int sock, u_long sendsize, u_long recvsize);

Arguments

sock

Socket number. Do not specify a file descriptor.

sendsize

Size of the send buffer. If you enter a value less than 100, then 4000 is used as the default.

recvsize

Size of the receive buffer. If you enter a value less than 100, then 4000 is used as the default.

Description

The svcfd_create routine returns the address of a server handle for the specified TCP socket. This

handle cannot use a file. The server calls the svcfd_create routine after it accepts a TCP

connection.

Diagnostics

This routine returns zero if it fails.

svcraw_create
Creates a server handle for memory-based RPC for simple testing and timing.

Format

SVCXPRT svcraw_create();

Argument

None.

Description

The svcraw_create routine creates a toy RPC service transport, to which it returns a pointer. The

transport is really a buffer within the process's address space, so the corresponding client should live in

the same address space.

This routine allows simulation of and acquisition of RPC overheads (such as round trip times) without

any kernel interference.

Diagnostics

This routine returns NULL if it fails.

svctcp_create
Returns the address of a server handle that uses the TCP transport.

Format

SVCXPRT *svctcp_create(int sock, u_long sendsize, u_long recvsize);

Arguments

sock

Socket for this service. The svctcp_create routine creates a new socket if you enter

RPC_ANYSOCK. If the socket is not bound to a TCP port, svctcp_create binds it to an arbitrary

port.

sendsize

Size of the send buffer. If you enter a value less than 100, then 4000 bytes is used as the default.

recvsize

Size of the receive buffer. If you enter a value less than 100, then 4000 bytes is used as the default.

Examples

The PRINT_SVC.C and GETSYI_SVC.C files provides sample programs that use svctcp_create.

These files are in the TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC] directory.

Diagnostics

The svctcp_create routine returns either the address of the server handle, or zero (if it could not

create the server handle).

svctcpa_create
Returns the address of a server handle that uses the TCPA transport.

Format

SVCXPRT *svctcpa_create(u_short channel, u_short port, u_long sendsize,

u_long recvsize);

Arguments

channel

If you enter RPC_ANYCHAN (defined in the SVC.H file), the svctcpa_create routine assigns a

channel and sets the local port to the port value. If you enter any other value, svctcpa_create

ignores the port value.

Multiple server handles may use the same channel if you specify RPC_ANYCHAN and a port number on

the first call to svctcpa_create, and if you specify the assigned channel with any port number on

subsequent calls to svctcpa_create. (Use svc_getchan to obtain the channel. Note that for

TCPA, this is not really a channel, just a unique identifier.)

All server handles that use the same channel should use the same XID cache.

port

Number of the TCP port on which the server will listen. If you enter RPCANYPORT, then RPC assigns

a port.

sendsize

Size of the send buffer. If you enter a value less than 100, then 4000 bytes is used as the default.

recvsize

Size of the receive buffer. If you enter a value less than 100, then 4000 bytes is used as the default.

Examples

The GETSYI_PROC_A.C file contains a sample program that uses svctcpa_create. This file is in

the TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC] directory.

Diagnostics

The svctcpa_create routine returns either the address of the server handle, or zero (if it could not

create the server handle).

svctcpa_enablecache
Enables the XID cache for the specified TCPA transport server.

Format

void *svctcpa_enablecache(SVCXPRT *xprt, void *cacheaddr, u_long size,

reply_id *reqlst);

Arguments

xprt

RPC server handle.

cacheaddr

Address of the XID cache. If cacheaddr is zero, this routine allocates a cache with size number of

entries. All TCPA transports that use this cache must have the same size buffers. The first time you call

svctcpa_enablecache, specify zero as the cacheaddr. The second time you call

svctcpa_enablecache, specify the address that svctcpa_enablecache returned on the

previous call as the cacheaddr. All server handles that use a channel should use the same XID cache.

size

Number of entries in the cache. You may estimate this number based on how active the server is, and on

how long you want to retain old replies.

reqlst

Address of an array of structures containing a list of procedures for which replies are to be cached. The

array is terminated by prognum==0. This is the structure:

typedef struct

{

 u_long prognum, versnum, procnum;

} reply_id

If this address is zero, the server saves all replies in the XID cache.

Description

Call the svctcpa_enablecache routine after each TCPA server handle is created. The server places

all appropriate outgoing responses in the XID cache. The cache can be used to improve the performance

of the server, for example, by preventing the server from recalculating the results or sending incorrect

results. You can disable the cache by calling the svctcpa_freecache routine. The ONC RPC

Fundamentals, Chapter 12, provides more information on the XID cache.

Diagnostics

The svctcpa_enablecache routine returns either the address of the cache, or zero if an error

occurs.

svctcpa_freecache
Deallocates the TCPA XID cache.

Format

void svctcpa_freecache(void *cacheaddr);

Argument

cacheaddr

Address of the TCPA XID cache.

Description

The svc_destroy routine calls the svctcpa_freecache routine for every server handle, after all

servers that reference the cache have been destroyed.

The ONC RPC Fundamentals, Chapter 12, provides more information on the XID cache.

svctcpa_getxdrs
Returns the XDR structure associated with the server handle.

Format

XDRS *svctcpa_getxdrs(SVCXPRT *xprt);

Argument

xprt

RPC server handle.

svctcpa_shutdown
Cancels all outstanding I/O on the channel associated with the server handle.

Format

void svctcpa_shutdown(SVCXPRT *xprt);

Argument

xprt

RPC server handle.

Description

The svctcpa_shutdown routine cancels all I/O on the channel associated with xprt and flags the

server as shutting down. The server then begins the shutdown process. Call this routine only once for a

channel before calling svc_destroy to destroy individual server handles.

This routine affects all TCPA handles that are using the same channel.

Example

The TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]GETSYI_PROC_A.C file contains a sample

program that uses svctcpa_shutdown.

svcudp_create / svcudp_bufcreate
Returns the address of a server handle that uses the UDP transport.

Format

SVCXPRT *svcudp_create(int sock);

SVCXPRT *svcudp_bufcreate(int sock, u_long sendsize, u_long recvsize);

Arguments

sock

Socket for this service. The svcudp_create routine creates a new socket if you enter

RPC_ANYSOCK. If the socket is not bound to a UDP port, the svcudp_create routine binds it to an

arbitrary port.

sendsize

Size of the send buffer. The minimum size is 100 bytes. The maximum size is 65468, the maximum

UDP packet size. If you enter a value less than 100, then 4000 is used as the default.

recvsize

Size of the receive buffer. The minimum size is 100 bytes. The maximum size is 65000, the maximum

UDP packet size. If you enter a value less than 100, then 4000 is used as the default.

Description

Use the svc_create routine only for procedures that pass messages shorter than 8 KB long. Use the

svcudp_bufcreate routine for procedures that pass messages longer than 8 KB.

Examples

The SYSINFO_SVC.C and GETSYI_SVC.C files contain sample programs that use

svcudp_create. These files are in the TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC] directory.

Diagnostics

These routines return either a server handle, or zero (if they could not create the server handle).

svcudp_enablecache
Enables the XID cache for the specified UDP transport server.

Format

bool_t svcudp_enablecache(SVCXPRT *xprt, u_long size);

Arguments

xprt

RPC server handle.

size

Number of entries permitted in the XID cache. You may estimate this number based on how active the

server is, and on how long you want to retain old replies.

Description

Use the svcudp_enablecache routine after a UDP server handle is created. The server places all

outgoing responses in the XID cache. The cache can be used to improve the performance of the server,

for example, by preventing the server from recalculating the results or sending incorrect results.

You cannot disable the XID cache for UDP servers.

The ONC RPC Fundamentals, Chapter 12, provides more information on the XID cache.

Example

#define FALSE 0

#define UDP_CACHE_SIZE 10

 SVCXPRT *udp_xprt;

 udp_xprt = svcudp_create(RPC_ANYSOCK);

 if (svcudp_enablecache(udp_xprts, UDP_CACHE_SIZE) == FALSE)

 printf("XID cache was not enabled");

 else

 printf("XID cache was enabled");

Diagnostics

This routine returns TRUE if it enables the XID cache, and FALSE if the cache was previously enabled

or an error occurs.

svcudpa_create / svcudpa_bufcreate
Returns the address of a server handle that uses the UDPA transport.

Format

SVCXPRT *svcudpa_create(u_short channel, u_short port);

SVCXPRT *svcudpa_bufcreate(u_short channel, u_short port, u_long sendsize,

u_long recvsize);

Arguments

channel

If you enter RPC_ANYCHAN (defined in the SVC.H file), then the svcudpa_bufcreate routine

assigns the channel and sets the local port to the port value. If you enter any other value, then

svcudpa_bufcreate ignores the port value. Multiple server handles may use the same channel if

you specify RPC_ANYCHAN and a port number on the first call to svcudpa_create, and if you

specify the assigned channel with any port number on subsequent calls to svcudpa_create. All

server handles that use the same channel should use the same XID cache.

port

Number of the UDP port on which the server will listen. All servers that use the same port should use

the same channel. If you enter RPCANYPORT, then RPC assigns the port.

sendsize

Size of the send buffer. If you enter a value less than 100, then 4000 is used as the default.

recvsize

Size of the receive buffer. If you enter a value less than 100, then 4000 is used as the default.

Description

Both routines return the address of a structure containing a UDPA server handle. The

svcudpa_create routine limits the call to 8 KB of data. The svcudpa_bufcreate routine

allows you to define the buffer sizes.

See Using Asynchronous Transports in Chapter 13, Building Distributed Applications with RPC, for

more information on writing asynchronous transports.

Example

TCPWARE_ROOT:[TCPWARE.EXAMPLE].RPC]GETSYI_PROC_A.C provides a sample program

and procedure that use svcudpa_create.

Diagnostics

These routines return the address of the server handle, or zero (if they could not create the server

handle).

svcudpa_enablecache
Enables the XID cache for the specified UDPA transport server.

Format

void *svcudpa_enablecache(SVCXPRT *xprt, void *cacheaddr, u_long size,

reply_id *reqlst);

Arguments

xprt

RPC server handle.

cacheaddr

Address of the XID cache. If cacheaddr is zero, this routine allocates a cache with size number of

entries. All UDPA transports that use this cache must have the same size buffers.

The first time you call svcudpa_enablecache, specify zero as the cacheaddr. The second time

you call svcudpa_enablecache, specify the address that svcudpa_enablecache returned on

the previous call as the cacheaddr.

All server handles that use a channel should use the same XID cache.

size

Number of entries in the cache. You may estimate this number based on how active the server is, and on

how long you want to retain old replies.

reqlst

Address of an array of structures containing a list of procedures for which replies are to be cached. The

array is terminated by prognum==0. This is the structure:

typedef struct

{

 u_long prognum, versnum, procnum;

} reply_id;

If this address is zero, the server saves all replies in the XID cache.

Description

Call the svcudpa_enablecache routine after each UDPA server handle is created. The server

places all appropriate outgoing responses in the XID cache.

The cache can be used to improve the performance of the server, for example, by preventing the server

from recalculating the results or sending incorrect results. You can disable the cache by calling the

svcudpa_freecache routine.

The ONC RPC Fundamentals, Chapter 12, provides more information on the XID cache.

Example

The TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]GETSYI_PROC_A.C file contains a sample

program that uses the svcudpa_enablecache routine.

Diagnostics

The svcudpa_enablecache routine returns either the address of the cache, or zero if an error

occurs.

svcudpa_freecache
Deallocates the UDPA XID cache.

Format

void svcudpa_freecache(void *cacheaddr);

Argument

cacheaddr

Address of the UDPA XID cache.

Description

The svc_destroy routine calls the svcudpa_freecache routine for every server handle, after all

servers that reference the cache have been destroyed.

The ONC RPC Fundamentals, Chapter 12, provides more information on the XID cache.

Example

The TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]GETSYI_PROC_A.C file contains a sample

program that uses svcudpa_freecache.

svcudpa_getxdrs
Returns the XDR structure associated with the server handle.

Format

XDRS *svcudpa_getxdrs(SVCXPRT *xprt);

Argument

xprt

RPC server handle.

svcudpa_shutdown
Cancels all outstanding I/O on the channel that is associated with the server handle.

Format

void svcudpa_shutdown(SVCXPRT *xprt);

Argument

xprt

RPC server handle.

Description

The svcudpa_shutdown routine cancels all I/O on the channel associated with xprt and flags the

server as shutting down. The server then begins the shutdown process. Call this routine only once for a

channel, before calling svc_destroy to destroy individual servers.

This routine affects all UDPA handles that are using the same channel.

Example

The TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]GETSYI_PROC_A.C file contains a sample

program that uses svcudpa_shutdown.

xprt_register
Adds a TCP or UDP server socket to a list of sockets.

Format

void xprt_register(SVCXPRT *xprt);

Argument

xprt

RPC server handle.

Description

The xprt_register and xprt_unregister routines maintain a list of sockets. This list ensures

that the correct server is called to process the request. The xprt_register routine adds the server

socket to the svc_fdset variable, which also stores the server handle that is associated with the

socket. The svc_run routine passes the list of sockets to the select routine. The select routine

returns to svc_run a list of sockets that have outstanding requests.

You are unlikely to call this routine directly because svc_register calls it.

xprt_unregister
Removes a TCP or UDP server socket from a list of sockets.

Format

void xprt_unregister(SVCXPRT *xprt);

Argument

xprt

RPC server handle.

Description

This list of sockets ensures that the correct server is called to process the request. See the

xprt_register routine for a description of how this list is maintained.

You are unlikely to call this routine directly because svc_unregister calls it.

18. ONC RPC RTL XDR
Routines

Introduction
This chapter is for RPC programmers. It documents the XDR routines in the ONC RPC Run-Time

Library (RTL). These routines are the programming interface to ONC RPC.

XDR Routines
This section explains what XDR routines do and when you would call them. It also provides quick

reference and detailed reference sections describing each XDR routine.

What XDR Routines Do
Most XDR routines share these characteristics:

• They convert data in two directions: from the host's local data format to XDR format (called

encoding or marshalling), or the other way around (called decoding or unmarshalling).

• They use xdrs, a structure containing instructions for encoding, decoding, and deallocating

memory.

• They return a Boolean value to indicate success or failure.

Some XDR routines allocate memory while decoding an argument. To free this memory, call the

xdr_free() routine after the program is done with the decoded value.

The below table shows the order in which XDR routines perform encoding and decoding.

Client Server

1. Encodes arguments

2. Decodes results

3. Frees results from memory

1. Decodes arguments

2. Encodes results

3. Frees arguments from memory

When to Call XDR Routines
Under most circumstances, you are not likely to call any XDR routines directly. The clnt_call and

svc_sendreply routines call the XDR routines.

You would call the XDR routines directly only when you write your own routines to convert data to or

from XDR format.

Quick Reference
The below table lists the XDR routines that encode and decode data.

This routine... Encodes and decodes...

xdr_array Variable-length array

xdr_bool Boolean value

xdr_bytes Bytes

xdr_char Character

xdr_double Double-precision floating point number

xdr_enum Enumerated type

xdr_float Floating point value

xdr_hyper VAX quad word to an XDR hyper-integer, or the other way

xdr_int Four-byte integer

xdr_long Longword

xdr_opaque Contents of a buffer (treats the data as a fixed length of bytes and does not attempt

to interpret them)

xdr_pointer Pointer to a data structure

xdr_reference Pointer to a data structure (the address must be non-zero)

xdr_short Two-byte unsigned integer

xdr_string Null-terminated string

xdr_u_char Unsigned character

xdr_u_hyper VAX quad word to an XDR unsigned hyper-integer

xdr_u_int Four-byte unsigned integer

xdr_u_long Unsigned longword

xdr_u_short Two-byte unsigned integer

xdr_union Union

xdr_vector Vector (fixed length array)

xdr_void Nothing

xdr_wrapstring Null-terminated string

The below table lists the XDR routines that perform various support functions.

This routine... Does this...

xdr_free Deallocates a data structure from memory

xdrmem_create Creates a memory buffer XDR stream

xdrrec_create Creates a record-oriented XDR stream

xdrrec_endofrecord Marks the end of a record

xdrrec_eof Goes to the end of the current record, then verifies whether any more data

can be read

xdrrec_skiprecord Goes to the end of the current record

xdrstdio_create Initializes a stdio stream

The below table lists the upper layer XDR routines that support RPC.

This routine... Encodes and decodes...

xdr_accepted_reply Part of an RPC reply message after the reply is accepted

xdr_authunix_parms UNIX-style authentication information

xdr_callhdr Static part of an RPC request message header (encoding only)

xdr_callmsg RPC request message

xdr_netobj Data in the netobj structure

xdr_opaque_auth Authentication information

xdr_pmap Port Mapper parameters

xdr_pmaplist List of Port Mapping data

xdr_rejected_reply Part of an RPC reply message after the reply is rejected

xdr_replymsg RPC reply header; it then calls the appropriate routine to convert the rest of

the message

Routine Descriptions
The following sections describe each XDR routine in detail.

xdr_accepted_reply
Converts an RPC reply message from local format to XDR format, or the other way around.

Format

bool_t xdr_accepted_reply(XDR *xdrs, struct accepted_reply *ar);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

ar

Address of the structure containing the RPC reply message.

Description

The xdr_replymsg routine calls the xdr_accepted_reply routine.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_array
Converts a variable-length array from local format to XDR format, or the other way around.

Format

bool_t xdr_array(XDR *xdrs, u_char **addrp, u_long *sizep, u_long maxsize,

u_long elsize, xdrproc_t elproc);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

addrp

Address of the address containing the array being converted. If addrp is zero, then xdr_array

allocates ((*sizep)*elsize) number of bytes when it decodes.

sizep

Address of the number of elements in the array.

maxsize

Maximum number of elements the array can hold.

elsize

Size of each element, in bytes.

elproc

XDR routine that handles each array element.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_authunix_parms
Converts UNIX-style authentication information from local format to XDR format, or the other way

around.

Format

bool_t xdr_authunix_parms(XDR *xdrs, struct authunix_parms *aupp);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

aupp

UNIX-style authentication information being converted.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_bool
Converts a boolean value from local format to XDR format, or the other way around.

Format

bool_t xdr_bool(XDR *xdrs, bool_t *bp);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

bp

Address of the boolean value.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_bytes
Converts bytes from local format to XDR format, or the other way around.

Format

bool_t xdr_bytes(XDR *xdrs, u_char **cpp, u_long *sizep, u_long maxsize);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

cpp

Address of the address of the buffer containing the bytes being converted. If *cpp is zero, xdr_bytes

allocates maxsize bytes when it decodes.

sizep

Address of the actual number of bytes being converted.

maxsize

Maximum number of bytes that can be used. The server protocol determines this number.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_callhdr
Encodes the static part of an RPC request message header.

Format

bool_t xdr_callhdr(XDR *xdrs, struct rpc_msg *chdr);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

chdr

Address of the data being converted.

Description

The xdr_callhdr routine converts the following fields: transaction ID, direction, RPC version,

server program number, and server version. It converts the last four fields once, when the client handle

is created.

The clnttcp_create and clntudp_create routines call the xdr_callhdr routine.

Diagnostics

This routine always returns TRUE.

xdr_callmsg
Converts an RPC request message from local format to XDR format, or the other way around.

Format

bool_t xdr_callmsg(XDR *xdrs, struct rpc_msg *cmsg);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

cmsg

Address of the message being converted.

Description

The xdr_callmsg routine converts the following fields: transaction ID, RPC direction, RPC version,

program number, version number, procedure number, client authentication.

The pmap_rmtcall, svc_sendreply, and svc_sendreply_dq routines call xdr_callmsg.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_char
Converts a character from local format to XDR format, or the other way around.

Format

bool_t xdr_char(XDR *xdrs, char *cp);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

cp

Address of the character being converted.

Description

This routine provides the same functionality as the xdr_u_char routine.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_double
Converts a double-precision floating point number between local and XDR format.

Format

bool_t xdr_double(XDR *xdrs, double *dp);

Arguments

xdrs

Pointer to an XDR stream handle created by one of the XDR stream handle creation routines.

dp

Pointer to the double-precision floating point number.

Description

This routine provides a filter primitive that translates between double-precision numbers and their

external representations. It is actually implemented by four XDR routines:

xdr_double_D Converts VAX D format floating point numbers

xdr_double_G Converts VAX G format floating point numbers

xdr_double_T Converts IEEE T format floating point numbers

xdr_double_X Converts IEEE X format floating point numbers

You can reference these routines explicitly or you can use compiler settings to control which routine is

used when you reference the xdr_double routine.

VAX

 If you use... link your program with...

VAX C D_float RTL TCPWARE_RPCLIB_SHR.EXE

VAX C G_float RTL TCPWARE_RPCLIBG_SHR.EXE

ALPHA and I64

If you use... link your program with...

DEC C D_float RTL TCPWARE_RPCLIBD_SHR.EXE

DEC C G_float RTL TCPWARE_RPCLIB_SHR.EXE

DEC C T_float RTL TCPWARE_RPCLIBT_SHR.EXE

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_enum
Converts an enumerated type from local format to XDR format, or the other way around.

Format

bool_t xdr_enum(XDR *xdrs, enum_t *ep);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

ep

Address containing the enumerated type.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_float
Converts a floating point value from local format to XDR format, or the other way around.

Format

bool_t xdr_float(XDR *xdrs, float *fp);

Arguments

xdrs

Pointer to an XDR stream handle created by one of the XDR stream handle creation routines.

fp

Pointer to a single-precision floating point number.

Description

This routine provides a filter primitive that translates between double-precision numbers and their

external representations. It is actually implemented by two XDR routines:

xdr_float_F Converts VAX F format floating point numbers

xdr_float_S Converts IEEE T format floating point numbers

You can reference these routines explicitly or you can use compiler settings to control which routine is

used when you reference the xdr_float routine.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_free
Deallocates a data structure from memory.

Format

void xdr_free(xdrproc_t proc, u_char *objp);

Arguments

proc

XDR routine that describes the data structure.

objp

Address of the data structure.

Description

Call this routine after decoded data is no longer needed. Do not call it for encoded data.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_hyper
Converts a VAX quad word to an XDR hyper-integer, or the other way around.

Format

bool_t xdr_hyper(XDR *xdrs, quad *ptr);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

ptr

Address of the structure containing the quad word. The quad word is stored in standard VAX quad word

format, with the low-order longword first in memory.

Description

This routine provided the same functionality as the xdr_u_hyper() routine.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_int
Converts one four-byte integer from local format to XDR format, or the other way around.

Format

bool_t xdr_int(XDR *xdrs, int *ip);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

ip

Address containing the integer.

Description

This routine provides the same functionality as the xdr_u_int, xdr_long, and xdr_u_long

routines.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_long
Converts one longword from local format to XDR format, or the other way around.

Format

bool_t xdr_long(XDR *xdrs, u_long *lp);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

lp

Address containing the longword.

Description

This routine provides the same functionality as the xdr_u_long, xdr_int, and xdr_u_int

routines.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_netobj
Converts data in the netobj structure from the local data format to XDR format, or the other way

around.

Format

bool_t xdr_netobj(XDR *xdrs, netobj *ptr);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

ptr

Address of the following structure:

typedef struct

{

 u_long n_len;

 byte *n_bytes;

} netobj;

This structure defines the data being converted.

Description

The netobj structure is an aggregate data structure that is opaque and contains a counted array of 1024

bytes.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_opaque
Converts the contents of a buffer from the local data format to XDR format, or the other way around.

This routine treats the data as a fixed length of bytes and does not attempt to interpret them.

Format

bool_t xdr_opaque(XDR *xdrs, char *cp, u_long cnt);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

cp

Address of the buffer containing opaque data.

cnt

Byte length.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_opaque_auth
Converts authentication information from the local data format to XDR format, or the other way around.

Format

bool_t xdr_opaque_auth(XDR *xdrs, struct opaque_auth *ap);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

ap

Address of the authentication information. This data was created by the authnone_create,

authunix_create, or authunix_create_default routine.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_pmap
Converts Port Mapper parameters from the local data format to XDR format, or the other way around.

Format

bool_t xdr_pmap(XDR *xdrs, struct pmap *regs);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

regs

Address of a structure containing the program number, version number, protocol number, and port

number. This is the data being converted.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_pmaplist
Converts a list of Port Mapping data from the local data format to XDR format, or the other way around.

Format

bool_t xdr_pmaplist(XDR *xdrs, struct pmaplist **rpp);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

rpp

Address of the address of the structure containing Port Mapper data. If this routine is used to decode a

Port Mapper listing, rpp is set to the address of the newly allocated linked list of structures.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_pointer
Converts a recursive data structure from the local data format to XDR format, or the other way around.

Format

bool_t xdr_pointer(XDR *xdrs, u_char **objpp, u_long obj_size,

xdrproc_t xdr_obj);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

objpp

Address of the address containing the data being converted. May be zero.

obj_size

Size of the data structure in bytes.

xdr_obj

XDR routine that describes the object being pointed to. This routine can describe complex data

structures, and these structures may contain pointers.

Description

An XDR routine for a data structure that contains pointers to other structures, such as a linked list,

would call the xdr_pointer routine. The xdr_pointer routine encodes a pointer from an address

into a Boolean. If the Boolean is TRUE, the data follows the Boolean.

Example

bool_t xdr_pointer(XDR *xdrs, char **objpp, longw obj_size, xdrproc_t

xdr_obj)

{

 bool_t more_data;

 /*

 * determine if the pointer is a valid address (0 is invalid)

 */

 if (*objpp != NULL)

 more_data = TRUE;

 else

 more_data = FALSE;

 /*

 * XDR the flag

 * If we are decoding, then more_data is overwritten.

 */

 if (!xdr_bool(xdrs, &more_data))

 return(FALSE);

 /*

 * If there is no more data, set the pointer to 0 (No effect if we

 * were encoding) and return TRUE

 */

 if (!more_data)

 {

 *objpp = NULL;

 return(TRUE);

 }

 /*

 * Otherwise, call xdr_reference. The result is that xdr_pointer is

 * the same as xdr_reference, except that xdr_pointer adds a Boolean

 * to the encoded data and will properly handle NULL pointers.

 */

 return(xdr_reference(xdrs, objpp, obj_size, xdr_obj));

} /* end function xdr_pointer() */

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_reference
This routine recursively converts a structure that is referenced by a pointer inside the structure.

Format

bool_t xdr_reference(XDR *xdrs, u_char **objpp, u_long obj_size, xdrproc_t

xdr_obj);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

objpp

Address of the address of a structure containing the data being converted. If objpp is zero, the

xdr_reference routine allocates the necessary storage when decoding. This argument must be non-

zero when encoding.

When xdr_reference encodes data, it passes *objpp to xdr_obj. When decoding,

xdr_reference allocates memory if *objpp equals zero.

obj_size

Size of the referenced structure.

xdr_obj

XDR routine that describes the object being pointed to. This routine can describe complex data

structures, and these structures may contain pointers.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_rejected_reply
Converts the remainder of an RPC reply message after the header indicates that the reply is rejected.

Format

bool_t xdr_rejected_reply(XDR *xdrs, struct rejected_reply *rr);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

rr

Address of the structure containing the reply message.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_replymsg
Converts the RPC reply header, then calls the appropriate routine to convert the rest of the message.

Format

bool_t xdr_replymsg(XDR *xdrs, struct rpc_msg *rmsg);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

rmsg

Address of the structure containing the reply message.

Description

The xdr_replymsg routine calls the xdr_rejected_reply or xdr_accepted_reply routine

to convert the body of the RPC reply message from the local data format to XDR format, or the other

way around.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_short
Converts a two-byte integer from the local data format to XDR format, or the other way around.

Format

bool_t xdr_short(XDR *xdrs, short *sp);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

sp

Address of the integer being converted.

Description

This routine provides the same functionality as xdr_u_short.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_string
Converts a null-terminated string from the local data format to XDR format, or the other way around.

Format

bool_t xdr_string(XDR *xdrs, char **cpp, u_long maxsize);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

cpp

Address of the address of the first byte in the string.

maxsize

Maximum length of the string. The service protocol determines this value.

Description

The xdr_string routine is the same as the xdr_wrapstring routine, except xdr_string

allows you to specify the maxsize.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_u_char
Converts an unsigned character from local format to XDR format, or the other way around.

Format

bool_t xdr_u_char(XDR *xdrs, u_char bp);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

bp

Address of the character being converted.

Description

This routine provides the same functionality as xdr_char.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_u_hyper
Converts an VAX quad word to an XDR unsigned hyper-integer, or the other way around.

Format

bool_t xdr_u_hyper(XDR *xdrs, quad *ptr);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

ptr

Address of the structure containing the quad word. The quad word is stored in standard VAX format,

with the low-order longword first in memory.

Description

This routine provides the same functionality as the xdr_hyper routine.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_u_int
Converts a four-byte unsigned integer from local format to XDR format, or the other way around.

Format

bool_t xdr_u_int(XDR *xdrs, int *ip);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

ip

Address of the integer.

Description

This routine provides the same functionality as xdr_int, xdr_long, and xdr_u_long.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_u_long
Converts an unsigned longword from local format to XDR format, or the other way around.

Format

bool_t xdr_u_long(XDR *xdrs, u_long *lp);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

lp

Address of the longword.

Description

This routine provides the same functionality as xdr_long, xdr_int, and xdr_u_int.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_u_short
Converts a two-byte unsigned integer from the local data format to XDR format, or the other way

around.

Format

bool_t xdr_u_short(XDR *xdrs, u_short *sp);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

sp

Address of the integer being converted.

Description

This routine provides the same functionality as xdr_short.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_union
Converts a union from the local data format to XDR format, or the other way around.

Format

bool_t xdr_union(XDR *xdrs, enum_t *dscmp, u_char *unp, xdr_discrim

*choices, xdrproc_t dfault);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

dscmp

Integer from the choices array.

unp

Address of the union.

choices

Address of an array. This array maps integers to XDR routines.

dfault

XDR routine that is called if the dscmp integer is not in the choices array.

Description

The xdr_union routine searches the array choices for the value of dscmp. If it finds the value, it calls

the corresponding XDR routine to process the remaining data. If xdr_union doesn't find the value, it

calls the dfault routine.

Example

The TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]GETSYI_XDR_2.C file contains a sample

routine that calls xdr_union.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_vector
Converts a vector (fixed length array) from the local data format to XDR format, or the other way

around.

Format

bool_t xdr_vector(XDR *xdrs, u_char *basep, u_long nelem, u_long elmsize,

xdrproc_t xdr_elem);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

basep

Address of the array.

nelem

Number of elements in the array.

elmsize

Size of each element.

xdr_elem

Converts each element from the local data format to XDR format, or the other way around.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_void
Converts nothing.

Format

bool_t xdr_void(XDR *xdrs, u_char *ptr);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

ptr

Ignored.

Description

Use this routine as a place-holder for a program that passes no data. The server and client expect an

XDR routine to be called, even when there is no data to pass.

Diagnostics

This routine always returns TRUE.

xdr_wrapstring
Converts a null-terminated string from the local data format to XDR format, or the other way around.

Format

bool_t xdr_wrapstring(XDR *xdrs, char **cpp);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

cpp

Address of the address of the first byte in the string.

Description

The xdr_wrapstring routine calls the xdr_string routine. The xdr_wrapstring routine

hides the maxsize argument from the programmer. Instead, the maximum size of the string is assumed

to be 232 - 1.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdrmem_create
Creates a memory buffer XDR stream.

Format

void xdrmem_create(XDR *xdrs, u_char *addr, u_long size, enum xdr_op op);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

addr

Address of the buffer containing the encoded data.

size

Size of the addr buffer.

op

Operations you will perform on the buffer. Valid values are XDR_ENCODE, XDR_DECODE, and

XDR_FREE. You may change this value.

Description

The xdrmem_create routine initializes a structure so that other XDR routines can write to a buffer.

The UDP and UDPA transports use this routine.

xdrrec_create
Creates a record-oriented XDR stream.

Format

void xdrrec_create(XDR *xdrs, u_long sendsize, u_long recvsize,

u_char *tcp_handle, int (*readit)(), int (*writeit)();

Arguments

xdrs

Address of the structure being created. The xdrrec_create routine will write XDR encoding and

decoding information to this structure.

sendsize

Size of the send buffer in bytes. The minimum size is 100 bytes. If you specify fewer than 100 bytes,

4000 bytes is used as the default.

recvsize

Size of the receive buffer in bytes. The minimum size is 100 bytes. If you specify fewer than 100 bytes,

4000 bytes is used as the default.

tcp_handle

Address of the client or server handle.

readit

Address of a user-written routine that reads data from the stream transport. This routine must use the

following format:

int readit(u_char *tcp_handle, u_char *buffer, u_long len)

tcp_handle is the client or server handle, *buffer is the buffer to fill, and len is the number of

bytes to read. The readit routine returns either the number of bytes read, or -1 if an error occurs.

writeit

Address of a user-written routine that writes data to the stream transport. This routine must use the

following format:

int writeit(u_char *tcp_handle, u_char *buffer, u_long len)

• tcp_handle is the client or server handle.

• buffer is the address of the buffer being written.

• len is the number of bytes to write.

The writeit routine returns either the number of bytes written, or -1 if an error occurs.

Description

The xdrrec_create routine requires one of the following:

• The TCP transport

• A stream-oriented interface (such as file I/O) not supported by TCPware. The stream consists of

data organized into records. Each record is either an RPC request or reply.

The clnttcp_create and svcfd_create routines call the xdrrec_create routine.

xdrrec_endofrecord
Marks the end of a record.

Format

bool_t xdrrec_endofrecord(XDR *xdrs, bool_t sendnow);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

sendnow

Indicates when the calling program will send the record to the writeit routine.

If sendnow is TRUE, xdrrec_endofrecord sends the record now. If sendnow is FALSE,

xdrrec_endofrecord writes the record to a buffer and sends the buffer when it runs out of buffer

space.

Description

A client or server program calls the xdrrec_endofrecord routine when it reaches the end of a

record it is writing. The program must call the xdrrec_create routine before calling

xdrrec_endofrecord.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdrrec_eof
Goes to the end of the current record, then verifies whether any more data can be read.

Format

bool_t xdrrec_eof(XDR *xdrs);

Argument

xdrs

Address of the structure containing XDR encoding and decoding information.

Description

The client or server program must call the xdrrec_create routine before calling xdrrec_eof.

Diagnostics

This routine returns TRUE if it reaches the end of the data stream, and FALSE if it finds more data to

read.

xdrrec_skiprecord
Goes to the end of the current record.

Format

bool_t xdrrec_skiprecord(XDR *xdrs);

Argument

xdrs

Address of the structure containing XDR encoding and decoding information.

Description

A client or server program calls the xdrrec_skiprecord routine before it reads data from a stream.

This routine ensures that the program starts reading a record from the beginning.

The xdrrec_skiprecord routine is similar to the xdrrec_eof routine, except that

xdrrec_skiprecord does not verify whether any more data can be read.

The client or server program must call the xdrrec_create routine before calling

xdrrec_skiprecord.

Diagnostics

This routine returns TRUE if it has skipped to the start of a record. Otherwise, it returns FALSE.

xdrstdio_create
Initializes a stdio XDR stream.

Format

void xdrstdio_create(XDR *xdrs, FILE *file, enum xdr_op op);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

file

File pointer FILE *, which is to be associated with the stream.

op

An XDR operation, one of: XDR_ENCODE, XDR_DECODE, or XDR_FREE.

Description

The xdrstdio_create routine initializes a stdio stream for the specified file.

19. ONC RPC Sample
Programs

Introduction
This chapter is for RPC programmers. It explains:

• How to run the sample programs.

• The purpose of each sample program file.

Introducing Sample Programs
The ONC RPC sample programs are divided into three groups:

• GETSYI

• PRINT

• SYSINFO

Each group has a command procedure to facilitate compiling and linking. All command procedures are

in the TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC] directory.

For more information on each program, see the comments in the GETSYI.COM, PRINT.COM, and

SYSINFO.COM files.

Running Sample Programs
To run an RPC sample program, follow these steps:

1. Move to the directory where you want the command procedure to place the client and server

sample programs. It must be a directory in which you have write privilege.

2. Compile the sample client and server programs by entering one of the following commands at

the DCL prompt:

$ @TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]PRINT

$ @TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]SYSINFO

$ @TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]GETSYI XDR1

$ @TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]GETSYI XDR2

3. Verify whether the Port Mapper is running. Use the RPCINFO command or the NETCU SHOW

SERVICES command. If the Port Mapper is not running, ask the system manager to start it.

4. Log on to a second terminal. Run the server that you compiled in step 2. To stop the server, type

CTRL+C.

5. Define symbols that point to the executable client program. A symbol can point to either a

logical or a disk/directory specification, as follows:

symbol:==$logical:prog

symbol:==$disk:[dir]prog

• symbol specifies GETSYI, PRINTF, or SYSINFO.

• logical is the logical pointing to the directory that contains the .EXE client program. This

logical must translate to a disk and directory specification.

• prog is the .EXE program for GETSYI, PRINT, or SYSINFO.

• disk:[dir] is the disk and directory where the .EXE client program is located.

These symbols remain valid until you log off.

6. Run the clients. Use the commands given in the following sections.

Running GETSYI Client
To run the GETSYI client, enter the following command at the DCL prompt:

$ GETSYI [-u | -t][-d#][-nnode][-hhost]code[code…]

GETSYI Runs the GETSYI client.

-u UDP transport. Supported only for the GETSYI_CLNT_CALL client. This is the default.

-t TCP transport. Supported only for the GETSYI_CLNT_CALL client.

-d# Debugging value passed to the ONCRPC_SET_CHAR routine. Debugging values are

defined in the ONCRPC_CONST.H file. The pound sign (#) represents a hexadecimal

number. The default is 0.

-nnode Name of the node about which the server is returning information. Can be used only if the

server is part of a VMS cluster. The default is a NULL string (no node).

-hhost Domain name of the host running the remote server. If you omit host, node is used as the

default. If node is not specified, the default is the local host.

Code String indicating what information the server needs to return. You can enter up to 64 codes.

The codes are

• BOOTTIME NODE_SWVERS

• CLUSTER_NODES NODENAME

• CPU PAGEFILE_FREE

• NODE_HWTYPE PAGEFILE_PAGE

• NODE_HWVERS SWAPFILE_FREE

• NODE_NUMBER SWAPFILE_PAGE

• NODE_SWTYPE VERSION

The GETSYI_SVC_SUBS.C file defines all possible codes. Three codes in the file are specific to VMS

Version 5.x or OpenVMS. These are commented out. You can remove the comments in order to use

them.

The OpenVMS System Services Reference Manual describes each code under the $GETSYI system

service.

Running PRINT Client
To run the PRINT client, type the following command at the DCL prompt:

$ PRINTF [-d#][-hhost]filename

-d# Debugging value that is passed to the ONCRPC_SET_CHAR routine. Debugging values

are defined in the ONCRPC_CONST.H file. The pound sign (#) represents a hexadecimal

number. The default is 0.

-hhost Domain name of the host running the remote server. The default is the local host.

filename Name of the file to be displayed on the screen. You must have the appropriate privilege to

gain access to this file.

Running SYSINFO Client
To run the SYSINFO client, type the following command at the DCL prompt:

$ SYSINFO [-d#][limit]

-d# Debugging value that is passed to the ONCRPC_SET_CHAR routine. Debugging values are

defined in the ONCRPC_CONST.H file. The pound sign (#) represents a hexadecimal number.

The default is 0.

limit Maximum number of replies the client can receive before it exits. The client processes until it

reaches this limit or it times out, whichever comes first.

Miscellaneous Clients and Servers
The sample programs listed in the below table include three client programs using the client_call,

callrpc, and pmap_rmtcall routines; a synchronous server; and a server using the

registerrpc routine.

In this group of programs, a client calls a server to request system information, and the server provides

the information.

File Description

GETSYI.COM Command procedure that compiles and links related RPC sample

programs.

GETSYI.H Header file used by the sample RPC GETSYI programs. Generated by

RPCGEN.

GETSYI.X Sample RPCGEN input file for the TCP and UDP transports.

GETSYI_CLNT.C Sample client code generated by the RPCGEN compiler.

GETSYI_CLNT_CALL.C Sample RPC client program using the clnt_call routine.

GETSYI_CLNT_CALLRPC.C Sample RPC client program using the callrpc routine.

GETSYI_CLNT_RMTCALL.C Sample RPC client program using the pmap_rmtcall routine.

GETSYI_CLNT_SUBS.C Miscellaneous client support routines.

GETSYI_DEF.H Contains various structure definitions used by the RPC sample

programs.

GETSYI_PROC_S.C Sample RPC procedure for a synchronous server.

GETSYI_SVC.C Sample RPC program for a synchronous server. Generated by RPCGEN.

GETSYI_SVC_REG.C Sample RPC program and procedure using the registerrpc routine.

GETSYI_SVC_SUBS.C Miscellaneous server support routines for the sample GETSYI

programs.

GETSYI_XDR.C XDR routines generated by RPCGEN, used by sample RPC clients and

servers.

GETSYI_XDR_2.C Alternative XDR routines using xdr_union, used by sample RPC

clients and servers.

Batch RPC Sample Programs
In the batch programs listed in the below table, a client sends a file to a server one record at a time. After

the last record is sent, the client flushes the pipeline and receives the total number of records received by

the server.

File Description

PRINT.C Sample RPC batch client program.

PRINT.COM Command procedure that compiles and links related RPC sample programs.

PRINT.H Header file for the sample RPC batch programs. Generated by RPCGEN.

PRINT.X RPCGEN input file used by the sample RPC batch programs.

PRINT_DEF.H Contains various structure definitions used by the RPC sample batch programs.

PRINT_SVC.C Sample RPC batch server program.

PRINT_XDR.C XDR routines used by the sample RPC batch programs. Generated by RPCGEN.

Broadcast RPC Sample Programs
In the broadcast RPC programs listed in the below table, the server returns the name of its host and

operating system. The each_result routine displays the address of the remote host and the values

returned.

The clnt_broadcast routine waits for replies until it times out or reaches the specified limit. Then

the client stops processing.

File Description

SYSINFO.C Sample RPC client program using broadcast RPC.

SYSINFO.COM Command procedure that compiles and links related RPC sample programs.

SYSINFO.H Header file used by the sample RPC broadcast programs. Generated by RPCGEN.

SYSINFO.X RPCGEN input file used by the sample RPC broadcast programs.

SYSINFO_DEF.H Contains various structure definitions used by the sample RPC broadcast programs.

SYSINFO_SVC.C Sample RPC server program using broadcast RPC.

SYSINFO_XDR.C XDR routines used by the sample RPC broadcast programs. Generated by

RPCGEN.

