

MultiNet for OpenVMS Programmer’s

Reference

Part Number: N-0704-55-NN-A

March 2016

This manual documents the programmer's interface to MultiNet, and is intended

to guide the programmer in developing applications that use network services.

Revision/Update: This manual supersedes the MultiNet Programmers' Reference, V5.4

Operating System/Version: VAX/VMS V5.5-2 or later, OpenVMS VAX 6.2 or later, OpenVMS Alpha V6.2

or later, OpenVMS I64 V8.2 or later

Software Version: MultiNet V5.5

Process Software

Framingham, Massachusetts

USA

The material in this document is for informational purposes only and is subject to change without notice. It should not be construed as a

commitment by Process Software. Process Software assumes no responsibility for any errors that may appear in this document.

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical

Data and Computer Software clause at DFARS 252.227-7013.

The following third-party software may be included with your product and will be subject to the software license agreement.

Network Time Protocol (NTP). Copyright © 1992-2004 by David L. Mills. The University of Delaware makes no representations about the

suitability of this software for any purpose.

Point-to-Point Protocol. Copyright © 1989 by Carnegie-Mellon University. All rights reserved. The name of the University may not be used to

endorse or promote products derived from this software without specific prior written permission. Redistribution and use in source and binary

forms are permitted provided that the above copyright notice and this paragraph are duplicated in all such forms and that any documentation,

advertising materials, and other materials related to such distribution and use acknowledge that the software was developed by Carnegie Mellon

University. The name of the University may not be used to endorse or promote products derived from this software without specific prior written

permission. THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,

WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

RES_RANDOM.C. Copyright © 1997 by Niels Provos <provos@physnet.uni-hamburg.de> All rights reserved. Redistribution and use in source

and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgement: This product includes

software developed by Niels Provos.

4. The name of the author may not be used to endorse or promote products derived from this software without specific prior written permission.

Copyright © 1990 by John Robert LoVerso. All rights reserved. Redistribution and use in source and binary forms are permitted provided that the

above copyright notice and this paragraph are duplicated in all such forms and that any documentation, advertising materials, and other materials

related to such distribution and use acknowledge that the software was developed by John Robert LoVerso.

Kerberos. Copyright © 1989, DES.C and PCBC_ENCRYPT.C Copyright © 1985, 1986, 1987, 1988 by Massachusetts Institute of Technology.

Export of this software from the United States of America is assumed to require a specific license from the United States Government. It is the

responsibility of any person or organization contemplating export to obtain such a license before exporting. WITHIN THAT CONSTRAINT,

permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided

that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting

documentation, and that the name of M.I.T. not be used in advertising or publicity pertaining to distribution of the software without specific,

written prior permission. M.I.T. makes no representations about the suitability of this software for any purpose. It is provided "as is" without

express or implied warranty.

DNSSIGNER (from BIND distribution) Portions Copyright (c) 1995-1998 by Trusted Information Systems, Inc.

Portions Copyright (c) 1998-1999 Network Associates, Inc.

Permission to use, copy, modify, and distribute this software for any purpose with or without fee is hereby granted, provided that the above

copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND TRUSTED INFORMATION

SYSTEMS DISCLAIMS

ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL TRUSTED INFORMATION SYSTEMS BE LIABLE FOR ANY

SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS

OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING

OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

ERRWARN.C. Copyright © 1995 by RadioMail Corporation. All rights reserved. Redistribution and use in source and binary forms, with or

without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. Neither the name of RadioMail Corporation, the Internet Software Consortium nor the names of its contributors may be used to endorse or

promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY RADIOMAIL

CORPORATION, THE INTERNET SOFTWARE CONSORTIUM AND CONTRIBUTORS ``AS IS’’ AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL RADIOMAIL CORPORATION OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software was written for RadioMail Corporation by Ted Lemon under a contract

with Vixie Enterprises. Further modifications have been made for the Internet Software Consortium under a contract with Vixie Laboratories.

IMAP4R1.C, MISC.C, RFC822.C, SMTP.C Original version Copyright © 1988 by The Leland Stanford Junior University

ACCPORNAM technology Copyright (c) 1999 by Brian Schenkenberger - TMESIS SOFTWARE

NS_PARSER.C Copyright © 1984, 1989, 1990 by Bob Corbett and Richard Stallman

This program is free software. You can redistribute it and/or modify it under the terms of the GNU General Public License as published by the

Free Software Foundation, either version 1, or (at your option) any later version. This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this

program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139 USA

IF_ACP.C Copyright © 1985 and IF_DDA.C Copyright © 1986 by Advanced Computer Communications

IF_PPP.C Copyright © 1993 by Drew D. Perkins

ASCII_ADDR.C Copyright © 1994 Bell Communications Research, Inc. (Bellcore)

DEBUG.C Copyright © 1998 by Lou Bergandi. All Rights Reserved.

NTP_FILEGEN.C Copyright © 1992 by Rainer Pruy Friedrich-Alexander Universitaet Erlangen-Nuernberg

RANNY.C Copyright © 1988 by Rayan S. Zachariassen. All Rights Reserved.

MD5.C Copyright © 1990 by RSA Data Security, Inc. All Rights Reserved.

Portions Copyright © 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989 by SRI International

Portions Copyright © 1984, 1989 by Free Software Foundation

Portions Copyright © 1993, 1994, 1995, 1996, 1997, 1998 by the University of Washington. Permission to use, copy, modify, and distribute this

software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notices appear in all copies

and that both the above copyright notices and this permission notice appear in supporting documentation, and that the name of the University of

Washington or The Leland Stanford Junior University not be used in advertising or publicity pertaining to distribution of the software without

specific, written prior permission. This software is made available "as is", and THE UNIVERSITY OF WASHINGTON AND THE LELAND

STANFORD JUNIOR UNIVERSITY DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO THIS SOFTWARE,

INCLUDING WITHOUT LIMITATION ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE, AND IN NO EVENT SHALL THE UNIVERSITY OF WASHINGTON OR THE LELAND STANFORD JUNIOR UNIVERSITY

BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING

FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, TORT (INCLUDING NEGLIGENCE) OR

STRICT LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Portions Copyright © 1980, 1982, 1985, 1986, 1988, 1989, 1990, 1993 by The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgement:

This product includes software developed by the University of California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software

without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED

TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED

OF THE POSSIBILITY OF SUCH DAMAGE.

Portions Copyright © 1993 by Hewlett-Packard.

Permission to use, copy, modify, and distribute this software for any purpose with or without fee is hereby granted, provided that the above

copyright notice and this permission notice appear in all copies, and that the name of Hewlett-Packard not be used in advertising or publicity

pertaining to distribution of the document or software without specific, written prior permission. THE SOFTWARE IS PROVIDED "AS IS"

AND HEWLETT-PACKARD DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL HEWLETT-PACKARD BE LIABLE FOR ANY

SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS

OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING

OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Portions Copyright © 1995 by International Business Machines, Inc.

International Business Machines, Inc. (hereinafter called IBM) grants permission under its copyrights to use, copy, modify, and distribute this

Software with or without fee, provided that the above copyright notice and all paragraphs of this notice appear in all copies, and that the name of

IBM not be used in connection with the marketing of any product incorporating the Software or modifications thereof, without specific, written

prior

permission. To the extent it has a right to do so, IBM grants an immunity from suit under its patents, if any, for the use, sale or manufacture of

products to the extent that such products are used for performing Domain Name System dynamic updates in TCP/IP networks by means of the

Software. No immunity is granted for any product per se or for any other function of any product. THE SOFTWARE IS PROVIDED "AS IS",

AND IBM DISCLAIMS ALL WARRANTIES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE. IN NO EVENT SHALL IBM BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR

CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER ARISING OUT OF OR IN CONNECTION WITH THE USE OR

PERFORMANCE OF THIS SOFTWARE, EVEN IF IBM IS APPRISED OF THE POSSIBILITY OF SUCH DAMAGES.

Portions Copyright © 1995, 1996, 1997, 1998, 1999, 2000 by Internet Software Consortium. All Rights Reserved. Permission to use, copy,

modify, and distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this

permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE CONSORTIUM

DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE CONSORTIUM BE LIABLE FOR ANY

SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS

OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING

OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright (c) 1996-2000 Internet Software Consortium.

Use is subject to license terms which appear in the file named ISC-LICENSE that should have accompanied this file when you received it. If a

file named ISC-LICENSE did not accompany this file, or you are not sure the one you have is correct, you may obtain an applicable copy of the

license at: http://www.isc.org/isc-license-1.0.html.

This file is part of the ISC DHCP distribution. The documentation associated with this file is listed in the file DOCUMENTATION, included in

the top-level directory of this release. Support and other services are available for ISC products - see http://www.isc.org for more information.

ISC LICENSE, Version 1.0

1. This license covers any file containing a statement following its copyright message indicating that it is covered by this license. It also covers

any text or binary file, executable, electronic or printed image that is derived from a file that is covered by this license, or is a modified version of

a file covered by this license, whether such works exist now or in the future. Hereafter, such works will be referred to as "works covered by this

license," or "covered works."

2. Each source file covered by this license contains a sequence of text starting with the copyright message and ending with "Support and other

services are available for ISC products - see http://www.isc.org for more information." This will hereafter be referred to as the file's Bootstrap

License.

3. If you take significant portions of any source file covered by this license and include those portions in some other file, then you must also copy

the Bootstrap License into that other file, and that file becomes a covered file. You may make a good-faith judgement as to where in this file the

bootstrap license should appear.

4. The acronym "ISC", when used in this license or generally in the context of works covered by this license, is an abbreviation for the words

"Internet Software Consortium."

5. A distribution, as referred to hereafter, is any file, collection of printed text, CD ROM, boxed set, or other collection, physical or electronic,

which can be distributed as a single object and which contains one or more works covered by this license.

6. You may make distributions containing covered files and provide copies of such distributions to whomever you choose, with or without

charge, as long as you obey the other terms of this license. Except as stated in (9), you may include as many or as few covered files as you choose

in such distributions.

7. When making copies of covered works to distribute to others, you must not remove or alter the Bootstrap License. You may not place your

own copyright message, license, or similar statements in the file prior to the original copyright message or anywhere within the Bootstrap

License. Object files and executable files are exempt from the restrictions specified in this clause.

8. If the version of a covered source file as you received it, when compiled, would normally produce executable code that would print a

copyright message followed by a message referring to an ISC web page or other ISC documentation, you may not modify the the file in such a

way that, when compiled, it no longer produces executable code to print such a message.

9. Any source file covered by this license will specify within the Bootstrap License the name of the ISC distribution from which it came, as well

as a list of associated documentation files. The associated documentation for a binary file is the same as the associated documentation for the

source file or files from which it was derived. Associated documentation files contain human-readable documentation which the ISC intends to

accompany any distribution.

If you produce a distribution, then for every covered file in that distribution, you must include all of the associated documentation files for that

file. You need only include one copy of each such documentation file in such distributions.

Absence of required documentation files from a distribution you receive or absence of the list of documentation files from a source file covered

by this license does not excuse you from this from this requirement. If the distribution you receive does not contain these files, you must obtain

them from the ISC and include them in any redistribution of any work covered by this license. For information on how to obtain required

documentation not included with your distribution, see: http://www.isc.org/getting-documentation.html.

If the list of documentation files was removed from your copy of a covered work, you must obtain such a list from the ISC. The web page at

http://www.isc.org/getting-documentation.html contains pointers to lists of files for each ISC distribution covered by this license.

It is permissible in a source or binary distribution containing covered works to include reformatted versions of the documentation files. It is also

permissible to add to or modify the documentation files, as long as the formatting is similar in legibility, readability, font, and font size to other

documentation in the derived product, as long as any sections labeled CONTRIBUTIONS in these files are unchanged except with respect to

formatting, as long as the order in which the CONTRIBUTIONS section appears in these files is not changed, and as long as the manual page

which describes how to contribute to the Internet Software Consortium (hereafter referred to as the Contributions Manual Page) is unchanged

except with respect to formatting.

Documentation that has been translated into another natural language may be included in place of or in addition to the required documentation, so

long as the CONTRIBUTIONS section and the Contributions Manual Page are either left in their original language or translated into the new

language with such care and diligence as is required to preserve the original meaning.

10. You must include this license with any distribution that you make, in such a way that it is clearly associated with such covered works as are

present in that distribution. In any electronic distribution, the license must be in a file called "ISC-LICENSE".

If you make a distribution that contains works from more than one ISC distribution, you may either include a copy of the ISC-LICENSE file that

accompanied each such ISC distribution in such a way that works covered by each license are all clearly grouped with that license, or you may

include the single copy of the ISC-LICENSE that has the highest version number of all the ISC-LICENSE files included with such distributions,

in which case all covered works will be covered by that single license file. The version number of a license appears at the top of the file

containing the text of that license, or if in printed form, at the top of the first page of that license.

11. If the list of associated documentation is in a seperated file, you must include that file with any distribution you make, in such a way that the

relationship between that file and the files that refer to it is clear. It is not permissible to merge such files in the event that you make a distribution

including files from more than one ISC distribution, unless all the Bootstrap Licenses refer to files for their lists of associated documentation, and

those references all list the same filename.

12. If a distribution that includes covered works includes a mechanism for automatically installing covered works, following that installation

process must not cause the person following that process to violate this license, knowingly or unknowingly. In the event that the producer of a

distribution containing covered files accidentally or wilfully violates this clause, persons other than the producer of such a distribution shall not

be held liable for such violations, but are not otherwise excused from any requirement of this license.

13. COVERED WORKS ARE PROVIDED "AS IS". ISC DISCLAIMS ALL WARRANTIES WITH REGARD TO COVERED WORKS

INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

14. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES

WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE

OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OF COVERED WORKS.

Use of covered works under different terms is prohibited unless you have first obtained a license from ISC granting use pursuant to different

terms. Such terms may be negotiated by contacting ISC as follows:

 Internet Software Consortium

 950 Charter Street

 Redwood City, CA 94063

 Tel: 1-888-868-1001 (toll free in U.S.)

 Tel: 1-650-779-7091

 Fax: 1-650-779-7055

 Email: info@isc.org

 Email: licensing@isc.org

DNSSAFE LICENSE TERMS

This BIND software includes the DNSsafe software from RSA Data Security, Inc., which is copyrighted software that can only be distributed

under the terms of this license agreement.

The DNSsafe software cannot be used or distributed separately from the BIND software. You only have the right to use it or distribute it as a

bundled, integrated product.

The DNSsafe software can ONLY be used to provide authentication for resource records in the Domain Name System, as specified in RFC 2065

and successors. You cannot modify the BIND software to use the

DNSsafe software for other purposes, or to make its cryptographic functions available to end-users for other uses.

If you modify the DNSsafe software itself, you cannot modify its documented API, and you must grant RSA Data Security the right to use,

modify, and distribute your modifications, including the right to use

any patents or other intellectual property that your modifications depend upon.

You must not remove, alter, or destroy any of RSA's copyright notices or license information. When distributing the software to the Federal

Government, it must be licensed to them as "commercial computer software" protected under 48 CFR 12.212 of the FAR, or 48 CFR 227.7202.1

of the DFARS.

You must not violate United States export control laws by distributing the DNSsafe software or information about it, when such distribution is

prohibited by law.

THE DNSSAFE SOFTWARE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY WHATSOEVER. RSA HAS NO OBLIGATION TO

SUPPORT, CORRECT, UPDATE OR MAINTAIN THE RSA SOFTWARE. RSA DISCLAIMS ALL WARRANTIES, EXPRESS, IMPLIED

OR STATUTORY, AS TO ANY MATTER WHATSOEVER, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

If you desire to use DNSsafe in ways that these terms do not permit, please contact:

 RSA Data Security, Inc.

 100 Marine Parkway

 Redwood City, California 94065, USA

to discuss alternate licensing arrangements.

Secure Shell (SSH). Copyright © 2000. This License agreement, including the Exhibits (“Agreement”), effective as of the latter date of

execution (“Effective Date”), is hereby made by and between Data Fellows, Inc., a California corporation, having principal offices at 675 N. First

Street, 8th floor, San Jose, CA 95112170 (“Data Fellows”) and Process Software, Inc., a Massachusetts corporation, having a place of business at

959 Concord Street, Framingham, MA 01701 (“OEM”).

All other trademarks, service marks, registered trademarks, or registered service marks mentioned in this document are the property of their

respective holders.

MultiNet is a registered trademark and Process Software and the Process Software logo are trademarks of Process Software.

Copyright ©1997, 1998, 1999, 2000 Process Software Corporation. All rights reserved. Printed in USA.

Copyright ©2000, 2001, 2004, 2005, 2007, 2008 Process Software, LLC. All rights reserved. Printed in USA.

If the examples of URLs, domain names, internet addresses, and web sites we use in this documentation reflect any that actually exist, it is not

intentional and should not to be considered an endorsement, approval, or recommendation of the actual site, or any products or services located at

any such site by Process Software. Any resemblance or duplication is strictly coincidental.

Contents
Preface .. 17

Purpose of this Guide .. 17

Document Structure .. 17

Typographical Conventions.. 17

Further Reading .. 18

1. MultiNet Programming Tutorial ... 19

Sockets .. 19

TCP Client ... 20

TCP Server ... 21

UDP ... 21

BSD-Specific Tips .. 22

BSD Sockets Porting Note ... 22

BSD 4.4 TCP/IP Future Compatibility Considerations ... 22

TCP/IP Services (UCX) Compatibility ... 23

2. Socket Library Functions ... 24

Debugging and Tracing .. 24

AST Reentrancy ... 24

accept()/accept_44() ... 28

bcmp() ... 30

bcopy() .. 31

bind()/bind_44()... 32

bzero() ... 33

connect()/connect_44() ... 34

Domain Name Resolver Routines .. 35

endhostent() ... 36

endnetent() ... 37

endprotoent() ... 38

endservent() ... 39

getdtablesize() ... 40

gethostbyaddr()/gethostbyaddr_44() ... 41

getaddrinfo() .. 42

getnameinfo() ... 44

gethostbyname()/gethostbyname_44() .. 46

gethostbysockaddr()/gethostbysockaddr_44()... 47

gethostname() .. 48

getnetbyaddr() ... 49

getnetbyname() ... 50

getpeername()/getpeername_44() ... 51

getprotobyname() .. 52

getprotobynumber() ... 53

getprotoent() .. 54

getservbyname() ... 55

getservbyport() ... 56

getservent()... 57

getsockname()/getsockname_44() ... 58

getsockopt() .. 59

gettimeofday() ... 61

hostalias() .. 62

htonl() .. 63

htons() ... 64

inet_addr() ... 65

inet_lnaof() .. 66

inet_makeaddr() .. 67

inet_netof() .. 68

inet_network() ... 69

inet_ntoa() ... 70

klread() ... 71

klseek() ... 72

klwrite().. 73

listen() ... 74

multinet_kernel_nlist ... 75

nlist() ... 76

ntohl() .. 77

ntohs() ... 78

recv()/recv_44() ... 79

recvfrom()recvfrom_44() .. 81

recvmsg()/recvmsg_44() .. 83

select() ... 85

select_wake() .. 87

send()/send_44() .. 88

sendmsg()/sendmsg_44() ... 89

sendto()/sendto_44 ... 90

sethostent() ... 92

setnetent() ... 93

setprotoent() .. 94

setservent() ... 95

setsockopt() .. 96

shutdown() .. 98

socket() ... 99

socket_close() .. 101

socket_ioctl() ... 102

socket ioctl FIONBIO .. 103

socket ioctl FIONREAD .. 104

socket ioctl SIOCADDRT .. 105

socket ioctl SIOCDELRT .. 107

socket ioctl SIOCATMARK .. 109

socket ioctl SIOCDARP ... 110

socket ioctl SIOCGARP ... 111

socket ioctl SIOCSARP .. 112

socket ioctl SIOCGIFADDR ... 113

socket ioctl SIOCSIFADDR .. 114

socket ioctl SIOCGIFBRDADDR .. 115

socket ioctl SIOCSIFBRDADDR ... 116

socket ioctl SIOCGIFCONF .. 117

socket ioctl SIOCGIFDSTADDR ... 118

socket ioctl SIOCSIFDSTADDR.. 119

socket ioctl SIOCGIFFLAGS .. 120

socket ioctl SIOCSIFFLAGS ... 121

socket ioctl SIOCGIFMETRIC ... 122

socket ioctl SIOCSIFMETRIC.. 123

socket ioctl SIOCGIFNETMASK... 124

socket ioctl SIOCSIFNETMASK ... 125

socket option SO_BROADCAST ... 126

socket option SO_DEBUG .. 127

socket option SO_DONTROUTE.. 128

socket option SO_ERROR .. 129

socket option SO_KEEPALIVE ... 130

socket option SO_LINGER ... 131

socket option SO_OOBINLINE ... 132

socket option SO_RCVBUF .. 133

socket option SO_RCVLOWAT .. 134

socket option SO_RCVTIMEO .. 135

socket option SO_REUSEADDR .. 136

socket option SO_SNDBUF ... 137

socket option SO_SNDLOWAT .. 138

socket option SO_SNDTIMEO .. 139

socket option SO_TYPE .. 140

socket option TCP_KEEPALIVE .. 141

socket option TCP_NODELAY ... 142

socket_perror() ... 143

socket_read() ... 144

socket_write() ... 145

vms_errno_string() .. 146

SCTP .. 147

int sctp_opt_info(int sd, sctp_assoc_t id, int opt, void *arg, short *size) .. 148

int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, int flags) .. 149

int sctp_getpaddrs(int sd, sctp_assoc_t id, struct sockaddr **addrs) ... 150

sctp_freepaddrs .. 151

(struct sockaddr *addrs) .. 151

sctp_getladdrs(int sd, sctp_assoc_t id, struct sockaddr **addrs) ... 152

sctp_freeladdrs(struct sockaddr *addrs) ... 153

int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt) .. 154

sctp_assoc_t sctp_getassocid(int sd, struct sockaddr *addr) ... 156

int sctp_getaddrlen(int family) .. 157

3. $QIO Interface ... 158

IO$_ACCEPT ... 160

IO$_ACCEPT_WAIT .. 162

IO$_BIND ... 163

IO$_CONNECT ... 164

IO$_GETPEERNAME ... 165

IO$_GETSOCKNAME ... 166

IO$_GETSOCKOPT.. 167

IO$_IOCTL ... 169

IO$_LISTEN ... 170

IO$_RECEIVE (IO$_READVBLK)... 171

IO$_SELECT .. 173

IO$_SEND... 174

IO$_SENSEMODE ... 176

 178

IO$_SENSEMODE | IO$M_CTRL .. 180

IO$_SETCHAR .. 189

IO$_SETMODE|IO$M_ATTNAST .. 190

IO$_SETSOCKOPT .. 191

IO$_SHUTDOWN .. 193

IO$_SOCKET ... 194

SYS$CANCEL .. 196

SYS$DASSGN .. 197

4. SNMP Extensible Agent API Routines ... 198

Requirements .. 198

Linking the Extension Agent Image ... 199

Installing the Extension Agent Image .. 199

Debugging Code .. 199

Subroutine Reference .. 200

SnmpExtensionInit .. 201

SnmpExtensionInitEx... 203

SnmpExtensionQuery .. 205

SnmpExtensionTrap ... 207

5. RPC Fundamentals .. 210

Introduction ... 210

What Are RPC Services? .. 210

MultiNet Implementation ... 210

Distributed Applications ... 210

Components of RPC Services .. 210

Run-Time Libraries (RTLs) ... 211

RPCGEN Compiler ... 211

Port Mapper .. 211

RPC Information .. 211

Client-Server Relationship ... 211

External Data Representation (XDR) ... 212

RPC Processing Flow .. 212

Handling System Crashes .. 213

Handling Errors ... 213

Call Semantics ... 213

Programming Interface ... 214

High-Level Routines .. 214

Mid-Level Routines ... 214

Low-Level Routines ... 214

Transport Protocols .. 214

XID Cache .. 215

Cache Entries ... 215

Cache Size ... 216

Execution Guarantees ... 216

Enabling XID Cache.. 216

Broadcast RPC ... 216

Identifying Remote Programs and Procedures ... 217

Remote Program Numbers ... 217

Remote Version Numbers ... 217

Remote Procedure Numbers .. 217

Additional Terms ... 218

6. Building Distributed Applications with RPC .. 219

Introduction ... 219

Distributed Application Components .. 219

What You Need to Do ... 219

Step 1: Design the Application ... 220

Step 2: Write and Compile the Interface Definition .. 220

Step 3: Write the Necessary Code ... 220

Step 4: Compile All Files .. 221

Step 5: Link the Object Code ... 221

Step 6: Start the Port Mapper ... 221

Step 7: Execute the Client and Server Programs .. 221

Obtaining RPC Information ... 221

7. RPCGEN Compiler .. 223

Introduction ... 223

What Is RPCGEN? ... 223

Software Requirements .. 223

Input Files ... 223

Output Files .. 224

Preprocessor Directives .. 225

Invoking RPCGEN .. 225

Error Handling .. 227

Restrictions .. 227

8. RPC RTL Management Routines .. 228

Introduction ... 228

Management Routines ... 228

Routine Name Conventions ... 228

Header Files ... 228

Management Routines ... 229

get_myaddress .. 230

getrpcbynumber .. 231

getrpcport ... 232

9. RPC RTL Client Routines ... 233

Introduction ... 233

Common Arguments ... 233

Client Routines .. 234

clntudp_create / clntudp_bufcreate ... 255

10. RPC RTL Port Mapper Routines .. 257

Introduction ... 257

Port Mapper Routines .. 257

Port Mapper Arguments ... 257

pmap_getmaps .. 258

pmap_getport .. 259

pmap_rmtcall ... 260

pmap_set.. 261

pmap_unset .. 262

11. RPC RTL Server Routines ... 263

Introduction ... 263

Server Routines .. 263

registerrpc .. 265

svc_destroy ... 266

svc_freeargs .. 267

svc_getargs.. 268

svc_getreqset ... 269

svc_register ... 271

svc_run ... 272

svc_sendreply .. 273

svc_unregister ... 274

svcerr_auth ... 275

svcfd_create .. 277

svcraw_create .. 278

svctcp_create ... 279

svcudp_create / svcudp_bufcreate ... 280

svcudp_enablecache ... 281

xprt_register... 282

xprt_unregister ... 283

12. RPC RTL XDR Routines ... 284

Introduction ... 284

XDR Routines ... 284

What XDR Routines Do .. 284

When to Call XDR Routines ... 284

Quick Reference.. 284

xdr_accepted_reply ... 288

xdr_array ... 289

xdr_authunix_parms ... 290

xdr_bool ... 291

xdr_bytes ... 292

xdr_callhdr .. 293

xdr_callmsg ... 294

xdr_char ... 295

xdr_double .. 296

xdr_enum ... 297

xdr_float ... 298

xdr_free .. 299

xdr_hyper .. 300

xdr_int ... 301

xdr_long ... 302

xdr_netobj ... 303

xdr_opaque ... 304

xdr_opaque_auth .. 305

xdr_pmap ... 306

xdr_pmaplist .. 307

xdr_pointer ... 308

xdr_reference ... 310

xdr_rejected_reply ... 311

xdr_replymsg ... 312

xdr_short ... 313

xdr_string .. 314

xdr_u_char ... 315

xdr_u_hyper .. 316

xdr_u_int .. 317

xdr_u_long ... 318

xdr_u_short ... 319

xdr_union .. 320

xdr_vector ... 321

xdr_void ... 322

xdr_wrapstring ... 323

xdrmem_create ... 324

xdrrec_create ... 325

xdrrec_endofrecord .. 327

xdrrec_eof ... 328

xdrrec_skiprecord ... 329

xdrstdio_create ... 330

Preface

Purpose of this Guide
This guide describes the programming interfaces provided with the MultiNet software: A socket library based on the

UNIX 4.3BSD system calls, and an OpenVMS $QIO interface. All socket functions documented in this guide are

available in the shareable image MULTINET:MULTINET_SOCKET_LIBRARY.EXE, included in the standard

MultiNet distribution. The include files and example programs are part of the optional MultiNet Programmers' Kit,

and should be installed as described in the MultiNet for OpenVMS Installation and Administrator’s Guide before

using the programming interface.

If you are writing socket programs in C, Process Software recommends that you use the HP C include files for the

socket definitions. Your program will then use the TCP/IP Services for VMS-emulation interface in TCPware and

MultiNet. The MultiNet header files have been updated to work with more current versions of HP C. The MultiNet

files should be used only if you are planning to use the MultiNet INETDRIVER API explicitly.

Document Structure
Read this guide to perform the following tasks:

• Chapter 1, IP Programming Tutorial, to write clients and servers that access the network.

• Chapter 2, Socket Library Functions, to view detailed information about socket library functions.

• Chapter 3, $QIO Interface, to view detailed information about SYS$QIO calls that you can use to access the

network.

• Chapter 4, SNMP Extensible Agent API Routines.

• Chapter 5, RPC Fundamentals, explains RPC.

• Chapter 6, Building Distributed Applications With RPC, explains what components a distributed application

contains, how to use RPC to develop a distributed application, step-by-step, and how to get RPC information.

• Chapter 7, RPCGEN Compiler, explains the RPC compiler.

• Chapter 8, RPC RTL Management Routines.

• Chapter 9, RPC RTL Client Routines.

• Chapter 10, RPC RTL Port Mapper Routines.

• Chapter 11, RPC RTL Server Routines.

• Chapter 12, RPC RTL XDR Routines.

Typographical Conventions
Examples in this guide use the following conventions:

Convention Example Meaning

Bold text YES Represents user input in instructions or examples.

Bold, uppercase

Courier text

RETURN Represents a key on your keyboard.

Bold Courier text with

a slash

Ctrl/A Indicates that you holddown the key labeled

Control or Ctrl while simultaneously pressing

another key; in this example, the "A" key.

A vertical bar within

braces

{ ON | OFF } Indicates a list of values permitted in commands.

The vertical bar separates alternatives; do not type

the vertical bar in the actual command.

Italicized text file_name Represents a variable or placeholder; introduces

new terminology or concepts; emphasizes

something important; represents the title of a book

or publication.

Square brackets [FULL] Indicates optional choices; you can enter none of

the choices, or as many as you like. When shown as

part of an example, square brackets are actual

characters you should type.

Underscore or hyphen file_name or

file-name

Between words in commands, indicates the item is

a single element.

Further Reading
The following references contain additional information about programming under TCP/IP. They may be useful in

learning more about socket programming. Additional titles of recommended books can be displayed using this

command:

$ HELP MULTINET BOOKS

Comer, Douglas. Internetworking with TCP/IP: Principles, Protocols, and Architecture, Englewood Cliffs, NJ:

Prentice-Hall, 1988.

Curry, Donald A. Using C on the UNIX System, O'Reilly and Associates. 1-800-338-NUTS.

Harspool, R. Nigel. C Programming in the Berkeley Unix Environment, Toronto, Canada: Prentice-Hall, 1986.

Kochan, Stephen G. and Patrick K. Wood, editors. UNIX Networking, Indianapolis, IN: Hatden Books, 1989.

Leffler, Samuel J., Marshall Kirk McKusick, Michael J. Karels, and John S. Quarterman. The Design and

Implementation of the 4.3BSD UNIX Operating System, Reading, MA: Addison-Wesley, 1989.

UNIX Programming Manuals, U. C. Berkeley.

1. MultiNet Programming Tutorial

This chapter contains short tutorials on various aspects of application programming using MultiNet.

Once you have installed the MultiNet Programmers' Kit, you will find a number of example programs in the

appendices in the directory MULTINET_ROOT:[MULTINET.EXAMPLES]. The following tutorials, together with

the example programs, are designed to get you started as an application programmer using MultiNet.

Sockets
A socket is an endpoint for communication. Two cooperating sockets, one on the local host and one on the remote

host, form a connection. Each of the two sockets has a unique address that is described generically by the sockaddr

C programming language structure. The sockaddr structure is defined as follows:

struct sockaddr {

 u_char sa_len; /* length of data structure */

 u_char sa_family; /* Address family */

 char sa_data[14]; /* up to 14 bytes of direct address*/

};

The sa_family field specifies the address family for the communications domain to which the socket belongs. For

example, AF_INET for the Internet family. The sa_data field contains up to 14 bytes of data, the interpretation of

which depends on the value of sa_family.

If the sa_family field is AF_INET, the same sockaddr structure can also be interpreted as a sockaddr_in structure

that describes an Internet address. A sockaddr_in structure is defined as follows:

struct sockaddr_in {

 u_char sin_len;

 u_char sin_family;

 u_short sin_port;

 struct in_addr sin_addr;

 char sin_zero[8];

};

The sin_family field specifies the address family AF_INET. The sin_port field specifies the TCP (Transmission

Control Protocol) or UDP (User Datagram Protocol) port number of the address. Whether the communication uses

TCP or UDP is not determined here, but rather by the type of socket created with the socket() call:

SOCK_STREAM for TCP or SOCK_DGRAM for UDP. The sin_addr field specifies the Internet address. The

sin_zero field must be zero. Both the sin_port field and the sin_addr field are in network byte order. See the

htons() and htonl() functions in Chapter 3 for further information about network byte ordering.

The sockaddr and sockaddr_in structures serve as input and output to a number of library routines. For example,

they may be used as input, specifying the address to which to make a connection or send a packet, or as output,

reporting the address from which a connection was made or a packet transmitted.

Internet addresses are normally manipulated with the gethostbyname(), gethostbyaddr(), inet_addr(), and

inet_ntoa() functions. gethostbyname() and inet_addr() convert a host name or ASCII representation of an address

into the binary representation for the sockaddr_in structure. gethostbyaddr() and inet_ntoa() are used to convert

the binary representation into the host name or ASCII representation for display.

Port numbers are normally manipulated with the getservbyname() and getservbyport() functions.

getservbyname() converts the ASCII service name to the numeric value, and getservbyport() converts the numeric

value to the ASCII name.

The following example shows a typical program that converts the Internet address and the port into binary

representations.

#include "multinet_root:[multinet.include.sys]types.h"

#include "multinet_root:[multinet.include.sys]socket.h"

#include "multinet_root:[multinet.include]netdb.h"

#include "multinet_root:[multinet.include.netinet]in.h"

main(argc,argv)

int argc;

char *argv[];

{

 struct sockaddr_in sin;

 struct hostent *hp;

 struct servent *sp;

 /* Zero the sin structure to initialize it */

 bzero((char *) &sin, sizeof(sin));

 sin.sin_family = AF_INET;

 /* Lookup the host and initialize sin_addr */

 hp = gethostbyname(argv[1]);

 if (!hp) { /* Perhaps it is an ASCII string */

 sin.sin_addr.s_addr = inet_addr(argv[1]);

 if (sin.sin_addr.s_addr == -1) {

 printf("syntax error in IP address\n");

 exit(1);

 }

} else { /* Extract the IP address */

 bcopy(hp->h_addr, (char *) &sin.sin_addr,

 hp->h_length);

}

/* Lookup up the name of the SMTP service */

sp = getservbyname("smtp","tcp");|

if (!sp) {

 printf("unable to find smtp service");

 exit(1);

}

sin.sin_port = sp->s_port;

/* Now we are ready to create a socket and

pass the address of this sockaddr_in

structure to the connect() call to

connect to the remote SMTP port */

}

TCP Client
A TCP client process establishes a connection to a server and uses the socket_read() and socket_ write() functions

to transfer data. Typically, you use the following sequence of functions to set up the connection:

1 Create a TCP socket:

socket(AF_INET, SOCK_STREAM, 0);

2 Set up a sockaddr_in structure with the address you want to connect to by calling gethostbyname() and

getservbyname().

3 Make a connection to the server with the connect() function.

4 Once connect() completes, the TCP connection is established and you can use socket_read() and socket_write() to

transfer data.

Refer to the sample program TCPECHOCLIENT.C in the MultiNet Programmers' Kit examples directory. This

program sends data to a server and displays what the server sends back.

TCP Server
A TCP server process binds a socket to a well-known port and listens on that port for connection attempts. When a

connection arrives, the server processes it by transferring data using socket_read() and socket_write(). Typically,

you use the following sequence of functions to set up a server:

1 Create a TCP socket:

socket(AF_INET, SOCK_STREAM, 0);

2 Use the getservbyname() function to get the port number of the service on which you want to listen for connections.

3 Set up a sockaddr_in structure with the port number and an Internet address of INADDR_ANY, and bind this

address to the socket with the bind() function.

4 Use the listen() function to inform the MultiNet kernel that you are listening for connections on this socket. Then

wait for a connection and accept it with accept().

5 Once accept() completes, the TCP connection is established and you can use socket_read() and socket_write() to

transfer data. When you are done with the connection, you can close the channel returned by accept() and start a

new accept() call on the original channel to wait for another connection.

Note! When writing a TCP server that will run under the control of the MultiNet_Server process, you must assign a channel

to SYS$INPUT before calling any of the VAX C I/O routines.

Refer to the sample program TCPECHOSERVER-STANDALONE.C in the MultiNet Programmers' Kit examples

directory for an example of a server program that echoes data sent to it.

Another way to write a TCP server is to let the MULTINET_SERVER process do the work for you. The

MULTINET_SERVER can perform all of the above steps, and when a connection request arrives, can use the

OpenVMS system service $CREPRC to create a process running your program. Refer to the sample program

TCPECHOSERVER.C in Appendix B and in the MultiNet Programmers' Kit examples directory for an example of

how this is done.

UDP
A UDP program sends and receives packets to and from a remote port using the send() or sendto() and recv() or

recvfrom() functions. UDP is a connectionless transport protocol. It does not incur the overhead of creating and

maintaining a connection between two sockets, but rather merely sends and receives datagrams. It is not a reliable

transport, and does not provide guaranteed data delivery, packet ordering, or flow control.

Typically, you use the following sequence of functions in a UDP program:

1 Create a UDP socket:

socket(AF_INET, SOCK_DGRAM, 0);

2 Bind the socket to a local port number with the bind() function. Specify the sin_port field as 0 (zero) if you want

MultiNet to choose an unused port number for you automatically (typical of a client), or specify the sin_port field

as the UDP port number (typical of a server). The sin_addr field is usually specified as INADDR_ANY, which

means that packets addressed to any of the host's Internet addresses are accepted.

3 Optionally, use connect() to specify the remote port and Internet address. If you do not use connect(), you must use

sendto() to specify the remote address when you send packets, and recvfrom() to learn the address when you

receive them.

4 Read and write packets to transfer data using the send() or sendto() and recv() or recvfrom() functions,

respectively.

Note! When writing a UDP server that will run under the control of the MultiNet_Server process, you must assign a channel

to SYS$INPUT before calling any of the VAX C I/O routines.

Another way to write a UDP server is to let the MULTINET_SERVER process handle the work. The

MULTINET_SERVER can perform all the above steps, and when a packet arrives on a UDP port, can use the

OpenVMS system service $CREPRC to create a process running your program. Refer to the sample programs in

the MultiNet Programmers' Kit examples directory for examples of UDP clients and servers.

BSD-Specific Tips
The following sections contain information specific to working with BSD code.

BSD Sockets Porting Note
When porting a program written for BSD sockets to MultiNet, observe the following guidelines:

• Change any #include statements to reference files with the same names in the

MULTINET_ ROOT:[MULTINET.INCLUDE...] directory areas.

• Implement your change in the source code using #ifdef statements to enable the use of MultiNet include files; you

can then compile your software in a UNIX environment by selecting the other side of the #ifdef.

BSD 4.4 TCP/IP Future Compatibility Considerations
MultiNet supports both BSD 4.3 and BSD 4.4 format sockaddrs.

The BSD 4.4 format is:

struct sockaddr_in {

 u_char sin_len;

 u_char sin_family;

 u_char sin_port;

 struct in_addr sin_addr;

 char sin_zero[8];

};

The BSD 4.3 format of the sockaddr_in structure is:

struct sockaddr_in {

 short sin_family;

 u_short sin_port;

 struct in_addr sin_addr;

 char sin_zero[8];

};

MultiNet will accept either format from customer applications. This affects applications that explicitly check the

sin_family field for the value AF_INET. Applications can avoid incompatibilities by avoiding explicit references or

checks of the sin_family field, or by assuming that it can be in either format. The INET device uses the

IO$M_EXTEND modifier to specify that a BSD 4.4 sockaddr (or current format) is used when IO$M_EXTEND is

not used on the function code, the old (BSD 4.3) format is used. This provides compatibility with prior versions of

MultiNet.

Support for the BSD 4.4 style sockaddr data structure is included in the BGDRIVER (UCX interface). If the

IO$M_EXTEND modifier is set on any one of the following QIO operations, the sockaddr parameter passed in

these operations is assumed to be in BSD 4.4 format.

• IO$_SETMODE/IO$_SETCHAR (socket, bind)

• IO$_ACCESS (connect, listen)

• IO$_SENSEMODE/IO$_SENSECHAR (getsockname, getpeername)

• IO$_READVBLK (recv_from, when P3 is specified for a UDP or raw IP message)

• IO$_WRITEVBLK (send_to, when P3 is specified for a UDP or raw IP message)

When the IO$M_EXTEND modifier is used in the creation of a socket via

IO$_SETMODE/IO$_SETCHAR (socket, bind), the setting is remembered for the lifetime of the socket and all

sockaddr structures passed in are assumed to be in BSD 4.4 format. Refer to the HP TCP/IP Services for OpenVMS

System Services and C Socket Programming manual for additional information.

Operations that return a sockaddr (READVBLK (recv_from) like accept, getsockname, and getpeername), return

that sockaddr in BSD 4.4 format. Operations that accept a sockaddr (WRITEVBLK (send_to) like connect and

bind) expect the address family value to be in the position it is in for the BSD 4.4 structure. When a

CONNECT/BIND/ACCEPT operation is done for a TCP connection with the IO$V_EXTEND bit set, the setting is

remembered for the duration of the connection and all specified sockaddr structures are expected to be in BSD 4.4

format, and operations returning a sockaddr will return it in BSD 4.4 format.

For IO$_ACCESS (connect) and IO$_SETMODE (bind), if the portion of the sockaddr structure that is used to

specify the address family in BSD 4.4 format is non-zero, then the sockaddr structure is assumed to be in BSD 4.4

format.

TCP/IP Services (UCX) Compatibility
MultiNet supports programs written for HP's TCP/IP Services. The C run time library will automatically use the

compatible entry points in the UCX$IPC_SHR.EXE image included with MultiNet. MultiNet supports the

following IPv6 compatible routines:

getaddrinfo

freeaddrinfo

getnameinfo

 gai_strerror

inet_pton

inet_ntop

2. Socket Library Functions

This chapter describes the purpose and format of each MultiNet socket library function.

The socket functions described in this chapter are available in the shareable image

MULTINET:MULTINET_SOCKET_LIBRARY.EXE, included in the standard MultiNet distribution. The include

files and example programs are part of the optional MultiNet Programmers' Kit, and should be installed as described

in the MultiNet for OpenVMS Installation and Administrator’s Guide before you use the programming interface.

In addition to supporting the MultiNet socket library, applications developed for the HP OpenVMS/ULTRIX

Connection (UCX) software using the VAX C socket library (UCX$IPC.OLB) will run over MultiNet, using an

emulation of UCX$IPC_SHR.EXE.

Note! To avoid potential conflicts between MultiNet socket library definitions and C compiler definitions, include a reference

to the file MULTINET_ROOT:[MULTINET.INCLUDE.SYS]TYPES.H before any other header file references.

Debugging and Tracing
MultiNet provides a call tracing facility that can be used to debug and trace the use of the sockets API for many

applications. This facility works for both the MultiNet socket library and the API that the newer versions of the C

compiler work with. This does NOT log QIO operations. To enable the tracing define the

MULTINET_SOCKET_TRACE logical name. The value of the logical name can be used in the following ways:

• As a bit mask for types of operations to trace. Bit 0 (zero) signifies control operations, bit 1signifies read operations

and bit 2 signifies write operations. When these values are used the information is writen to SYS$OUTPUT:.

• As a partial or full file name. When used as a partial file name the default name specified to open the file is:

SYS$SCRATCH:MULTINET_SOCKET_<process_name>.LOG. Control, read and write operations are logged

when logging is done to a file.

AST Reentrancy
The MultiNet socket library is based on the equivalent UNIX programming library, and was therefore not designed

with reentrancy in mind. If you call into the socket library with AST delivery disabled, some of the library routines

will suspend execution and fail to return control to the caller.

This situation occurs most often when applications try to call those functions from within an AST routine where

AST delivery is not possible.

Any routine that relies on the select() function is subject to this restriction (including the select() call itself, and most

of the domain name resolution routines such as gethostbyname(), and so on).

Another reentrancy consideration is the socket library's use of static internal data structures, some of which are

passed back to the application, as in the case of the hostent structure address returned by gethostbyname(). Other

functions use these data structures internally to maintain context.

In either case, it is dangerous to call into these routines from an AST because it is possible to interrupt a similar call

already in progress, using the same static buffer, thereby corrupting the contents of the buffer.

Another consideration is the use of routines that send and receive data. Every socket in the kernel contains two

fixed-size buffers for sending and receiving data. If an application tries to transmit data when there is insufficient

buffer space, that call will block (or suspend execution) until buffer space becomes available. This can become an

issue if the application blocks while attempting to transmit a large data buffer, and an AST routine tries to transmit a

small data buffer. The small data buffer is transmitted before the large one.

The same situation applies to the functions that read data from the network. This situation may also arise if multiple

reads and writes are performed on sockets which have been set up to be non-blocking (NBIO).

 These considerations might seem overly restrictive; however, the MultiNet socket library is a port of the BSD

socket library, which is subject to all of the same restrictions. Applications which need to perform I/O from within

AST routines should use the SYS$QIO system service to talk directly to the MultiNet device driver.

Therefore, none of the socket routines should be considered AST reentrant.

The following are the Socket Library functions:

accept()/a ntohl()

bcmp() ntohs()

bind()/b recv()/r

Domain Name Resolver Routines recvfrom()re/recvfrom_44()

endhostent() recvmsg()/r

endnetent() select()

endprotoent() select_wake()

endservent() send()/s

freeaddrinfo() gaistrerror()

getaddrinfo() getnameinfo()

getdtablesize() sendmsg()/s

gethostbyaddr()/g sendto()/s/sendto_44()

gethostbysockaddr()/g sethostent()

gethostname() setnetent()

getnetbyaddr() setprotoent()

getnetbyname() setservent()

getpeername()/g setsockopt()

getprotobyname() shutdown()

getprotobynumber() socket()

getprotoent() socket_close()

getservbyname() socket_ioctl()

getservbyport() socket ioctl FIONBIO

getservent() socket ioctl FIONREAD

getsockname()/g socket ioctl SIOCADDRT

getsockopt() socket ioctl SIOCDELRT

gettimeofday() socket ioctl SIOCATMARK

hostalias() socket ioctl SIOCDARP

htonl() socket ioctl SIOCGARP

htons() socket ioctl SIOCSARP

inet_addr() socket ioctl SIOCGIFADDR

inet_lnaof() socket ioctl SIOCSIFADDR

inet_makeaddr() socket ioctl SIOCGIFBRDADDR

inet_netof() socket ioctl SIOCSIFBRDADDR

inet_network() socket ioctl SIOCGIFCONF

inet_ntoa() socket ioctl SIOCGIFDSTADDR

klread() socket ioctl SIOCSIFDSTADDR

klseek() socket ioctl SIOCGIFFLAGS

klwrite() socket ioctl SIOCSIFFLAGS

listen() socket ioctl SIOCGIFMETRIC

multinet_kernel_nlist socket ioctl SIOCSIFMETRIC

nlist() socket ioctl SIOCGIFNETMASK

socket option SO_BROADCAST socket ioctl SIOCSIFNETMASK

socket option SO_DEBUG socket option SO_REUSEADDR

socket option SO_DONTROUTE socket option SO_SNDBUF

socket option SO_ERROR socket option SO_SNDLOWAT

socket option SO_KEEPALIVE socket option SO_SNDTIMEO

socket option SO_LINGER socket option SO_TYPE

socket option SO_OOBINLINE socket option TCP_KEEPALIVE

socket option SO_RCVBUF socket option TCP_NODELAY

socket option SO_RCVLOWAT socket_perror()

socket option SO_RCVTIMEO socket_read()

vms_errno_string() socket_write()

accept()/accept_44()
Extracts the first connection from the queue of pending connections on a socket, creates a new socket with the same

properties as the original socket, and assigns a new OpenVMS channel to the new socket. If no pending connections

are present on the queue, accept() blocks the caller until a new connection is present. The original socket remains

open and can be used to accept more connections, but the new socket cannot be used to accept additional

connections.

The original socket is created with the socket() function, bound to an address with bind(), and is listening for

connections after a listen().

The accept() function is used with connection-based socket types. Currently the only connection-based socket is

SOCK_STREAM, which, together with AF_INET, constitutes a TCP socket.

The accept_44() function is the BSD 4.4 sockaddr variant of this call. This call is used automatically when

MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]IN.H is used and the program is compiled with

USE_BSD44_ENTRIES defined.

FORMAT

New_VMS_Channel = accept(VMS_Channel, Address, AddrLen);

short New_VMS_Channel, VMS_Channel;

struct sockaddr *Address;

unsigned int *AddrLen;

ARGUMENTS

VMS_Channel

VMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the original socket from which to accept the connection.

Address

VMS Usage: socket_address

type: struct sockaddr

access: write only

mechanism: by reference

The optional Address argument is a result parameter. It is filled in with the address of the connecting entity, as

known to the communications layer. The exact format of the Address argument is determined by the domain in

which the communication is occurring.

AddrLen

VMS Usage: socket_address_length

type: longword (unsigned)

access: modify

mechanism: by reference

On entry, the optional AddrLen argument contains the length of the space pointed to by Address, in bytes. On

return, it contains the actual length, in bytes, of the address returned.

RETURNS

If the accept() is successful, an OpenVMS channel number is returned. If an error occurs, a value of -1 is returned,

and a more specific message is returned in the global variables socket_errno and vmserrno.

An error code of ENETDOWN can indicate that the program has run out of VMS channels to use in creating new

sockets. This can be due to either the SYSGEN parameter CHANNELCNT being too low for the number of

connections in use by the program, or to a socket leak in the code. Make sure the code closes the socket (using

close()) when it is done with the socket.

bcmp()
Compares a range of memory. This function operates on variable-length strings of bytes and does not check for null

bytes as strcmp() does.

bcmp() is part of the 4.3BSD run-time library, but is not provided by Hewlett-Packard as part of the VAX C run-

time library. It is provided here for compatibility with the 4.3BSD library.

FORMAT

Status = bcmp(String1, String2, Length);

char *String1, *String2;

unsigned int Length;

ARGUMENTS

String1,String2

VMS Usage: arbitrary

type: byte buffer

access: read only

mechanism: by reference

Pointers to the two buffers to be compared.

Length

VMS Usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

The number of bytes to be compared.

RETURNS

The bcmp() function returns zero if the strings are identical. It returns a nonzero value if they are different.

bcopy()
Copies memory from one location to another. This function operates on variable-length strings of bytes and does not

check for null bytes as strcpy() does.

bcopy() is part of the 4.3BSD run-time library, but is not provided by Hewlett-Packard as part of the VAX C run-

time library. It is provided here for compatibility with the 4.3BSD library.

FORMAT

(void) bcopy(String1, String2, Length);

char *String1, *String2;

unsigned int Length;

ARGUMENTS

String1

VMS Usage arbitrary

type: byte buffer

access: read only

mechanism: by reference

The source buffer for the copy operation.

String2

VMS Usage: arbitrary

type: byte buffer

access: write only

mechanism: by reference

The destination buffer for the copy operation.

Length

VMS Usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

The number of bytes to be copied.

bind()/bind_44()
Assigns an address to an unnamed socket. When a socket is created with socket(), it exists in a name space (address

family) but has no assigned address. bind() requests that the address be assigned to the socket.

If the port number specified in the sin_port field of the sockaddr structure is less than 1024, SYSPRV is required to

use this function.

The bind_44() function is the BSD 4.4 sockaddr variant of this call. This call is used automatically when

MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]IN.H is used and the program is compiled with

USE_BSD44_ENTRIES defined.

FORMAT

Status = bind(VMS_Channel, Name, NameLen);

short VMS_Channel;

struct sockaddr *Name;

unsigned int NameLen;

ARGUMENTS

VMS_Channel

VMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Name

VMS Usage: socket_address

type: struct sockaddr

access: read only

mechanism: by reference

The address to which the socket should be bound. The exact format of the Address argument is determined by the

domain in which the socket was created.

NameLen

VMS Usage: socket_address_length

type: longword (unsigned)

access: read only

mechanism: by value

The length of the Name argument, in bytes.

RETURNS

If the bind() is successful, a value of 0 is returned. If an error occurs, a value of -1 is returned, and a more specific

message is returned in the global variables socket_errno and vmserrno.

bzero()
Fills memory with zeros.

bzero() is part of the 4.3BSD run-time library, but is not provided by Hewlett-Packard as part of the VAX C run-

time library. It is provided here for compatibility with the 4.3BSD library.

FORMAT

(void) bzero(String, Length);

char *String;

unsigned int Length;

ARGUMENTS

String

VMS Usage: arbitrary

type: byte buffer

access: write only

mechanism: by reference

The address of the buffer to receive the zeros.

Length

VMS Usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

The number of bytes to be zeroed.

connect()/connect_44()
When used on a SOCK_STREAM socket, connect() attempts to make a connection to another socket. This

function, when used on a SOCK_DGRAM socket, permanently specifies the peer to which datagrams are sent to

and received from. The peer socket is specified by name, which is an address in the communications domain of the

socket. Each communications domain interprets the name parameter in its own way. If the address of the local

socket has not yet been specified with bind(), the local address is also set to an unused port number when connect()

is called.

The connect_44() function is the BSD 4.4 sockaddr variant of this call. This call is used automatically when

MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]IN.H is used and the program is compiled with

USE_BSD44_ENTRIES defined.

FORMAT

Status = connect(VMS_Channel, Name, NameLen);

short VMS_Channel;

struct sockaddr *Name;

unsigned int NameLen;

ARGUMENTS

VMS_Channel

VMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Name

VMS Usage: socket_address

type: struct sockaddr

access: read only

mechanism: by reference

The address of the peer to which the socket should be connected. The exact format of the Address argument is

determined by the domain in which the socket was created.

NameLen

VMS Usage: socket_address_length

type: longword (unsigned)

access: read only

mechanism: by value

The length of the Name argument, in bytes.

RETURNS

If the connect() is successful, a value of 0 is returned. If an error occurs, a value of -1 is returned, and a more

specific message is returned in the global variables socket_errno and vmserrno.

Domain Name Resolver Routines
The following functions exist for compatibility with UNIX 4.3BSD programs that call the DNS Name Resolver

directly rather than through gethostbyname(). The arguments and calling conventions are compatible with BIND

Version 4.8.3. They are subject to change and are not documented here.

The h_errno variable in the MultiNet socket library that contains the error status of the resolver routine is accessible

to C programs.

dn_comp() p_rr()

dn_expand() p_type()

dn_skip() putlong()

dn_skipname() putshort()

fp_query() _res_close()

_getlong() res_init()

_getshort() res_mkquery()

herror() res_query()

p_cdname() res_querydomain()

p_class() res_search()

p_query() res_send()

endhostent()
Tells the DNS Name Resolver to close the TCP connection to the DNS Name Server that may have been opened as

the result of calling sethostent() with StayOpen set to 1.

FORMAT

(void) endhostent();

endnetent()
Tells the DNS Name Resolver to close the TCP connection to the DNS Name Server that may have been opened as

the result of using setnetent() with StayOpen set to 1.

FORMAT

(void) endnetent();

endprotoent()
Tells the host table routines that the scan started by getprotoent() is complete. endprotoent() is provided only for

compatibility with UNIX 4.3BSD, and is ignored by the MultiNet software.

FORMAT

(void) endprotoent();

endservent()
Tells the host table routines that the scan started by getservent() is complete. endservent() is provided only for

compatibility with UNIX 4.3BSD, and is ignored by the MultiNet software.

FORMAT

(void) endservent();

getdtablesize()
Returns the maximum number of channels available to a process. This function is normally used to determine the

Width argument to the select() function.

FORMAT

Width = getdtablesize();

RETURNS

The size of the channel table.

gethostbyaddr()/gethostbyaddr_44()
Looks up a host by its address in the binary host table or the DNS Name Server and returns information about that

host. An alternate entry point _gethostbyaddr(), that looks only in the binary host table, is also available.

Note! The MultiNet socket library is not reentrant. If you call into it from an AST (interrupt) routine, the results are

unpredictable.

The gethostbyaddr_44() function is the BSD 4.4 sockaddr variant of this call. This call is used automatically when

MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]IN.H is used and the program is compiled with

USE_BSD44_ENTRIES defined.

FORMAT

(struct hostent *) gethostbyaddr(Addr, Length, Family);

(struct hostent *) _gethostbyaddr(Addr, Length, Family);

char *Addr;

unsigned int Length;

unsigned int Family;

ARGUMENTS

Addr

VMS Usage: address

type: dependent on Family

access: read only

mechanism: by reference

A pointer to the address to look up. The type is dependent on the Family argument. For Internet (AF_INET family)

addresses, Addr is a pointer to an in_addr structure.

Length

VMS Usage: address_length

type: longword (unsigned)

access: read only

mechanism: by value

The size, in bytes, of the buffer pointed to by Addr.

Family

VMS Usage: address_family

type: longword (unsigned)

access: read only

mechanism: by value

The address family, and consequently the interpretation of the Addr argument. Normally, this is AF_INET,

indicating the Internet family of addresses.

RETURNS

If gethostbyaddr() succeeds, it returns a pointer to a structure of type hostent. (See gethostbyname() for more

information on the hostent structure.) If this function fails, a value of 0 is returned, and the global variable h_errno

is set to one of the DNS Name Server error codes defined in the file multinet_root:[multinet.include]netdb.h.

getaddrinfo()
Looks up hostname and/or service name and returns results. This call supports both IPv4 and IPv6 requests.

FORMAT

int getaddrinfo(hostname, servname, hints, res)

char *hostname, *servname;

struct addrinfo *hints, **res;

ARGUMENTS

hostname

VMS Usage: host_name

type: ASCIZ string

access: read only

mechanism: by reference

A C-language string containing the name of the host to look up.

servname

VMS Usage: service_name

type: ASCIZ string

access: read only

mechanism: by reference

A C-language string containing the name of the service to look up.

hints

VMS Usage: hints

type: struct addrinfo

access: read only

mechanism: by reference

An addrinfo structure that provides hints on the lookups to be performed.

res

VMS Usage: results

type: pointer

access: write only

mechanism: by reference

A linked list of addrinfo structures that contain the results of the operation.

RETURNS

An integer value is returned. Zero is success, non-zero is failure. Failure values can be interpretted with

gaistrerror().

struct addrinfo {

 int ai_flags;

 int ai_family;

 int ai_socktype;

 int ai_protocol;

 size_t ai_addrlen;

 char *ai_canonname;

 struct sockaddr *ai_addr;

 struct addrinfo *ai_next;

};

Use freeaddrinfo(res) to free the chain of data structures returned when the program is done using it.

getnameinfo()
Returns hostname and/or servicename information from a sockaddr structures. This call can handle both IPv6 and

IPv4 requests.

FORMAT

int getnameinfo(sa, salen, host, hostlen, serv, servlen, flags)

struct sockaddr *sa;

size_t salen, hostlen, servlen;

char *host, *serv;

int flags;

ARGUMENTS

sa

VMS Usage: sockaddr

type: sockaddr

access: read only

mechanism: by reference

A pointer to a sockaddr to obtain information on.

salen

VMS Usage: sockaddr length

type: integer

access: read only

mechanism: by value

The length of the sockaddr structure.

host

VMS Usage: hostname

type: ASCIZ string

access: write only

mechanism: by reference

Storage area for a hostname to be returned.

hostlen

VMS Usage: length of hostname string space

type: integer

access: read only

mechanism: by value

The amount of space available in the host string for storing the hostname.

serv

VMS Usage: service_name

type: ASCIZ string

access: write only

mechanism: by reference

Storage area for a service name to be returned.

servlen

VMS Usage: length of servicename string space

type: integer

access: read only

mechanism: by value

The amount of space available in the serv string for storing the service name

RETURNS

An integer value is returned. Zero is success, non-zero is failure. Failure values can be interpretted with

gaistrerror().

gethostbyname()/gethostbyname_44()
Looks up a host by name in the binary host table or the DNS Name Server and returns information about that host.

An alternate entry point _gethostbyname(), that looks only in the binary host table, is also available.

Note! The MultiNet socket library is not reentrant. If you call into it from an AST (interrupt) routine, the results are

unpredictable

The gethostbyname_44() function is the BSD 4.4 sockaddr variant of this call. This call is used automatically when

MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]IN.H is used and the program is compiled with

USE_BSD44_ENTRIES defined.

FORMAT

(struct hostent *) gethostbyname(Name);

(struct hostent *) _gethostbyname(Name);

char *Name;

ARGUMENTS

Name

VMS Usage: host_name

type: ASCIZ string

access: read only

mechanism: by reference

A C-language string containing the name of the host to look up.

RETURNS

If gethostbyname() succeeds, it returns a pointer to a structure of type hostent. If this function fails, a value of 0 is

returned, and the global variable h_errno is set to one of the DNS Name Server error codes defined in the file

multinet_root:[multinet.include]netdb.h.

The hostent structure is defined as follows:

struct hostent {

 char *h_name; /* official name */

 char **h_aliases; /* alias list */

 int h_addrtype; /* host address type */

 int h_length; /* length of address */

 char **h_addr_list; /* list of addresses */

#define h_addr h_addr_list[0] /* address, for compat */

 char *h_cputype; /* cpu type */

 char *h_opsys; /* operating system */

 char **h_protos; /* protocols */

 struct sockaddr *h_addresses; /* sockaddr form */

};

gethostbysockaddr()/gethostbysockaddr_44()
Looks up a host by socket address in the binary host table or the DNS Name Server and returns information about

that host. An alternate entry point _gethostbysockaddr(), that looks only in the binary host table, is also available.

gethostbysockaddr() is identical in functionality to gethostbyaddr(), but takes its arguments in a different form.

Note! The MultiNet socket library is not reentrant. If you call into it from an AST (interrupt) routine, the results are

unpredictable.

The gethostbysockaddr_44() function is the BSD 4.4 sockaddr variant of this call. This call is used automatically

when MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]IN.H is used and the program is compiled with

USE_BSD44_ENTRIES defined.

FORMAT

(struct hostent *) gethostbysockaddr(Addr, Length);

struct sockaddr *Addr;

unsigned int Length;

ARGUMENTS

Addr

VMS Usage: socket_address

type: struct sockaddr

access: read only

mechanism: by reference

A pointer to a sockaddr structure describing the address to look up.

Length

VMS Usage: socket_address_length

type: longword (unsigned)

access: read only

mechanism: by value

The size, in bytes, of the sockaddr structure pointed to by Addr.

RETURNS

If gethostbysockaddr() succeeds, it returns a pointer to a structure of type hostent. (See gethostbyname() for more

information on the hostent structure.) If this function fails, a value of 0 is returned, and the global variable h_errno

is set to one of the DNS Name Server error codes defined in the file multinet_root:[multinet.include]netdb.h.

gethostname()
Returns the Internet name of the host it is executed on. This name comes from the logical name

MULTINET_HOST_NAME and can be set using the SET HOST-NAME command in the MultiNet Network

Configuration utility (NET-CONFIG).

FORMAT

Status = gethostname(String, Length);

char *String;

unsigned int Length;

ARGUMENTS

String

VMS Usage: hostname

type: ASCIZ string

access: write only

mechanism: by reference

A pointer to a buffer to receive the host name.

Length

VMS Usage: hostname_length

type: longword (unsigned)

access: read only

mechanism: by value

The length of the buffer, in bytes. The buffer should be at least 33 bytes long to guarantee that the complete host

name is returned.

RETURNS

If the gethostname() function is successful, it returns a 0. It returns a -1 if it is unable to translate the logical name.

getnetbyaddr()
Looks up a network by its network number in the binary host table or the DNS Name Server and returns information

about that network. An alternate entry point _getnetbyaddr(), that looks only in the binary host table, is also

available.

FORMAT

(struct netent *) getnetbyaddr(Net, Protocol);

(struct netent *) _getnetbyaddr(Net, Protocol);

unsigned int Net, Protocol;

ARGUMENTS

Net

VMS Usage: network_number

type: longword (unsigned)

access: read only

mechanism: by value

The network number to look up.

Protocol

VMS Usage: protocol_number

type: longword (unsigned)

access: read only

mechanism: by value

The address family of the network to look up. For Internet networking, this should be specified as AF_INET.

RETURNS

If getnetbyaddr() succeeds, it returns a pointer to a structure of type netent. (See getnetbyname() for more

information on the netent structure.) If this function fails, a value of 0 is returned, and the global variable h_errno is

set to one of the DNS Name Server error codes defined in multinet_root:[multinet.include]netdb.h.

getnetbyname()
Looks up a network by name in the binary host table or the DNS Name Server and returns information about that

network. An alternate entry point _getnetbyname(), that looks only in the binary host table, is also available.

FORMAT

(struct netent *) getnetbyname(Name);

(struct netent *) _getnetbyname(Name);

char *Name;

ARGUMENTS

Name

VMS Usage: network_name

type: ASCIZ string

access: read only

mechanism: by reference

A pointer to a C-language string containing the name of the network.

RETURNS

If getnetbyname() succeeds, it returns a pointer to a structure of type netent. If this function fails, a value of 0 is

returned, and the global variable h_errno is set to one of the DNS Name Server error codes defined in

multinet_root:[multinet.include]netdb.h.

The netent structure is defined as follows:

struct netent {

 char *n_name; /* official name */

 char **n_aliases; /* alias list */

 int n_addrtype; /* address type */

 unsigned long n_net; /* network # */

 struct sockaddr *n_addresses; /* sockaddr form */

};

getpeername()/getpeername_44()
Returns the name of the peer connected to the specified socket.

The accept_44() function is the BSD 4.4 sockaddr variant of this call. This call is used automatically when

MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]IN.H is used and the program is compiled with

USE_BSD44_ENTRIES defined.

FORMAT

Status = getpeername(VMS_Channel, Address, AddrLen);

short VMS_Channel;

struct sockaddr *Address;

unsigned int *AddrLen;

ARGUMENTS

VMS_Channel

VMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Address

VMS Usage: socket_address

type: struct sockaddr

access: write only

mechanism: by reference

A result parameter. This argument is filled in with the address of the peer, as known to the communications layer.

The exact format of the Address argument is determined by the domain in which the communication is occurring.

AddrLen

VMS Usage: socket_address_length

type: longword (unsigned)

access: modify

mechanism: by reference

On entry, contains the length of the space pointed to by Address, in bytes. On return, it contains the actual length, in

bytes, of the address returned.

RETURNS

If the getpeername() is successful, a value of 0 is returned. If an error occurs, a value of -1 is returned, and a more

specific message is returned in the global variables socket_errno and vmserrno.

getprotobyname()
Looks up a protocol by name in the binary host table and returns information about that protocol.

FORMAT

(struct protoent *) getprotobyname(Name);

char *Name;

ARGUMENTS

Name

VMS Usage: protocol_name

type: ASCIZ string

access: read only

mechanism: by reference

A pointer to a C-language string containing the name of the protocol.

RETURNS

If getprotobyname() succeeds, it returns a pointer to a structure of type protoent. If this function fails, a value of 0

is returned.

The protoent structure is defined as follows:

struct protoent {

 char *p_name; /* official protocol name */

 char **p_aliases; /* alias list */

 int p_proto; /* protocol # */

};

getprotobynumber()
Looks up a protocol by number in the binary host table and returns information about that protocol.

FORMAT

(struct protoent *) getprotobynumber(Number);

unsigned int Number;

ARGUMENTS

Number

VMS Usage: protocol_number

type: longword (unsigned)

access: read only

mechanism: by value

The numeric value of the protocol.

RETURNS

If getprotobynumber() succeeds, it returns a pointer to a structure of type protoent. If this function fails, a value of

0 is returned.

The protoent structure is defined as follows:

struct protoent {

 char *p_name; /* official protocol name */

 char **p_aliases; /* alias list */

 int p_proto; /* protocol # */

};

getprotoent()
Returns the next protocol entry from the binary host table. It is used with setprotoent() and endprotoent() to scan

through the protocol table. The scan is initialized with setprotoent(), run by calling getprotoent() until it returns a

0, and terminated by calling endprotoent().

FORMAT

(struct protoent *) getprotoent();

RETURNS

The getprotoent() function returns either a 0, indicating that there are no more entries, or a pointer to a structure of

type protoent.

The protoent structure is defined as follows:

struct protoent {

 char *p_name; /* official protocol name */

 char **p_aliases; /* alias list */

 int p_proto; /* protocol # */

};

getservbyname()
Looks up a service by name in the binary host table and returns information about that service.

The service must be present in the HOSTS.SERVICES or HOSTS.LOCAL file, and the host table must be compiled

into binary form using the host table compiler. See the MultiNet for OpenVMS Installation and Administrator’s

Guide for more information about editing and compiling the host table files.

FORMAT

(struct servent *) getservbyname(Name, Protocol);

char *Name, *Protocol;

ARGUMENTS

Name

VMS Usage: service_name

type: ASCIZ string

access: read only

mechanism: by reference

A pointer to a C-language string containing the name of the service.

Protocol

VMS Usage: protocol_name

type: ASCIZ string

access: read only

mechanism: by reference

A pointer to a C-language string containing the name of the protocol associated with the service, such as "TCP".

RETURNS

If getservbyname() succeeds, it returns a pointer to a structure of type servent. If this function fails, a value of 0 is

returned.

The servent structure is defined as follows:

struct servent {

 char *s_name; /* official service name */

 char **s_aliases; /* alias list */

 int s_port; /* port # */

 char *s_proto; /* protocol to use */

};

getservbyport()
Looks up a service by protocol port in the binary host table and returns information about that service.

The service must be present in the HOSTS.SERVICES or HOSTS.LOCAL file, and the host table must be compiled

into binary form using the host table compiler. See the MultiNet for OpenVMS Installation and Administrator’s

Guide for more information about editing and compiling the host table files.

FORMAT

(struct servent *) getservbyport(Number, Protocol);

unsigned int Number;

char *Protocol;

ARGUMENTS

Number

VMS Usage: service_number

type: longword (unsigned)

access: read only

mechanism: by value

The numeric value of the service port.

Protocol

VMS Usage: protocol_name

type: ASCIZ string

access: read only

mechanism: by reference

A pointer to a C-language string containing the name of the protocol associated with the service, such as "TCP".

RETURNS

If getservbyport() succeeds, it returns a pointer to a structure of type servent. (See getservbyname() for the format

of the servent structure.) If this function fails, a value of 0 is returned.

getservent()
Returns the next server entry from the binary host table. This function is used with setservent() and endservent() to

scan through the service table. The scan is initialized with setservent(), run by calling getservent() until it returns a

0, and terminated by calling endservent().

FORMAT

(struct servent *) getservent();

RETURNS

If getservent() succeeds, it returns a pointer to a structure of type servent. (See getservbyname() for the format of

the servent structure.) If this function fails, a value of 0 is returned.

getsockname()/getsockname_44()
Returns the current name of the specified socket.

The getsockname_44() function is the BSD 4.4 sockaddr variant of this call. This call is used automatically when

MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]IN.H is used and the program is compiled with

USE_BSD44_ENTRIES defined.

FORMAT

Status = getsockname(VMS_Channel, Address, AddrLen);

short VMS_Channel;

struct sockaddr *Address;

unsigned int *AddrLen;

ARGUMENTS

VMS_Channel

VMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Address

VMS Usage: socket_address

type: struct sockaddr

access: write only

mechanism: by reference

A result parameter. It is filled in with the address of the local socket, as known to the communications layer. The

exact format of the Address argument is determined by the domain in which the communication is occurring.

AddrLen

VMS Usage: socket_address_length

type: longword (unsigned)

access: modify

mechanism: by reference

On entry, contains the length of the space pointed to by Address, in bytes. On return, it contains the actual length, in

bytes, of the address returned.

RETURNS

If getsockname() is successful, a ,value of 0 is returned. If an error occurs, a value of -1 is returned and a more

specific message is returned in the global variables socket_errno and vmserrno.

getsockopt()
Retrieves the options associated with a socket. Options can exist at multiple protocol levels; however, they are

always present at the uppermost socket level.

When manipulating socket options, you must specify the level at which the option resides and the name of the

option. To manipulate options at the socket level, specify Level as SOL_SOCKET. To manipulate options at any

other level, specify the protocol number of the appropriate protocol controlling the option. For example, to indicate

that an option will be interpreted by the TCP protocol, set Level to the protocol number of TCP, which can be

determined by calling getprotobyname().

OptName and any specified options are passed without modification to the appropriate protocol module for

interpretation. The include file multinet_root:[multinet.include.sys]socket.h contains definitions for socket-level

options. Options at other protocol levels vary in format and name.

For more information on what socket options may be retrieved with getsockopt(), see socket options.

FORMAT

Status = getsockopt(VMS_Channel, Level, OptName, OptVal, OptLen);

short VMS_Channel;

unsigned int Level, OptName, *OptLen;

char *OptVal;

ARGUMENTS

VMS_Channel

VMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Level

VMS Usage: option_level

type: longword (unsigned)

access: read only

mechanism: by value

The protocol level at which the option will be manipulated. Specify Level as SOL_SOCKET, or as a protocol

number as returned by getprotobyname().

OptName

VMS Usage: option_name

type: longword (unsigned)

access: read only

mechanism: by value

The option to be manipulated.

OptVal

VMS Usage: dependent on OptName

type: byte buffer

access: write only

mechanism: by reference

A pointer to a buffer that will receive the current value of the option. The format of this buffer is dependent on the

option requested.

OptLen

VMS Usage: option_length

type: longword (unsigned)

access: modify

mechanism: by reference

On entry, contains the length of the space pointed to by OptVal, in bytes. On return, it contains the actual length, in

bytes, of the option returned.

RETURNS

If the getsockopt() is successful, a value of 0 is returned. If an error occurs, a value of -1 is returned, and a more

specific message is returned in the global variables socket_errno and vmserrno.

gettimeofday()
Returns the current time of day in UNIX format. This is the number of seconds and microseconds elapsed since

January 1, 1970.

gettimeofday() is part of the 4.3BSD run-time library, but is not provided by Hewlett-Packard as part of the VAX C

run-time library. It is provided here for compatibility with the 4.3BSD library.

FORMAT

Status = gettimeofday(TimeVal);

struct timeval *TimeVal;

ARGUMENTS

TimeVal

VMS Usage: UNIX_time

type: struct timeval

access: write only

mechanism: by reference

A pointer to a structure that receives the current time. The timeval structure is defined as follows:

struct timeval {

 long tv_sec; /* seconds */

 long tv_usec; /* and microseconds */

};

RETURNS

The gettimeofday() function always returns a value of 0, which indicates it was successful.

hostalias()
Examines the user-specific host alias table (if the user has set one by defining the MULTINET_HOSTALIASES

logical name) to see if the specified host name is a valid alias for another host name. This is normally called by

gethostbyname() and res_search() automatically.

FORMAT

(char *) hostalias(Name);

char *Name;

ARGUMENTS

Name

VMS Usage: host_name

type: ASCIZ string

access: read only

mechanism: by reference

A C-language string containing the name of the host to look up in the host alias table.

RETURNS

If successful, the hostalias() function returns a pointer to the character string of the canonical name of the host.

Otherwise, it returns a 0 to indicate that no alias exists.

htonl()
Swaps the byte order of a four-byte integer from OpenVMS byte order to network byte order. This allows you to

develop programs that are independent of the hardware architecture on which they are running.

FORMAT

RetVal = htonl(Val);

unsigned long Val;

ARGUMENTS

Val

VMS Usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

The four-byte integer to convert to network byte order.

RETURNS

The htonl() function returns the byte-swapped integer that corresponds to Val. For example, if Val is 0xc029e401,

the returned value is 0x01e429c0.

htons()
Swaps the byte order of a two-byte integer from OpenVMS byte order to network byte order. This allows you to

develop programs that are independent of the hardware architecture on which they are running.

FORMAT

RetVal = htons(Val);

unsigned short Val;

ARGUMENTS

Val

VMS Usage: word_unsigned

type: word (unsigned)

access: read only

mechanism: by value

The two-byte integer to convert to network byte order.

RETURNS

The htons() function returns the byte-swapped integer that corresponds to Val. For example, if Val is 0x0017, the

returned value is 0x1700.

inet_addr()
Converts Internet addresses represented in the ASCII form "xx.yy.zz.ww" to a binary representation in network byte

order.

FORMAT

RetVal = inet_addr(Address);

char *Address;

ARGUMENTS

Address

VMS Usage: internet_address_string

type: ASCIZ string

access: read only

mechanism: by reference

A pointer to a C-language string containing an ASCII representation of the Internet address to convert.

RETURNS

If successful, the inet_addr() function returns an integer corresponding to the binary representation of the Internet

address in network byte order. It returns a -1 to indicate that it could not parse the specified Address string.

inet_lnaof()
Returns the local network address portion of the specified Internet address. For example, the class A address

0x0a050010 (10.5.0.16) is returned as 0x00050010 (5.0.16).

FORMAT

RetVal = inet_lnaof(Address);

struct in_addr Address;

ARGUMENTS

Address

VMS Usage: internet_address

type: struct in_addr

access: read only

mechanism: by value

The Internet address from which to extract the local network address portion. The Internet address is specified in

network byte order.

RETURNS

The inet_lnaof() function returns the local network address portion of the Internet address in OpenVMS byte order.

inet_makeaddr()
Builds a complete Internet address from the separate host and network portions.

FORMAT

RetVal = inet_makeaddr(Network, Host);

unsigned int Network, Host;

ARGUMENTS

Network

VMS Usage: network_number

type: longword (unsigned)

access: read only

mechanism: by value

The network portion of the Internet address to be constructed. The network portion is specified in OpenVMS byte

order.

Host

VMS Usage: host_number

type: longword (unsigned)

access: read only

mechanism: by value

The host portion of the Internet address to be constructed. The host portion is specified in OpenVMS byte order.

RETURNS

The inet_makeaddr() function returns the complete Internet address in network byte order.

inet_netof()
Returns the network number portion of the specified Internet address. For example, the class A address 0x0a050010

(10.5.0.16) is returned as 0x0a (10).

FORMAT

RetVal = inet_netof(Address);

struct in_addr Address;

ARGUMENTS

Address

VMS Usage: internet_address

type: struct in_addr

access: read only

mechanism: by value

The Internet address from which to extract the network number portion. The Internet address is specified in network

byte order.

RETURNS

The inet_netof() routine returns the network portion of the Internet address in OpenVMS byte order.

inet_network()
Interprets Internet network numbers represented in the ASCII form "xx", "xx.yy", or "xx.yy.zz", and converts them

into a binary representation in OpenVMS byte order.

FORMAT

RetVal = inet_network(Address);

char *Address;

ARGUMENTS

Address

VMS Usage: network_address_string

type: ASCIZ string

access: read only

mechanism: by reference

A pointer to a C-language string containing an ASCII representation of the Internet network number to convert.

RETURNS

If successful, the inet_network() function returns an integer corresponding to the binary representation of the

Internet network in OpenVMS byte order. It returns a -1 to indicate that it could not parse the specified string.

inet_ntoa()
Converts an Internet address represented in binary form into an ASCII string suitable for printing.

FORMAT

(char *) inet_ntoa(Address);

struct in_addr Address;

ARGUMENTS

Address

VMS Usage: internet_address

type: struct in_addr

access: read only

mechanism: by value

The Internet address in binary form. The Internet address is specified in network byte order.

RETURNS

The inet_ntoa() function returns a pointer to a C- language string corresponding to the Internet address.

klread()
Used with klseek() and multinet_kernel_nlist() to emulate the UNIX 4.3BSD nlist() function and the reading of

the /dev/kmem device. klread() and klseek() read OpenVMS kernel memory through an interface that is similar to

using read() and lseek() on the /dev/kmem device.

The OpenVMS CMKRNL privilege is required to use klread().

Before calling klread(), specify the address to read from using klseek().

FORMAT

Status = klread(Buffer, Size);

char *Buffer;

unsigned int Size;

ARGUMENTS

Buffer

VMS Usage: arbitrary

type: byte buffer

access: write only

mechanism: by reference

The address to which to return the kernel memory.

Size

VMS Usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

The number of bytes to read.

RETURNS

If successful, the klread() function returns the number of bytes read. It returns a -1 to indicate that it failed because

the kernel memory was not readable. This usually indicates that the current position, as set by klseek(), is invalid.

klseek()
Used with klread() and multinet_kernel_nlist() to emulate the UNIX 4.3BSD nlist() function and reading the

/dev/kmem device. klread() and klseek() read OpenVMS kernel memory through an interface that is similar to

using read() and lseek() on the /dev/kmem device.

Use klseek() to set the current position in the network kernel. This position will be used by klread() and klwrite() in

the next attempt to read or write data.

FORMAT

Status = klseek(Position);

unsigned int Position;

ARGUMENTS

Position

VMS Usage: kernel_address

type: longword (unsigned)

access: read only

mechanism: by value

The address in the network kernel to make the current position for the next klread() or klwrite() call.

RETURNS

The klseek() routine returns the current position as a success status.

klwrite()
Used with klseek() and multinet_kernel_nlist() to emulate the UNIX 4.3BSD nlist() and writing the /dev/kmem

device. klwrite() and klseek() write OpenVMS kernel memory through an interface that is similiar to using write()

and lseek() on the /dev/kmem device.

The OpenVMS CMKRNL privilege is required to use klwrite().

Before calling klwrite(), specify the address to write using klseek().

FORMAT

Status = klwrite(Buffer, Size);

char *Buffer;

unsigned int Size;

ARGUMENTS

Buffer

VMS Usage: arbitrary

type: byte buffer

access: read only

mechanism: by reference

The address of the data to write into kernel memory.

Size

VMS Usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

The number of bytes to write.

RETURNS

If successful, the klwrite() function returns the number of bytes written. It returns a -1 to indicate that it failed

because the kernel memory was not writable. This usually indicates that the current position, as set by klseek(), is

invalid.

listen()
Specifies the number of incoming connections that may be queued waiting to be accepted. This backlog must be

specified before accepting a connection on a socket. The listen() function applies only to sockets of type

SOCK_STREAM.

FORMAT

Status = listen(VMS_Channel, Backlog);

short VMS_Channel;

unsigned int Backlog;

ARGUMENTS

VMS_Channel

VMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Backlog

VMS Usage: connection_backlog

type: longword (unsigned)

access: read only

mechanism: by value

The maximum length of the queue of pending connections. If a connection request arrives when the queue is full, the

request is ignored. The backlog queue length is limited to 5.

RETURNS

If listen() is successful, a value of 0 is returned. If an error occurs, a value of -1 is returned, and a more specific

message is returned in the global variables socket_errno and vmserrno.

multinet_kernel_nlist
A special version of the UNIX 4.3BSD nlist() function that reads the symbol table to the MultiNet kernel. Unlike

the UNIX 4.3BSD kernel, the MultiNet kernel's symbol table must be relocated before you can use klseek(),

klread(), or klwrite() to examine the networking kernel.

Many of the same kernel symbols available under 4.3BSD are also available under the MultiNet software. Use of

this interface is unsupported, as the symbol names and data types may change in future releases of the Berkeley

TCP/IP networking code and in future releases of the MultiNet software.

To access the symbol table to the MultiNet image that is currently running, read from the file indicated by the

logical name MULTINET_NETWORK_IMAGE:.

For more information about how to use multinet_kernel nlist(), see nlist().

nlist()
Examines the symbol table in an executable image or symbol table file.

FORMAT

Status = nlist(Filename, nl);

char *Filename;

struct nlist nl[];

ARGUMENTS

Filename

VMS Usage: filename

type: ASCIZ string

access: read only

mechanism: by reference

The file name of the executable image or symbol table file to read.

nl

VMS Usage: symbol_table_info

type: array of struct nlist

access: modify

mechanism: by reference

An array of nlist structures. The n_name field of each element specifies the name of the symbol to look up; the

array is terminated by a null name. Each symbol is looked up in the file. If the symbol is found, the n_type and

n_value fields are filled in with the type and value of the symbol. Otherwise, they are set to 0.

RETURNS

If successful, the nlist() function returns a 0. Otherwise, it returns a -1.

ntohl()
Swaps the byte order of a four-byte integer from network byte order to OpenVMS byte order. This allows you to

develop programs that are independent of the hardware architecture on which they are running.

FORMAT

RetVal = ntohl(Val);

unsigned long Val;

ARGUMENTS

Val

VMS Usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

The four-byte integer to convert to OpenVMS byte order.

RETURNS

The ntohl() function returns the byte-swapped integer that corresponds to Val. For example, if Val is 0x01e429c0,

the returned value is 0xc029e401.

ntohs()
Swaps the byte order of a two-byte integer from network byte order to OpenVMS byte order. This allows you to

develop programs that are independent of the hardware architecture on which they are running.

FORMAT

RetVal = ntohs(Val);

unsigned short Val;

ARGUMENTS

Val

VMS Usage: word_unsigned

type: word (unsigned)

access: read only

mechanism: by value

The two-byte integer to convert to OpenVMS byte order.

RETURNS

The ntohs() function returns the byte-swapped integer that corresponds to Val. For example, if Val is 0x1700, the

returned value is 0x0017.

recv()/recv_44()
Receives messages from a socket. This function is equivalent to a recvfrom() function called with the From and

FromLen arguments specified as zero. The socket_read() function is equivalent to a recv() function called with the

Flags argument specified as zero.

The length of the message received is returned as the status. If a message is too long to fit in the supplied buffer and

the socket is type SOCK_DGRAM, excess bytes are discarded.

If no messages are at the socket, the receive function waits for a message to arrive, unless the socket is non-blocking

(see socket ioctl FIONBIO). In this case, a status of -1 is returned and the global variable socket_errno is set to

EWOULDBLOCK.

The recv_44() function is the BSD 4.4 sockaddr variant of this call. This call is used automatically when

MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]IN.H is used and the program is compiled with

USE_BSD44_ENTRIES defined.

FORMAT

Status = int recv (short VMS_Channel, char *Buffer, int Size, int Flags);

ARGUMENTS

VMS_Channel

VMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Buffer

VMS Usage: arbitrary

type: byte buffer

access: write only

mechanism: by reference

The address of a buffer in which to place the data read.

Size

VMS Usage: longword_signed

type: longword (signed)

access: read only

mechanism: by value

The length of the buffer specified by Buffer. The actual number of bytes read is returned in the Status.

Flags

VMS Usage: mask_word

type: word (unsigned)

access: read only

mechanism: by value

Control information that affects the recv() function. The Flags argument is formed by ORing one or more of the

following values:

#define MSG_OOB 0x1 /* process out-of-band data */

#define MSG_PEEK 0x2 /* peek at incoming message */

The MSG_OOB flag causes recv() to read any out-of-band data that has arrived on the socket.

The MSG_PEEK flag causes recv() to read the data present in the socket without removing the data. This allows

the caller to view the data, but leaves it in the socket for future recv() calls.

RETURNS

If recv() is successful, a count of the number of characters received is returned. A return value of 0 indicates an end-

of-file; that is, the connection has been closed. A return value of -1 indicates an error occurred. A more specific

message is returned in the global variables socket_errno and vmserrno.

recvfrom()recvfrom_44()
Receives messages from a socket. This function is equivalent to the recv() function, but takes two additional

arguments that allow the caller to determine the remote address from which the message was received.

The length of the message received is returned as the status. If a message is too long to fit in the supplied buffer and

the socket is type SOCK_DGRAM, excess bytes are discarded.

If no messages are available at the socket, the receive call waits for a message to arrive, unless the socket is non-

blocking (see socket ioctl FIONBIO). In this case, a status of -1 is returned and the global variable socket_errno is

set to EWOULDBLOCK.

The recvfrom_44() function is the BSD 4.4 sockaddr variant of this call. This call is used automatically when

MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]IN.H is used and the program is compiled with

USE_BSD44_ENTRIES defined.

FORMAT

Status = int recvfrom (short VMS_Channel, char *Buffer, int Size, int Flags, struct sockaddr *From, unsigned int

*FromLen);

ARGUMENTS

VMS_Channel

VMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Buffer

VMS Usage: arbitrary

type: byte buffer

access: write only

mechanism: by reference

The address of a buffer in which to place the data read.

Size

VMS Usage: longword_signed

type: longword (signed)

access: read only

mechanism: by value

The length of the buffer specified by Buffer. The actual number of bytes read is returned in the Status.

Flags

VMS Usage: mask_word

type: word (unsigned)

access: read only

mechanism: by value

Control information that affects the recvfrom() function. The Flags argument is formed by ORing one or more of

the following values:

#define MSG_OOB 0x1 /* process out-of-band data */

#define MSG_PEEK 0x2 /* peek at incoming message */

The MSG_OOB flag causes recvfrom() to read any out-of-band data that has arrived on the socket.

The MSG_PEEK flag causes recvfrom() to read the data present in the socket without removing the data. This

allows the caller to view the data, but leaves it in the socket for future recvfrom() calls.

From

VMS Usage: socket_address

type: struct sockaddr

access: write only

mechanism: by reference

On return, this optional argument is filled in with the address of the host that transmitted the packet, as known to the

communications layer. The exact format of the Address argument is determined by the domain in which the

communication is occurring.

FromLen

VMS Usage: socket_address_length

type: longword (unsigned)

access: modify

mechanism: by reference

On entry, this optional argument contains the length of the space pointed to by From, in bytes. On return, it contains

the actual length, in bytes, of the address returned.

RETURNS

If recvfrom() is successful, a count of the number of characters received is returned. A return value of 0 indicates an

end-of-file condition; that is, the connection has been closed. If an error occurs, a value of -1 is returned, and a more

specific message is returned in the global variables socket_errno and vmserrno.

recvmsg()/recvmsg_44()
Receives messages from a socket. This function is equivalent to the recvfrom() function, but takes its arguments in

a different fashion and can receive into noncontiguous buffers.

The length of the message received is returned as the status. If a message is too long to fit in the supplied buffer and

the socket is type SOCK_DGRAM, excess bytes are discarded.

If no messages are available at the socket, the receive call waits for a message to arrive, unless the socket is non-

blocking (see socket ioctl FIONBIO). In this case, a status of -1 is returned and the global variable socket_errno is

set to EWOULDBLOCK.

The recvmsg_44() function is the BSD 4.4 sockaddr variant of this call. This call is used automatically when

MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]IN.H is used and the program is compiled with

USE_BSD44_ENTRIES defined.

FORMAT

Status = recvmsg(VMS_Channel, Message, Flags);

short VMS_Channel;

struct msghdr *Message;

unsigned int Flags;

ARGUMENTS

VMS_Channel

VMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Message

VMS Usage: message header

type: struct msghdr

access: read only

mechanism: by reference

A pointer to a "msghdr" structure that describes the buffer to be received into. The access rights portion of the

structure is unused.

Flags

VMS Usage: mask_longword

type: longword (unsigned)

access: read only

mechanism: by value

Control information that affects the recvmsg() function. The Flags argument is formed by ORing one or more of the

following values:

#define MSG_OOB 0x1 /* process out-of-band data */

#define MSG_PEEK 0x2 /* peek at incoming message */

The MSG_OOB flag causes recvmsg() to read any out-of-band data that has arrived on the socket.

The MSG_PEEK flag causes recvmsg() to read the data present in the socket without removing the data. This

allows the caller to view the data, but leaves it in the socket for future recvmsg() calls.

RETURNS

If recvmsg() is successful, a count of the number of characters received is returned. A return value of 0 indicates an

end-of-file condition; that is, the connection has been closed. If an error occurs, a value of -1 is returned, and a more

specific message is returned in the global variables socket_errno and vmserrno.

select()
Examines the OpenVMS Channel sets whose addresses are passed in ReadFds, WriteFds, and ExceptFds to see if

some of their Channels are ready for reading, ready for writing, or have an exceptional condition pending. On return,

select() replaces the given Channel sets with subsets consisting of the Channels that are ready for the requested

operation. The total number of ready Channels in all the sets is returned.

The select() function is only useful for NETWORK file descriptors and cannot be used for any other OpenVMS I/O

device.

The Channel sets are stored as bit fields in arrays of integers. The following macros are provided for manipulating

such Channel sets: FD_ZERO(&fdset) initializes a Channel set fdset to the null set; FD_SET(VMS_Channel,

&fdset) includes a particular Channel VMS_Channel in fdset; FD_CLR(VMS_Channel, &fdset) removes

VMS_Channel from fdset; FD_ISSET(VMS_Channel, &fdset) is nonzero if VMS_Channel is a member of

fdset, otherwise it is zero. The behavior of these macros is undefined if a Channel value is less than zero or greater

than or equal to FD_SETSIZE * CHANNELSIZE, which is normally at least equal to the maximum number of

Channels supported by the system. Make sure that the definition of these macros comes from the MultiNet types.h

file, as the definitions differ from the UNIX definitions.

Caution! Process Software recommends that you do not change the value of FD_SETSIZE. However, if you must change it,

make sure its value is equal to the maximum number of channels your system can handle.

Note! The MultiNet socket library is not reentrant. If you call into it from an AST (interrupt) routine, the results are

unpredictable. The select() call must not be used while ASTs have been disabled. If the select() call is performed

with ASTs disabled, the select() call will never return and will hang the program from which it was called. Instances

when this improper call to select() can occur are as follows:

• A call to select() is performed within an AST routine (that is, executing an AST routine disables the delivery of

other ASTs at the same (user-mode) priority).

• You have explicitly disabled AST delivery in normal (non-AST) code using the $SETAST system service.

FORMAT

Status = int select(int Width, fd_set, *ReadFds, fd_set, *WriteFds, fd_set, *ExceptFds,

struct timeval, *Timeout);

FD_SET (VMS_Channel, &fdset)

FD_CLR (VMS_Channel, &fdset)

FD_ISSET (VMS_Channel, &fdset)

FD_ZERO (&fdset)

fd_set fdset;

ARGUMENTS

Width

VMS Usage: channel count

type: long (unsigned)

access: read only

mechanism: by value

The number of bits to be checked in each bit mask that represents a Channel; the Channels from 0 through Width-1

in the Channel sets are examined. Typically, width has the value returned by getdtablesize for the maximum

number of Channels.

ReadFds

VMS Usage: channel bitmask

type: struct fd_set

access: modify

mechanism: by reference

A bit-mask of the Channels that select() should test for the ready for reading status. May be specified as a NULL

pointer if no Channels are of interest. Selecting true for reading on a Channel on which a listen() call has been

performed indicates that a subsequent accept() call on that Channel will not block.

WriteFds

VMS Usage: channel bitmask

type: struct fd_set

access: modify

mechanism: by reference

A bit-mask of the Channels that select() should test for the ready for writing status. May be specified as a NULL

pointer if no Channels are of interest.

ExceptFds

VMS Usage: channel bitmask

type: struct fd_set

access: modify

mechanism: by reference

A bit-mask of the Channels that select() should test for exceptional conditions pending. May be specified as a NULL

pointer if no Channels are of interest. Selecting true for exception conditions indicates that out-of-band data is

present in the Channel's input buffers.

Timeout

VMS Usage: timeout

type: struct timeval

access: read only

mechanism: by reference

A maximum interval to wait for the selection to complete. If Timeout is a NULL pointer, the select blocks

indefinitely. To effect a poll, the Timeout argument should be a non-NULL pointer, pointing to a zero-valued

timeval structure.

RETURNS

select() returns the number of ready Channels that are contained in the Channel sets, or -1 if an error occurred. If the

time limit expires, select() returns 0. If select() returns with an error, the Channel sets are unmodified.

select_wake()
Wakes a process waiting in a select() call, aborting the select() operation. This function may be called from an AST

(interrupt) routine, in which case the select() call will be aborted when the AST routine completes.

FORMAT

select_wake();

send()/send_44()
Transmits a message to another socket. This function is equivalent to a sendto() called with the To and ToLen

arguments specified as zero. The socket_write() function is equivalent to a send() function called with Flags

specified as zero. Use the send() function only when a socket has been connected with connect(); however, you can

use sendto() at any time.

If no message space is available at the socket to hold the message to be transmitted, send() blocks unless the socket

has been placed in non-blocking I/O mode via the socket ioctl FIONBIO. If the socket is type SOCK_DGRAM

and the message is too long to pass through the underlying protocol in a single unit, the error EMSGSIZE is

returned and the message is not transmitted.

The send_44() function is the BSD 4.4 sockaddr variant of this call. This call is used automatically when

MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]IN.H is used and the program is compiled with

USE_BSD44_ENTRIES defined.

FORMAT

Status = int send (short VMS_Channel, char *Buffer, int Size[, int Flags]);

If Flags are not specified, then 0 (zero) is used.

ARGUMENTS

VMS_Channel

VMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Buffer

VMS Usage: arbitrary

type: byte buffer

access: read only

mechanism: by reference

The address of a buffer containing the data to send.

Size

VMS Usage: longword_signed

type: longword (signed)

access: read only

mechanism: by value

The length of the buffer specified by Buffer.

RETURNS

If the send() function is successful, the count of the number of characters sent is returned. If an error occurs, a value

of -1 is returned, and a more specific message is returned in the global variables socket_errno and vmserrno.

sendmsg()/sendmsg_44()
Transmits a message to another socket. It is equivalent to sendto(), but takes its arguments in a different fashion and

can send noncontiguous data.

If no message space is available at the socket to hold the message to be transmitted, sendmsg() blocks unless the

socket has been placed in non-blocking I/O mode via the socket ioctl FIONBIO. If the socket is type

SOCK_DGRAM and the message is too long to pass through the underlying protocol in a single unit, the error

EMSGSIZE is returned and the message is not transmitted.

The sendmsg_44() function is the BSD 4.4 sockaddr variant of this call. This call is used automatically when

MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]IN.H is used and the program is compiled with

USE_BSD44_ENTRIES defined.

FORMAT

Status = sendmsg(VMS_Channel, Message, Flags);

short VMS_Channel;

struct msghdr *Message;

unsigned int Flags;

ARGUMENTS

VMS_Channel

VMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Message

VMS Usage: message header

type: struct msghdr

access: read only

mechanism: by reference

A pointer to a "msghdr" structure that describes the data to be sent and the address to send it to. The access rights

portion of the structure is unused.

Flags

VMS Usage: mask_longword

type: longword (unsigned)

access: read only

mechanism: by value

Control information that affects the sendto() function. The Flags argument can be zero or the following:

#define MSG_OOB 0x1 /* process out-of-band data */

The MSG_OOB flag causes sendto() to send out-of-band data on sockets that support this operation (such as

SOCK_STREAM).

RETURNS

If the sendmsg() function is successful, the count of the number of characters sent is returned. If an error occurs, a

value of -1 is returned, and a more specific message is returned in the global variables socket_errno and vmserrno.

sendto()/sendto_44
Transmits a message to another socket. It is equivalent to send(), but also allows the caller to specify the address to

which to send the message. The sendto() function can be used on unconnected sockets, while send() and

socket_write() cannot.

If no message space is available at the socket to hold the message to be transmitted, sendto() blocks unless the

socket has been placed in non-blocking I/O mode via the socket ioctl FIONBIO. If the socket is type

SOCK_DGRAM and the message is too long to pass through the underlying protocol in a single unit, the error

EMSGSIZE is returned and the message is not transmitted.

The sendto_44() function is the BSD 4.4 sockaddr variant of this call. This call is used automatically when

MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]IN.H is used and the program is compiled with

USE_BSD44_ENTRIES defined.

FORMAT

Status = sendto(VMS_Channel, Buffer, Size, Flags, To, ToLen);

short VMS_Channel;

char *Buffer;

int Size;

unsigned short Flags;

struct sockaddr *To;

unsigned int ToLen;

ARGUMENTS

VMS_Channel

VMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Buffer

VMS Usage: arbitrary

type: byte buffer

access: read only

mechanism: by reference

The address of a buffer containing the data to send.

Size

VMS Usage: longword_signed

type: longword (signed)

access: read only

mechanism: by value

The length of the buffer specified by Buffer.

Flags

VMS Usage: mask_word

type: word (unsigned)

access: read only

mechanism: by value

Control information that affects the sendto() function. The Flags argument can be zero or the following:

#define MSG_OOB 0x1 /* process out-of-band data */

The MSG_OOB flag causes sendto() to send out-of-band data on sockets that support this operation (such as

SOCK_STREAM).

To

VMS Usage: socket_address

type: struct sockaddr

access: read only

mechanism: by reference

This optional argument is a pointer to the address to which the packet should be transmitted. The exact format of the

Address argument is determined by the domain in which the communication is occurring.

ToLen

VMS Usage: socket_address_length

type: longword (unsigned)

access: read only

mechanism: by value

This optional argument contains the length of the address pointed to by the To argument.

RETURNS

If the sendto() function is successful, the count of the number of characters sent is returned. If an error occurs, a

value of -1 is returned, and a more specific message is returned in the global variables socket_errno and vmserrno.

sethostent()
Initializes the host table and DNS Name Server routines. It is usually unnecessary to call this function because the

host table and Name Server routines are initialized automatically when any of the other host table routines are

called.

FORMAT

(void) sethostent(StayOpen);

unsigned int StayOpen;

ARGUMENTS

StayOpen

VMS Usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

Specifies whether the DNS Name Resolver should use TCP or UDP to communicate with the DNS Name Server. A

nonzero value indicates TCP, and a value of 0 (the default if sethostent() is not called) indicates UDP.

setnetent()
Initializes the host table and DNS Name Server routines. It is usually unnecessary to call this function because the

host table and Name Server routines are initialized automatically when any of the other host table routines are

called.

FORMAT

(void) setnetent(StayOpen);

unsigned int StayOpen;

ARGUMENTS

StayOpen

VMS Usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

Specifies whether the DNS Name Resolver should use TCP or UDP to communicate with the DNS Name Server. A

nonzero value indicates TCP, and a value of 0 (the default if setnetent() is not called) indicates UDP.

setprotoent()
Initializes the host table routines and sets the next protocol entry returned by getprotoent() to be the first entry.

FORMAT

(void) setprotoent(StayOpen);

unsigned int StayOpen;

ARGUMENTS

StayOpen

VMS Usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

Provided only for compatibility with UNIX 4.3BSD, and is ignored by the MultiNet software.

setservent()
Initializes the host table routines and sets the next service entry returned by getservent() to be the first entry.

FORMAT

(void) setservent(StayOpen);

unsigned int StayOpen;

ARGUMENTS

StayOpen

VMS Usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

Provided only for compatibility with UNIX 4.3BSD, and is ignored by the MultiNet software.

setsockopt()
Manipulates options associated with a socket. Options may exist at multiple protocol levels; however, they are

always present at the uppermost socket level.

When manipulating socket options, you must specify the level at which the option resides and the name of the

option. To manipulate options at the socket level, specify Level as SOL_SOCKET. To manipulate options at any

other level, specify the protocol number of the appropriate protocol controlling the option. For example, to indicate

that an option is to be interpreted by the TCP protocol, set Level to the protocol number of TCP; see

getprotobyname().

OptName and any specified options are passed without modification to the appropriate protocol module for

interpretation. The include file multinet_root:[multinet.include.sys]socket.h contains definitions for socket-level

options. Options at other protocol levels vary in format and name.

FORMAT

Status = setsockopt(VMS_Channel, Level, OptName, OptVal, OptLen);

short VMS_Channel;

unsigned int Level, OptName, OptLen;

char *OptVal;

ARGUMENTS

VMS_Channel

VMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Level

VMS Usage: option_level

type: longword (unsigned)

access: read only

mechanism: by value

The protocol level at which the option is to be manipulated. Level can be specified as SOL_SOCKET, or a protocol

number as returned by getprotobyname().

OptName

VMS Usage: option_name

type: longword (unsigned)

access: read only

mechanism: by value

The option that is to be manipulated.

OptVal

VMS Usage: dependent on OptName

type: byte buffer

access: read only

mechanism: by reference

A pointer to a buffer that contains the new value of the option. The format of this buffer depends on the option

requested.

OptLen

VMS Usage: option_length

type: longword (unsigned)

access: read only

mechanism: by value

The length of the buffer pointed to by OptVal.

RETURNS

If the setsockopt() is successful, a value of 0 is returned. If an error occurs, a value of -1 is returned, and a more

specific message is returned in the global variables socket_errno and vmserrno.

shutdown()
Shuts down all or part of a full-duplex connection on the socket associated with VMS_Channel. This function is

usually used to signal an end-of-file to the peer without closing the socket, which would prevent further data from

being received.

FORMAT

Status = shutdown(VMS_Channel, How);

short VMS_Channel;

unsigned int How;

ARGUMENTS

VMS_Channel

VMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

How

VMS Usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

Controls which part of the full-duplex connection to shut down. If How is 0, further receive operations are

disallowed. If How is 1, further send operations are disallowed. If How is 2, further send and receive operations are

disallowed.

RETURNS

If shutdown() is successful, a value of 0 is returned. If an error occurs, a value of -1 is returned, and a more specific

error message is returned in the global variables socket_errno and vmserrno.

socket()
Creates an end point for communication and returns an OpenVMS channel that describes the end point.

FORMAT

VMS_Channel = socket(Address_Family, Type, Protocol);

short VMS_Channel;

unsigned int Address_Family, Type, Protocol;

ARGUMENTS

Address_Family

VMS Usage: address_family

type: longword (unsigned)

access: read only

mechanism: by value

An address family with which addresses specified in later operations using the socket should be interpreted. The

following formats are currently supported; they are defined in the include file

multinet_root:[multinet.include.sys]socket.h:

AF_INET Internet (TCP/IP) addresses

Type

VMS Usage: socket_type

type: longword (unsigned)

access: read only

mechanism: by value

The semantics of communication using the created socket. The following types are currently defined:

SOCK_STREAM SOCK_DGRAM SOCK_RAW

A SOCK_STREAM socket provides a sequenced, reliable, two-way connection-oriented byte stream with an out-

of-band data transmission mechanism. A SOCK_DGRAM socket supports communication by connectionless,

unreliable messages of a fixed (typically small) maximum length. SOCK_RAW sockets provide access to internal

network interfaces. The type SOCK_RAW is available only to users with SYSPRV privilege.

The Type argument, together with the Address_Family argument, specifies the protocol to be used. For example, a

socket created with AF_INET and SOCK_STREAM is a TCP socket, and a socket created with AF_INET and

SOCK_DGRAM is a UDP socket.

Protocol

VMS Usage: protocol_number

type: longword (unsigned)

access: read only

mechanism: by value

A particular protocol to be used with the socket. Normally, only a single protocol exists to support a particular

socket type using a given address format. However, it is possible that many protocols may exist, in which case a

particular protocol must be specified by Protocol. The protocol number to use depends on the communication

domain in which communication will take place.

For TCP and UDP sockets, the protocol number MUST be specified as 0. For SOCK_RAW sockets, the protocol

number should be the value returned by getprotobyname().

RETURNS

If the socket() is successful, an OpenVMS channel is returned. If an error occurs, a value of -1 is returned, and a

more specific error message is returned in the global variables socket_errno and vmserrno.

socket_close()
Deassigns the OpenVMS channel from the MultiNet INET: device. When the last channel assigned to the device is

deassigned, the device and attached socket are deleted.

If the SO_LINGER socket option is set and data remains in the socket's output queue, socket_close() deletes only

the device. The attached socket remains in the system until the data is sent, after which it is deleted. Once

socket_close() is called, there is no way to reference this socket.

Normally, channels are automatically deassigned at image exit. However, because there is a limit on the number of

open channels per process, the socket_close() function is necessary for programs that deal with many connections.

FORMAT

Status = socket_close(VMS_Channel);

short VMS_Channel;

ARGUMENTS

VMS_Channel

VMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket to close.

RETURNS

If the socket_close() is successful, a value of 0 is returned. If an error occurs, a value of -1 is returned, and a more

specific error message is returned in the global variables socket_errno and vmserrno.

socket_ioctl()
Performs a variety of functions on the network. In particular, it manipulates socket characteristics, routing tables,

ARP tables, and interface characteristics. A socket_ioctl() request has encoded in it whether the argument is an

input or output parameter, and the size of the argument, in bytes. Macro and define statements used in specifying a

socket_ioctl() request are located in the file multinet_root:[multinet.include.sys]ioctl.h.

FORMAT

Status = socket_ioctl(VMS_Channel, Request, ArgP);

short VMS_Channel;

unsigned int Request;

char *ArgP;

ARGUMENTS

VMS_Channel

VMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Request

VMS Usage: ioctl_request

type: longword (unsigned)

access: read only

mechanism: by value

Which socket_ioctl() function to perform.

ArgP

VMS Usage: arbitrary

type: byte buffer

access: read, write, or modify depending on Request

mechanism: by reference

A pointer to a buffer whose format and function depend on the Request specified.

RETURNS

If the socket_ioctl() is successful, a value of 0 is returned. If an error occurs, a value of -1 is returned, and a more

specific error message is returned in the global variables socket_errno and vmserrno.

For a list of the socket_ioctl() functions supported by MultiNet, see the following pages.

socket ioctl FIONBIO
Controls nonblocking I/O on a socket. If nonblocking I/O is enabled and another function is called that would have

to wait for a connection, for data to arrive, or for data to be transmitted, the function completes with a -1 error

return, and the global variable socket_errno is set to EWOULDBLOCK.

FORMAT

Status = socket_ioctl(VMS_Channel, FIONBIO, Enable);

unsigned int *Enable;

ARGUMENTS

Enable

VMS Usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

A pointer to an integer that specifies whether nonblocking I/O is enabled or disabled. A value of 1 enables

nonblocking I/O, and a value of 0 disables nonblocking I/O. By default, nonblocking I/O is disabled when a socket

is created.

socket ioctl FIONREAD
Retrieves the number of bytes waiting to be read. A return of 0 indicates that no data is buffered.

FORMAT

Status = socket_ioctl(VMS_Channel, FIONREAD, Count);

unsigned int *Count;

ARGUMENTS

Count

VMS Usage: longword_unsigned

type: longword (unsigned)

access: write only

mechanism: by reference

A pointer to an integer buffer that will receive a count of the number of characters waiting to be read.

socket ioctl SIOCADDRT
Adds routing information to the network routing tables. This function does not modify the socket itself, but rather

modifies the operation of the network in general. It does not matter what the state of the socket is. Normally, to

modify Internet routing tables, you use a socket created with the AF_INET and SOCK_DGRAM arguments.

FORMAT

Status = socket_ioctl(VMS_Channel, SIOCADDRT, Route);

struct rtentry *Route;

ARGUMENTS

Route

VMS Usage: routing_entry

type: struct rtentry

access: read only

mechanism: by reference

A pointer to the address of a rtentry structure that describes the route to be added. The rtentry structure is defined

in multinet_root:[multinet.include.net]route.h as follows:

struct rtentry {

 u_long rt_hash;

 struct sockaddr rt_dst;

 struct sockaddr rt_gateway;

 short rt_flags;

 short rt_refcnt;

 u_long rt_use;

 struct ifnet *rt_ifp;

};

Field Description

rt_hash,

rt_refcnt,

rt_use, and

rt_ifp

Are ignored by SIOCADDRT and should be set to zero.

rt_dst Specifies the address of the destination host or network.

rt_gatewa

y

Specifies the address of the local gateway to this host or network.

rt_flags Specifies one or more of the following flags that affect a routing entry:

#define RTF_UP 0x1 /* route useable */

#define RTF_GATEWAY 0x2 /* destination is a gateway */

#define RTF_HOST 0x4 /* host entry (net otherwise)*/

RTF_UP — Indicates that the route is usable. It should always be specified.

RTF_GATEWAY — Indicates that the next hop to the destination is a gateway,

so that the output routines know to address the gateway rather than the

destination directly.

RTF_HOST — Indicates that the address specified in rt_dst is an Internet host,

rather than an Internet network (the default).

socket ioctl SIOCDELRT
Deletes routing information from the network routing tables. This function does not modify the socket itself, but

rather modifies the operation of the network in general. It does not matter what the state of the socket is. Normally,

to modify Internet routing tables, you use a socket created with the AF_INET and SOCK_DGRAM arguments.

It is impossible to obtain a list of the routes installed via socket_ioctl(). To delete a route, you must either know it

already exists or use multinet_kernel_nlist() to read the routing tables directly from the networking kernel.

FORMAT

Status = socket_ioctl(VMS_Channel, SIOCDELRT, Route);

struct rtentry *Route;

ARGUMENTS

Route

VMS Usage: routing_entry

type: struct rtentry

access: read only

mechanism: by reference

A pointer to the address of a rtentry structure that describes the route to be deleted. The rtentry structure is defined

in multinet_root:[multinet.include.net]route.h as follows:

struct rtentry {

 u_long rt_hash;

 struct sockaddr rt_dst;

 struct sockaddr rt_gateway;

 short rt_flags;

 short rt_refcnt;

 u_long rt_use;

 struct ifnet *rt_ifp;

};

Field Description

rt_hash,

rt_refcnt,

rt_use, and

rt_ifp

Are ignored by SIOCDELRT and should be set to zero.

rt_dst Specifies the address of the destination host or network.

rt_gatewa

y

Specifies the address of the local gateway to this host or network.

rt_flags Specifies one or more of the following flags that affect a routing entry:

#define RTF_UP 0x1 /* route useable */

#define RTF_GATEWAY 0x2 /* destination is a gateway */

#define RTF_HOST 0x4 /* host entry (net otherwise) */

RTF_UP — Indicates that the route is usable. It should always be specified.

RTF_GATEWAY — Indicates that the next hop to the destination is a gateway,

so that the output routines know to address the gateway rather than the

destination directly.

RTF_HOST — Indicates that the address specified in rt_dst is an Internet host,

rather than an Internet network (the default).

socket ioctl SIOCATMARK
Retrieves an indication as to whether the next byte in the stream coincides with an out-of-band or URGENT data

mark.

FORMAT

Status = socket_ioctl(VMS_Channel, SIOCATMARK, AtMark);

unsigned int *AtMark;

ARGUMENTS

AtMark

VMS Usage: longword_unsigned

type: longword (unsigned)

access: write only

mechanism: by reference

A pointer to an integer buffer that will receive the indication. The buffer is set to 0 if the socket is not at the out-of-

band mark. It is set to nonzero if the socket is at the out-of-band mark.

socket ioctl SIOCDARP
Deletes an entry from the ARP table. This format is compatible with the UNIX 4.3BSD function of the same name.

FORMAT

Status = socket_ioctl (VMS_Channel, SIOCDARP, ARP_Req);

struct arpreq *ARP_Req;

ARGUMENTS

ARP_Req

VMS Usage: arp_request

type: struct arpreq

access: read only

mechanism: by reference

The address of an arpreq structure that contains the protocol address and the hardware address. The arpreq

structure is defined in multinet_root:[multinet.include.net]if_arp.h as follows:

struct arpreq {

 struct sockaddr arp_pa; /* protocol address */

 struct sockaddr arp_ha; /* hardware address */

 int arp_flags; /* flags */

};

/* arp_flags and at_flags field values */

#define ATF_INUSE 0x01 /* entry in use */

#define ATF_COM 0x02 /* completed entry (enaddr valid) */

#define ATF_PERM 0x04 /* permanent entry */

#define ATF_PUBL 0x08 /* publish entry (respond for other host)

*/

#define ATF_USETRAILERS 0x10 /* has requested trailers */

#define ATF_PROXY 0x20 /* Do PROXY arp */

The arp_pa field is a sockaddr field that is set to the ip address the remote interface uses.

The arp_ha.sa_data field is 6 bytes of binary data that represents the Ethernet address of the remote interface.

socket ioctl SIOCGARP
Displays an entry in the ARP table. This function is compatible with the UNIX 4.3BSD function of the same name.

FORMAT

Status = socket_ioctl (VMS_Channel, SIOCGARP, ARP_Req);

struct arpreq *ARP_Req;

ARGUMENTS

ARP_Req

VMS Usage: arp_request

type: struct arpreq

access: modify

mechanism: by reference

The address of an arpreq structure that contains the protocol address and the hardware address. The arpreq

structure is defined in multinet_root:[multinet.include.net]if_arp.h as follows:

struct arpreq {

 struct sockaddr arp_pa; /* protocol address */

 struct sockaddr arp_ha; /* hardware address */

 int arp_flags; /* flags */

};

/* arp_flags and at_flags field values */

#define ATF_INUSE 0x01 /* entry in use */

#define ATF_COM 0x02 /* completed entry (enaddr valid) */

#define ATF_PERM 0x04 /* permanent entry */

#define ATF_PUBL 0x08 /* publish entry (respond for other host)

*/

#define ATF_USETRAILERS 0x10 /* has requested trailers */

#define ATF_PROXY 0x20 /* Do PROXY arp */

The arp_pa field is a sockaddr field that is set to the ip address the remote interface uses.

The arp_ha.sa_data field is 6 bytes of binary data that represents the Ethernet address of the remote interface.

socket ioctl SIOCSARP
Adds an entry to the ARP table. This function is compatible with the UNIX 4.3BSD function of the same name.

FORMAT

Status = socket_ioctl (VMS_Channel, SIOCSARP, ARP_Req);

struct arpreq *ARP_Req;

ARGUMENTS

ARP_Req

VMS Usage: arp_request

type: struct arpreq

access: read only

mechanism: by reference

The address of an arpreq structure that contains the protocol address and the hardware address. The arpreq

structure is defined in multinet_root:[multinet.include.net]if_arp.h as follows:

struct arpreq {

 struct sockaddr arp_pa; /* protocol address */

 struct sockaddr arp_ha; /* hardware address */

 int arp_flags; /* flags */

};

/* arp_flags and at_flags field values */

#define ATF_INUSE 0x01 /* entry in use */

#define ATF_COM 0x02 /* completed entry (enaddr valid) */

#define ATF_PERM 0x04 /* permanent entry */

#define ATF_PUBL 0x08 /* publish entry (respond for other host)

*/

#define ATF_USETRAILERS 0x10 /* has requested trailers */

#define ATF_PROXY 0x20 /* Do PROXY arp */

The arp_pa field is a sockaddr field that is set to the ip address the remote interface uses.

The arp_ha.sa_data field is 6 bytes of binary data that represents the Ethernet address of the remote interface.

socket ioctl SIOCGIFADDR
Retrieves the Internet address of a network interface. This function does not modify the socket itself, but rather

examines the operation of the network in general. It does not matter what the state of the socket is. Normally, to

examine Internet addresses, you use a socket created with the AF_INET and SOCK_DGRAM arguments.

FORMAT

Status = socket_ioctl(VMS_Channel, SIOCGIFADDR, Interface_Req);

struct ifreq *Interface_Req;

 ARGUMENTS

Interface_Req

VMS Usage: interface_request

type: struct ifreq

access: modify

mechanism: by reference

The address of an ifreq structure that describes the interface from which to retrieve the address. The ifreq structure

is defined in multinet_root:[multinet.include.net]if.h as follows:

struct ifreq {

 char ifr_name[16];

 struct sockaddr ifr_addr;

};

The ifr_name field is a null-terminated string specifying the name of the interface to be examined, such as "se0".

The ifr_addr field is a sockaddr structure that is set to the address of the interface.

socket ioctl SIOCSIFADDR
Sets the Internet address of a network interface. Normally, this is done using the MULTINET SET/INTERFACE

command. This function does not modify the socket itself, but rather modifies the operation of the network in

general. It does not matter what the state of the socket is. Normally, to modify Internet addresses, you use a socket

created with the AF_INET and SOCK_DGRAM arguments.

FORMAT

Status = socket_ioctl(VMS_Channel, SIOCSIFADDR, Interface_Req);

struct ifreq *Interface_Req;

ARGUMENTS

Interface_Req

VMS Usage: interface_request

type: struct ifreq

access: read only

mechanism: by reference

The address of an ifreq structure that describes the address to be set. The ifreq structure is defined in

multinet_root:[multinet.include.net]if.h as follows:

struct ifreq {

 char ifr_name[16];

 struct sockaddr ifr_addr;

};

The ifr_name field is a null-terminated string specifying the name of the interface to be modified, such as "se0".

The ifr_addr field is a sockaddr structure specifying the address to be set.

socket ioctl SIOCGIFBRDADDR
Retrieves the Internet broadcast address of a network interface. This function does not modify the socket itself, but

rather examines the operation of the network in general. It does not matter what the state of the socket is. Normally,

to examine Internet broadcast addresses, you use a socket created with the AF_INET and SOCK_DGRAM

arguments.

FORMAT

Status = socket_ioctl(VMS_Channel, SIOCGIFBRDADDR, Interface_Req);

struct ifreq *Interface_Req;

ARGUMENTS

Interface_Req

VMS Usage: interface_request

type: struct ifreq

access: modify

mechanism: by reference

The address of an ifreq structure that describes the interface from which to retrieve the broadcast address. The ifreq

structure is defined in multinet_root:[multinet.include.net]if.h as follows:

struct ifreq {

 char ifr_name[16];

 struct sockaddr ifr_broadaddr;

};

The ifr_name field is a null-terminated string specifying the name of the interface to be examined, such as "se0".

The ifr_broadaddr field is a sockaddr structure that is set to the broadcast address of the interface.

socket ioctl SIOCSIFBRDADDR
Sets the Internet broadcast address of a network interface. Normally, this is done using the MULTINET

SET/INTERFACE command. This function does not modify the socket itself, but rather modifies the operation of

the network in general. It does not matter what the state of the socket is. Normally, to modify Internet broadcast

addresses, you use a socket created with the AF_INET and SOCK_DGRAM arguments.

FORMAT

Status = socket_ioctl(VMS_Channel, SIOCSIFBRDADDR, Interface_Req);

struct ifreq *Interface_Req;

ARGUMENTS

Interface_Req

VMS Usage: interface_request

type: struct ifreq

access: read only

mechanism: by reference

The address of an ifreq structure that describes the interface on which to set the broadcast address. The ifreq

structure is defined in multinet_root:[multinet.include.net]if.h as follows:

struct ifreq {

 char ifr_name[16];

 struct sockaddr ifr_broadaddr;

};

The ifr_name field is a null-terminated string specifying the name of the interface to be modified, such as "se0".

The ifr_broadaddr field is a sockaddr structure specifying the broadcast address to be set.

socket ioctl SIOCGIFCONF
Retrieves the list of network interfaces from the networking kernel for further examination by the other SIOCGxxxx

functions. This function does not modify the socket itself, but rather examines the operation of the network in

general. It does not matter what the state of the socket is. Normally, to examine the network configuration, you use

a socket created with the AF_INET and SOCK_DGRAM arguments.

FORMAT

Status = socket_ioctl(VMS_Channel, SIOCGIFCONF, Interface_Config);

struct ifconf *Interface_Config;

ARGUMENTS

Interface_Config

VMS Usage: interface_configuration_request

type: struct ifconf

access: modify

mechanism: by reference

The address of an ifconf structure describing a buffer in which to return the interface configuration. The ifconf

structure is defined in multinet_root:[multinet.include.net]if.h as follows:

struct ifconf {

 int ifc_len; /* size of buffer */

 union {

 caddr_t ifcu_buf;

 struct ifreq *ifcu_req;

 } ifc_ifcu;

#define ifc_buf ifc_ifcu.ifcu_buf /* buffer address */

#define ifc_req ifc_ifcu.ifcu_req /* array of structures */

};

The ifc_len field should be set to the length of the buffer specified by ifc_buf. Upon return, the ifc_len field

contains the actual number of bytes written into the buffer.

The ifc_buf field should be set to a buffer large enough to hold the entire network configuration. Upon return, if

VMS_Channel is an AF_INET socket the ifc_req buffer contains an array of ifreq structures, one for each interface

and address. If VMS_Channel is an AF_INET6 socket, then the ifc_req buffer contains an array of ifreq6

structures, one for each address present. The array of ifreq6 structures may contain both IPv4 and IPv6 addresses.

The following short fragment of C-language code prints all Internet family interfaces and shows how to decode the

ifconf structure:

n = ifc.ifc_len/sizeof(struct ifreq);

for (ifr = ifc.ifc_req; n > 0; n--, ifr++) {

 if (ifr->ifr_addr.sa_family != AF_INET) continue;

 printf("%s\n",ifr->ifr_name);

}

The ifreq6 structure is defined in multinet_root:[multinet.include.net]if.h as follows:

struct ifreq6 {

 char ifr_name[16];

 struct sockaddr_in6 ifr_addr;

};

socket ioctl SIOCGIFDSTADDR
Retrieves the destination Internet address of a point-to-point network interface. This function does not modify the

socket itself, but rather examines the operation of the network in general. It does not matter what the state of the

socket is. Normally, to examine Internet addresses, you use a socket created with the AF_INET and

SOCK_DGRAM arguments.

FORMAT

Status = socket_ioctl(VMS_Channel, SIOCGIFDSTADDR, Interface_Req);

struct ifreq *Interface_Req;

ARGUMENTS

Interface_Req

VMS Usage: interface_request

type: struct ifreq

access: modify

mechanism: by reference

The address of an ifreq structure that describes the interface from which to retrieve the destination address. The

ifreq structure is defined in multinet_root:[multinet.include.net]if.h as follows:

struct ifreq {

 char ifr_name[16];

 struct sockaddr ifr_dstaddr;

};

The ifr_name field is a null-terminated string specifying the name of the interface to be examined, such as "se0".

The ifr_dstaddr field is a sockaddr structure that is set to the destination address of the interface.

socket ioctl SIOCSIFDSTADDR
Sets the destination Internet address of a point-to-point network interface. Normally, this is done using the

MULTINET SET/INTERFACE command. This function does not modify the socket itself, but rather modifies the

operation of the network in general. It does not matter what the state of the socket is. Normally, to modify Internet

addresses, you use a socket created with the AF_INET and SOCK_DGRAM arguments.

FORMAT

Status = socket_ioctl(VMS_Channel, SIOCSIFDSTADDR, Interface_Req);

struct ifreq *Interface_Req;

ARGUMENTS

Interface_Req

VMS Usage: interface_request

type: struct ifreq

access: read only

mechanism: by reference

The address of an ifreq structure that describes the interface on which to set the destination address. The ifreq

structure is defined in multinet_root:[multinet.include.net]if.h as follows:

struct ifreq {

 char ifr_name[16];

 struct sockaddr ifr_dstaddr;

};

The ifr_name field is a null-terminated string specifying the name of the interface to be modified, such as "se0".

The ifr_dstaddr field is a sockaddr structure specifying the destination address to be set.

socket ioctl SIOCGIFFLAGS
Retrieves various control flags from a network interface. This function does not modify the socket itself, but rather

examines the operation of the network in general. It does not matter what the state of the socket is. Normally, to

examine interface flags, you use a socket created with the AF_INET and SOCK_DGRAM arguments.

FORMAT

Status = socket_ioctl(VMS_Channel, SIOCSIFFLAGS, Interface_Req);

struct ifreq *Interface_Req;

ARGUMENTS

Interface_Req

VMS Usage: interface_request

type: struct ifreq

access: modify

mechanism: by reference

The address of an ifreq structure that describes the state of the flags. The ifreq structure is defined in

multinet_root:[multinet.include.net]if.h as follows:

struct ifreq {

 char ifr_name[16];

 short ifr_flags;

 char Xfill[14];

};

The ifr_name field is a null-terminated string specifying the name of the interface to be examined, such as "se0".

The ifr_flags field receives the state of the interface flags. The following flag bits are valid:

#define IFF_UP 0x1 /* interface is up */

#define IFF_BROADCAST 0x2 /* broadcast address valid */

#define IFF_DEBUG 0x4 /* turn on debugging */

#define IFF_LOOPBACK 0x8 /* is a loopback net */

#define IFF_POINTOPOINT 0x10 /* interface is ptp link */

#define IFF_NOTRAILERS 0x20 /* avoid use of trailers */

#define IFF_RUNNING 0x40 /* resources allocated */

#define IFF_NOARP 0x80 /* no ARP protocol */

socket ioctl SIOCSIFFLAGS
Sets various control flags on a network interface. Normally this is done using the MULTINET

SET/INTERFACE command.

To modify the state of a flag, first call the SIOCGIFFLAGS socket_ioctl() function, change whichever bits are

necessary, and then reset the flags by calling SIOCSIFFLAGS socket_ioctl().

This function does not modify the socket itself, but rather modifies the operation of the network in general. It does

not matter what the state of the socket is. Normally, to modify interface flags, you use a socket created with the

AF_INET and SOCK_DGRAM arguments.

FORMAT

Status = socket_ioctl(VMS_Channel, SIOCSIFFLAGS, Interface_Req);

struct ifreq *Interface_Req;

ARGUMENTS

Interface_Req

VMS Usage: interface_request

type: struct ifreq

access: read only

mechanism: by reference

The address of an ifreq structure that describes the new state of the flags. The ifreq structure is defined in

multinet_root:[multinet.include.net]if.h as follows:

struct ifreq {

 char ifr_name[16];

 short ifr_flags;

 char Xfill[14];

};

The ifr_name field is a null-terminated string specifying the name of the interface to be modified, such as "se0".

The ifr_flags field specifies the new state of the interface flags. The following flags can be set or cleared:

#define IFF_UP 0x1 /* interface is up */

#define IFF_DEBUG 0x4 /* turn on debugging */

#define IFF_NOTRAILERS 0x20 /* avoid use of trailers */

#define IFF_NOAR 0x80 /* no ARP protocol */

socket ioctl SIOCGIFMETRIC
Retrieves the network interface metric, or cost. The interface metric is ignored by the MultiNet software, and is not

documented further here.

socket ioctl SIOCSIFMETRIC
Sets the network interface metric, or cost. The interface metric is ignored by the MultiNet software, and is not

documented further here.

socket ioctl SIOCGIFNETMASK
Retrieves the Internet address mask of a network interface. This function does not modify the socket itself, but rather

examines the operation of the network in general. It does not matter what the state of the socket is. Normally, to

examine Internet address masks, you use a socket created with the AF_INET and SOCK_DGRAM arguments.

FORMAT

Status = socket_ioctl(VMS_Channel, SIOCGIFNETMASK, Interface_Req);

struct ifreq *Interface_Req;

ARGUMENTS

Interface_Req

VMS Usage: interface_request

type: struct ifreq

access: modify

mechanism: by reference

The address of an ifreq structure that describes the interface from which to retrieve the address mask. The ifreq

structure is defined in multinet_root:[multinet.include.net]if.h as follows:

struct ifreq {

 char ifr_name[16];

 struct sockaddr ifr_addr;

};

The ifr_name field is a null-terminated string specifying the name of the interface to be examined, such as "se0".

The ifr_addr field is a sockaddr structure that is set to the address mask of the interface.

socket ioctl SIOCSIFNETMASK
Sets the Internet address mask of a network interface. Normally, this is done using the MULTINET

SET/INTERFACE command. This function does not modify the socket itself, but rather modifies the operation of

the network in general. It does not matter what the state of the socket is. Normally, to modify Internet address

masks, you use a socket created with the AF_INET and SOCK_DGRAM arguments.

FORMAT

Status = socket_ioctl(VMS_Channel, SIOCSIFNETMASK, Interface_Req);

struct ifreq *Interface_Req;

ARGUMENTS

Interface_Req

VMS Usage: interface_request

type: struct ifreq

access: read only

mechanism: by reference

The address of an ifreq structure that describes the interface on which to set the address mask. The ifreq structure is

defined in multinet_root:[multinet.include.net]if.h as follows:

struct ifreq {

 char ifr_name[16];

 struct sockaddr ifr_addr;

};

The ifr_name field is a null-terminated string specifying the name of the interface to be modified, such as "se0".

The ifr_addr field is a sockaddr structure specifying the address mask to be set.

socket option SO_BROADCAST
Enables transmission of broadcast messages on the specified socket.

FORMAT

Status = setsockopt(VMS_Channel, SOL_SOCKET, SO_BROADCAST, On, sizeof(*On));

unsigned int *On;

ARGUMENTS

On

VMS Usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

A pointer to an integer buffer that specifies whether the transmission of broadcast messages is enabled or disabled.

A nonzero value enables the transmission of broadcast messages, a value of 0 disables the transmission.

socket option SO_DEBUG
Controls the recording of debugging information by the MultiNet networking kernel.

FORMAT

Status = setsockopt(VMS_Channel, SOL_SOCKET, SO_DEBUG, On, sizeof(*On));

unsigned int *On;

ARGUMENTS

On

VMS Usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

A pointer to an integer buffer that specifies whether debugging is enabled or disabled. A nonzero value enables

debugging. A value of 0 disables debugging.

socket option SO_DONTROUTE
Indicates that outgoing messages bypass the standard routing facilities. Instead, messages are directed to the

appropriate network interface, as determined by the network portion of the destination address.

FORMAT

Status = setsockopt(VMS_Channel, SOL_SOCKET, SO_DONTROUTE, On, sizeof(*On));

unsigned int *On;

ARGUMENTS

On

VMS Usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

A pointer to an integer buffer that specifies whether SO_DONTROUTE is enabled or disabled. A nonzero value

enables SO_DONTROUTE. A value of 0 disables SO_DONTROUTE.

socket option SO_ERROR
Retrieves and clears any error status pending on the socket. This function is only valid with the getsockopt()

function.

FORMAT

Status = getsockopt(VMS_Channel, SOL_SOCKET, SO_ERROR, Value, Length);

unsigned int *Value;

unsigned int *Length;

ARGUMENTS

Value

VMS Usage: longword_unsigned

type: longword (unsigned)

access: write only

mechanism: by reference

A pointer to an integer buffer that receives the value of errno (the error number) that is pending on the socket.

Length

VMS Usage: longword_unsigned

type: longword (unsigned)

access: modify

mechanism: by reference

On entry, contains the length of the space pointed to by Value, in bytes. On return, it contains the actual length, in

bytes, of the Value returned.

socket option SO_KEEPALIVE
Enables periodic transmission of messages on an idle connected socket. If the connected party fails to respond to

these messages, the connection is considered broken and processes using the socket are notified via an error returned

by a read.

Keepalives are a questionable use of the network in that they cause idle connections to add network traffic by

constantly probing their peer. Avoid keepalives if another mechanism is available to detect the loss of a peer, such as

timeouts.

FORMAT

Status = setsockopt(VMS_Channel, SOL_SOCKET, SO_KEEPALIVE, On, sizeof(*On));

unsigned int *On;

ARGUMENTS

On

VMS Usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

A pointer to an integer buffer that specifies whether keepalives are enabled or disabled. A nonzero value enables

keepalives. A value of 0 disables keepalives.

socket option SO_LINGER
Controls the action taken when unsent messages are queued on a socket and a socket_close() function call is issued.

If the socket promises reliable delivery of data and SO_LINGER is set, socket_close() deletes only the device. The

attached socket remains in the system until this data is sent or until it determines that it cannot deliver the

information (a timeout period, termed the linger interval, is specified in the setsockopt() function). Only then is the

attached socket deleted.

FORMAT

Status = setsockopt(VMS_Channel, SOL_SOCKET, SO_LINGER, Linger, sizeof(*Linger));

struct linger *Linger;

ARGUMENTS

Linger

VMS Usage: linger_structure

type: struct linger

access: read only

mechanism: by reference

A pointer to a structure describing whether the SO_LINGER option is enabled or disabled.

struct linger {

 int l_onoff; /* option on/off */

 int l_linger; /* linger time */

};

When the l_onoff field is nonzero, SO_LINGER is enabled. When it is 0, SO_LINGER is disabled. If

SO_LINGER is being enabled, the l_linger field specifies the timeout period, in seconds.

socket option SO_OOBINLINE
Enables receipt of out-of-band data along with the regular data stream. You can use this option instead of specifying

the MSG_OOB flag to the recv() or recvfrom() functions.

FORMAT

Status = setsockopt(VMS_Channel, SOL_SOCKET, SO_OOBINLINE, On, sizeof(*On));

unsigned int *On;

ARGUMENTS

On

VMS Usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

A pointer to an integer buffer that specifies whether the SO_OOBINLINE option is enabled or disabled. A nonzero

value enables SO_OOBINLINE. A value of 0 disables SO_OOBINLINE.

socket option SO_RCVBUF
Specifies the amount of buffer space that can be used to buffer received data on the socket. The default value is

6144. You can specify this option to raise the TCP window size, increase the maximum size of UDP datagrams that

can be received, or increase buffer space in general.

FORMAT

Status = setsockopt(VMS_Channel, SOL_SOCKET, SO_RCVBUF, Value, sizeof(*Value));

unsigned int *Value;

ARGUMENTS

Value

VMS Usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

A pointer to an integer buffer that specifies the new size of the receive buffer, in bytes.

socket option SO_RCVLOWAT
This option exists only for compatibility with UNIX 4.3BSD and has no effect on MultiNet sockets.

socket option SO_RCVTIMEO
This option exists only for compatibility with UNIX 4.3BSD and has no effect on MultiNet sockets.

socket option SO_REUSEADDR
Specifies how to reuse local addresses.

When SO_REUSEADDR is enabled, bind() allows a local port number to be used even if sockets using the same

local port number already exist, provided that these sockets are connected to a unique remote port. This option

allows a server to bind() to a socket to listen for new connections, even if connections are already in progress on this

port.

FORMAT

Status = setsockopt(VMS_Channel, SOL_SOCKET, SO_REUSEADDR, On, sizeof(*On));

unsigned int *On;

ARGUMENTS

On

VMS Usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

A pointer to an integer buffer that specifies whether SO_REUSEADDR is enabled or disabled. A nonzero value

enables SO_REUSEADDR. A value of 0 disables SO_REUSEADDR.

socket option SO_SNDBUF
Specifies the amount of buffer space that can be used to buffer transmitted data on the socket. The default value is

6144 for TCP and 2048 for UDP. You can specify this option to raise the TCP window size, increase the maximum

size of UDP datagrams that can be transmitted, or increase buffer space in general.

FORMAT

Status = setsockopt(VMS_Channel, SOL_SOCKET, SO_SNDBUF, Value, sizeof(*Value));

unsigned int *Value;

ARGUMENTS

Value

VMS Usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

A pointer to an integer buffer that specifies the new size of the transmit buffer, in bytes.

socket option SO_SNDLOWAT
This option exists only for compatibility with UNIX 4.3BSD and has no effect on MultiNet sockets.

socket option SO_SNDTIMEO
This option exists only for compatibility with UNIX 4.3BSD and has no effect on MultiNet sockets.

socket option SO_TYPE
Retrieves the socket type (such as SOCK_DGRAM or SOCK_STREAM). This function is only valid with the

getsockopt() function.

FORMAT

Status = getsockopt(VMS_Channel, SOL_SOCKET, SO_TYPE, sizeof(*Value));

unsigned int *Value;

ARGUMENTS

Value

VMS Usage: longword_unsigned

type: longword (unsigned)

access: write only

mechanism: by reference

A pointer to an integer buffer that receives the socket type.

socket option TCP_KEEPALIVE
Lets you specify how long an idle socket remains open if the SO_KEEPALIVE option is enabled.

If SO_KEEPALIVE is enabled, TCP_KEEPALIVE lets you specify:

Idle time The amount of time a TCP socket should remain idle before sending the first

keepalive packet.

Probe interval The amount of time between keepalive packets.

Probe count The number of keepalive packets to be sent before the connection is closed.

This feature is available to both the INETDRIVER and the UCXDRIVER, although it is usually accessed through

the UCXDRIVER.

FORMAT

Status = setsockopt(VMS_Channel, IPPROTO_TCP, TCP_KEEPALIVE, keepalive), sizeof(struct tcp_keepalive));

struct tcp_keepalive *keepalive

ARGUMENTS

Keepalive

VMS Usage: keepalive_structure

type: struct tcp_keepalive

access: read only

mechanism: by reference

A pointer to a structure specifying the keepalive parameter values idle_time, probe_intvl, and probe_count.

The structure TCP_KEEPALIVE definition can be found in the include file TCP.H, as follows:

struct tcp_keepalive {

 int idle_time; /*Time before first probe */

 int probe_intvl; /*Time between probes */

 int probe_count; /*Number of probes before closing connection */

};

The idle_time and probe_intvl values are specified in seconds; probe_count is the number of probes to send before

closing the connection.

The minimum value for idle_time is 75 seconds. If a value less than 75 is specified, 75 is used.

If a value of 0 (zero) is specified for any of the entries in the structure, the current value is retained.

Note! The system default values are an idle_time value of 120 minutes, a probe_intvl value of 75 seconds, and a

probe_count value of 8.

socket option TCP_NODELAY
Disables the Nagle algorithm (RFC 896) which causes TCP to have, at most, one outstanding unacknowledged small

segment. By default, the Nagle algorithm is enabled, delaying small segments of output data up to 200 ms so that

they can be packaged into larger segments. If you enable TCP_NODELAY, TCP sends small segments as soon as

possible, without waiting for acknowledgments from the receiver or for the 200 ms TCP fast timer to expire.

FORMAT

Status = setsockopt(VMS_Channel, IPPROTO_TCP, TCP_NODELAY, On, sizeof(*On));

unsigned int *On;

ARGUMENTS

On

VMS Usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

A pointer to an integer buffer that specifies whether the TCP_NODELAY option is enabled or disabled. A value of

0 disables TCP_NODELAY.

socket_perror()
Formats and prints the error code that is placed in the global variables socket_errno and vmserrno when an error

occurs in one of the other socket functions. The error message is printed on the OpenVMS equivalent to the UNIX

"stdout" device (normally SYS$OUTPUT), and is prefixed by the specified string.

A typical use of socket_perror() might be the following:

if (connect(s, &sin, sizeof(sin)) < 0) {

 socket_perror("connect failed");

 exit(1);

}

FORMAT

(void) socket_perror(String);

char *String;

ARGUMENTS

String

VMS Usage: arbitrary_string

type: ASCIZ string

access: read only

mechanism: by reference

A C-language string with information about the last call to fail. This is printed as a prefix to the error message.

socket_read()
Reads messages from a socket. See also recv() and recvfrom(). This function is equivalent to a recv() function

called with Flags specified as zero. The length of the message received is returned as the status. If a message is too

long to fit in the supplied buffer and the socket is type SOCK_DGRAM, excess bytes are discarded.

If no messages are available at the socket, the receive call waits for a message to arrive, unless the socket is non-

blocking (see socket_ioctl()). In this case, a status of -1 is returned, and the global variable socket_errno is set to

EWOULDBLOCK.

FORMAT

int socket_read (short VMS_Channel, char *Buffer, int Size);

ARGUMENTS

VMS_Channel

VMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Buffer

VMS Usage: arbitrary

type: byte buffer

access: write only

mechanism: by reference

The address of a buffer into which to place the data read.

Size

VMS Usage: longword_signed

type: longword (signed)

access: read only

mechanism: by value

The length of the buffer specified by Buffer. The actual number of bytes read is returned in the Status.

RETURNS

If the socket_read() routine is successful, the count of the number of characters received is returned. A return value

of 0 indicates an end-of-file condition; that is, the connection has been closed. If an error occurs, a value of -1 is

returned, and a more specific message is returned in the global variables socket_errno and vmserrno.

socket_write()
Writes a message to another socket. This function is equivalent to a send() function called with Flags specified as

zero.

This function can be used only when a socket has been connected with connect().

If no message space is available at the socket to hold the message to be transmitted, socket_write() blocks unless

the socket has been placed in non-blocking I/O mode via the socket ioctl FIONBIO. If the socket is type

SOCK_DGRAM and the message is too long to pass through the underlying protocol in a single unit, the error

EMSGSIZE is returned and the message is not transmitted.

FORMAT

int socket_write (short VMS_Channel, char *Buffer, int Size);

ARGUMENTS

VMS_Channel

VMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Buffer

VMS Usage: arbitrary

type: byte buffer

access: read only

mechanism: by reference

The address of a buffer containing the data to send.

Size

VMS Usage: longword_signed

type: longword (signed)

access: read only

mechanism: by value

The length of the buffer specified by Buffer.

RETURNS

If the socket_write() routine is successful, the count of the number of characters sent is returned. If an error occurs,

a value of -1 is returned, and a more specific error message is returned in the global variables socket_errno and

vmserrno.

vms_errno_string()
Formats a string corresponding to the error code that is placed in socket_errno and vmserrno when an error occurs

in one of the other socket functions.

FORMAT

(char *) vms_errno_string();

RETURNS

The vms_errno_string() function returns a pointer to the string.

SCTP

Support for SCTP (Stream Control Transport Protocol) has been added to the MultiNet C socket library,
with the shareable image MULTINET:TCPIP$SCTP_SHR.EXE. SCTP provides end-to-end guaranteed
delivery without the potential of blocking that TCP can encounter. SCTP also allows for multiple streams
within a conventional pairing of sockets between two IP addresses. Messages on one stream can be sent
and received independently of other streams on the connection. See RFC 4960 for more information
about SCTP.

Definitions for routines and constants are in MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]SCTP.H
MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]SCTP_CONSTANTS.H
MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]SCTP_UIO.H.

To use SCTP create a socket with the following parameters:
 socket(AF_INET, SOCK_STREAM, IPPROTO_SCTP)

The following routines are supported:

int sctp_opt_info(int sd, sctp_assoc_t id, int opt, void *arg, short

*size)

Description

sctp_opt_info is a wrapper library function that can be used to get SCTP level options on a

socket.

Parameter Usage

 sd is the socket descriptor for which the option is requested.

For one-to-many style sockets, id specifies the association to query.

For one-to-one style sockets, id is ignored.

opt specifes the SCTP socket option to get.

arg is an option-specific structure buffer provided by the caller. size is a value-result parameter,

 initially containing the size of the buffer pointed to by arg and modified on return to indicate the

 actual size of the value returned.

Returns

On success, sctp_opt_info returns 0 and on failure -1 is returned with errno

 set to the appropriate error code.

Supported Options:

SCTP_RTOINFO

SCTP_ASSOCINFO

SCTP_INITMSG

SCTP_NODELAY

SCTP_AUTOCLOSE

SCTP_PRIMARY_ADDR

SCTP_DISABLE_FRAGMENTS

SCTP_PEER_ADDR_PARAMS

SCTP_EVENTS

SCTP_I_WANT_MAPPED_V4_ADDR

SCTP_MAXSEG

SCTP_STATUS

SCTP_GET_PEER_ADDR_INFO

int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, int flags)

Description

sctp_bindx adds or removes a set of bind addresses passed in the array addrs

 to/from the socket sd. addrcnt is the number of addresses in the array and the

 flags parameter indicates if the addresses need to be added or removed.

An application can use SCTP_BINDX_ADD_ADDR to associate additional addresses

 with an endpoint after calling bind(2). SCTP_BINDX_REM_ADDR directs SCTP to

 remove the given addresses from the association. A caller may not remove all

 addresses from an association. It will fail with EINVAL.

Parameter Usage

 If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. If sd is

 an IPv6 socket, the addresses passed can be either IPv4 or IPv6 addresses.

addrs is a pointer to an array of one or more socket addresses. Each address

 is contained in its appropriate structure (i.e. struct sockaddr_in or struct

 sockaddr_in6). The family of the address type must be used to distinguish the

 address length.

The caller specifies the number of addresses in the array with addrcnt.

The flags parameter can be either SCTP_BINDX_ADD_ADDR or SCTP_BINDX_REM_ADDR.

Return Value

 On success, 0 is returned. On failure, -1 is returned, and errno is set appropriately.

 Errors

 EBADF - sd is not a valid descriptor.

 ENOTSOCK

 - sd is a descriptor for a file, not a socket.

 EFAULT

 - Error while copying in or out from the user address space.

 EINVAL

 - Invalid port or address or trying to remove all addresses from an association.

 EACCES

 - The address is protected, and the user is not the super-user.

int sctp_getpaddrs(int sd, sctp_assoc_t id, struct sockaddr **addrs)

Description

 sctp_getpaddrs returns all peer addresses in an association. On return, addrs

 will point to a dynamically allocated packed array of sockaddr structures of

 the appropriate type for each address. The caller should use sctp_freepaddrs

 to free the memory. Note that the in/out parameter addrs must not be NULL.

Parameter Usage

 If sd is an IPv4 socket, the addresses returned will be all IPv4 addresses. If

 sd is an IPv6 socket, the addresses returned can be a mix of IPv4 or IPv6

 addresses.

For one-to-many style sockets, id specifies the association to query. For

 one-to-one style sockets, id is ignored.

sctp_freepaddrs frees all the resources allocated by sctp_getpaddrs.

Return Value

 On success, sctp_getpaddrs returns the number of peer addresses in the

 association. If there is no association on this socket, 0 is returned and the

 value of *addrs is undefined. On error, sctp_getpaddrs returns -1 and the

 value of *addrs is undefined.

sctp_freepaddrs

(struct sockaddr *addrs)
The sctp_freepaddrs() and sctp_freeladdrs() functions are used to release the

 memory allocated by previous calls to sctp_getpaddrs() or sctp_getladdrs()

 respectively.

sctp_getladdrs(int sd, sctp_assoc_t id, struct sockaddr **addrs)

Description

sctp_getladdrs returns all locally bound addresses on a socket. On return,

 addrs will point to a dynamically allocated packed array of sockaddr

 structures of the appropriate type for each local address. The caller should

 use sctp_freeladdrs to free the memory. Note that the in/out parameter addrs

 must not be NULL.

Parameter Usage

 If sd is an IPv4 socket, the addresses returned will be all IPv4 addresses. If

 sd is an IPv6 socket, the addresses returned can be a mix of IPv4 or IPv6

 addresses.

For one-to-many style sockets, id specifies the association to query. For

 one-to-one style sockets, id is ignored.

If the id field is set to 0, then the locally bound addresses are returned

 without regard to any particular association.

sctp_freeladdrs frees all the resources allocated by sctp_getladdrs

Return Value

 On success, sctp_getladdrs returns the number of local addresses bound to the

 socket. If the socket is unbound, 0 is returned and the value of *addrs is undefined. On error, sctp_getladdrs returns

-1 and the value of *addrs is

 undefined.

sctp_freeladdrs(struct sockaddr *addrs)

Description

The sctp_freepaddrs() and sctp_freeladdrs() functions are used to release the

 memory allocated by previous calls to sctp_getpaddrs() or sctp_getladdrs() respectively.

int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt)

Description

 sctp_connectx initiates a connection to a set of addresses passed in the array

 addrs to/from the socket sd. addrcnt is the number of addresses in the array.

Paramter Usage

 If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. If sd is

 an IPv6 socket, the addresses passed can be either IPv4 or IPv6 addresses.

addrs is a pointer to an array of one or more socket addresses. Each address

 is contained in its appropriate structure (i.e. struct sockaddr_in or struct sockaddr_in6). The family of the address

type must be used to distinguish the

 address length.

The caller specifies the number of addresses in the array with

 addrcnt.

Return Value

 On success, 0 is returned. On failure, -1 is returned, and errno is set

 appropriately.

Errors

EBADF

 - sd is not a valid descriptor.

ENOTSOCK

 - sd is a descriptor for a file, not a socket.

EFAULT

 - Error while copying in or out from the user address space.

EINVAL

 - Invalid port or address.

EACCES

 - The address is protected, and the user is not the super-user.

EISCONN

 - The socket is already connected.

ECONNREFUSED

 - No one listening on the remote address.

ETIMEDOUT

 - Timeout while attempting connection. The server may be too busy to accept

 new connections. Note that for IP sockets the timeout may be very long when

 syncookies are enabled on the server.

ENETUNREACH

 - Network is unreachable.

EADDRINUSE

 - Local address is already in use.

EINPROGRESS

 - The socket is non-blocking and the connection cannot be completed

 immediately. It is possible to select(2) or poll(2) for completion by

 selecting the socket for writing. After select indicates writability, use

 getsockopt(2) to read the SO_ERROR option at level SOL_SOCKET to determine

 whether connect completed successfully (SO_ERROR is zero) or unsuccessfully

 (SO_ERROR is one of the usual error codes listed here, explaining the reason

 for the failure).

EALREADY

 - The socket is non-blocking and a previous connection attempt has not yet

 been completed.

EAGAIN

 - No more free local ports or insufficient entries in the routing cache. For

 PF_INET see the net.ipv4.ip_local_port_range sysctl in ip(7) on how to

 increase the number of local ports.

EAFNOSUPPORT

 - The passed address didn't have the correct address family in its sa_family

 field.

EACCES, EPERM

 - The user tried to connect to a broadcast address without having the socket

 broadcast flag enabled or the connection request failed because of a local

 firewall rule.

sctp_assoc_t sctp_getassocid(int sd, struct sockaddr *addr)

Description

sctp_getassocid -- return an association id for a specified socket

 address.

The sctp_getassocid() call attempts to look up the specified socket

 address addr and find the respective association identification.

 Return Values

 The call returns the association id upon success and 0 is returned upon

 failure.

 Errors

The sctp_getassocid() function can return the following errors.

ENOENT- The address does not have an association setup to it.

EBADF - The argument s is not a valid descriptor.

ENOTSOCK - The argument s is not a socket.

int sctp_getaddrlen(int family)

Description

 sctp_getaddrlen - return the address length of an address family

The sctp_getaddrlen() function returns the size of a specific address family.

 This function is provided for application binary compatibility since it provides

 the application with the size the operating system thinks the specific address

 family is. Note that the function will actually create an SCTP socket and then

 gather the information via a getsockopt() system calls. If for some reason a

 SCTP socket cannot be created or the getsockopt() call fails, an error will be

 returned with errno set as specified in the socket() or getsockopt() system call.

Return Values

The call returns the number of bytes that the operating system expects for the

 specific address family or SOCKET_ERROR (-1).

Errors

 The sctp_getaddrlen() function can return the following errors:

EINVAL - The address family specified does NOT exist.

3. $QIO Interface

The $QIO interface allows programmers to use more sophisticated programming techniques than available with the

socket library. Using the $QIO interface, you can perform fully asynchronous

I/O to the network and receive Asynchronous System Traps (ASTs) when out-of-band data arrives (similar to the

UNIX SIGURG signal). In general, there is a one-to-one mapping between the socket library functions and

$QIO calls.

The $QIO interface returns an OpenVMS error code in the first word of the Input/Output Status Block (IOSB). If

the low bit of the OpenVMS error code is clear, an error has been returned by the network. The OpenVMS error

code is generated from the UNIX errno code by multiplying the UNIX code by 8 (eight) and logical ORing it with

0x8000.

You can mix and match the socket library function and the $QIO calls. For example, you can use socket() and

connect() to establish a connection, then use IO$_SEND and IO$_RECEIVE to send and receive data on it.

Note! If more than one $QIO operation is pending on a socket at any one time, there is no guarantee that the $QIO calls will

complete in the order they are queued. In particular, if more than one read or write operation is pending at any one

time, the data may be interleaved. You do not need to use multiple read or write operations concurrently on the same

socket to increase performance because of the network buffering.

The function codes for the MultiNet-specific $QIO functions are defined in the include file

multinet_root:[multinet.include.vms]inetiodef.h.

If the compile time constant USE_BSD44_ENTRIES is defined, then the BSD 4.4 variant of the IO$_ACCEPT,

IO$_BIND, IO$_CONNECT, IO$_GETPEERNAME, IO$_GETSOCKNAME, IO$_RECEIVE, IO$_SEND is

selected.

The following are the interface functions:

IO$_ACCEPT IO$_SEND

IO$_ACCEPT_WAIT IO$_SENSEMODE

IO$_BIND IO$_SENSEMODE | IO$M_CTRL

IO$_CONNECT •

IO$_SETCHAR

IO$_GETPEERNAME IO$_SETMODE|IO$M_ATTNAST

IO$_GETSOCKNAME IO$_SETSOCKOPT

IO$_GETSOCKOPT IO$_SHUTDOWN

IO$_IOCTL IO$_SOCKET

IO$_LISTEN SYS$CANCEL

IO$_RECEIVE (I SYS$DASSGN

IO$_SELECT

IO$_ACCEPT
Extracts the first connection from the queue of pending connections on a socket, creates a new socket with the same

properties as the original socket, and associates an OpenVMS channel to the new socket. IO$_ACCEPT is

equivalent to the accept() socket library function.

Normally, instead of calling IO$_ACCEPT to wait for a connection to become available, IO$_ACCEPT_WAIT is

used. This allows your process to wait for the connection without holding the extra network channel and tying up

system resources. When the IO$_ACCEPT_WAIT completes, it indicates that a connection is available.

IO$_ACCEPT is then called to accept it.

FORMAT

Status = SYS$QIOW(Efn, New_VMS_Channel, IO$_ACCEPT, IOSB, AstAdr, AstPrm, Address, AddrLen,

VMS_Channel, 0, 0, 0);

ARGUMENTS

New_VMS_Channel

OpenVMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

An OpenVMS channel to a newly-created INET device. Create this channel by using SYS$ASSIGN to assign a

fresh channel to INET0: before issuing the IO$_ACCEPT call.

The accepted connection is accessed using this channel.

VMS_Channel

OpenVMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

The OpenVMS channel to the INET: device on which the IO$_LISTEN call was performed.

After accepting the connection, this device remains available to accept new connections.

Address

OpenVMS Usage: special_structure

type: structure defined below

access: write only

mechanism: by reference

An optional pointer to a structure that, following the completion of the IO$_ACCEPT call, contains the address of

the socket that made the connection. This structure is defined as follows:

struct {

 unsigned long Length;

 struct sockaddr Address;

};

AddrLen

OpenVMS Usage: word_unsigned

type: word (unsigned)

access: read only

mechanism: by value

The length of the buffer pointed to by the Address argument, in bytes. It must be at least 20 bytes.

IO$_ACCEPT_WAIT
Used to wait for an incoming connection without accepting it. This allows your process to wait for the connection

without holding the extra network channel and tying up system resources. When the IO$_ACCEPT_WAIT call

completes, it indicates that a connection is available. IO$_ACCEPT is then called to accept it.

The IO$_ACCEPT_WAIT call takes no function-specific parameters.

FORMAT

Status = SYS$QIOW(Efn, VMS_Channel, IO$_ACCEPT_WAIT, IOSB, AstAdr, AstPrm, 0, 0, 0, 0, 0, 0);

ARGUMENTS

VMS_Channel

OpenVMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

The OpenVMS channel to the INET: device on which the IO$_LISTEN call was performed.

IO$_BIND
Assigns an address to an unnamed socket. When a socket is created with IO$_SOCKET, it exists in a name space

(address family) but has no assigned address. IO$_BIND requests that the address be assigned to the socket.

IO$_BIND is equivalent to the bind() socket library function.

FORMAT

Status = SYS$QIOW(Efn, VMS_Channel, IO$_BIND, IOSB, AstAdr, AstPrm, Name, NameLen, 0, 0, 0, 0);

ARGUMENTS

VMS_Channel

OpenVMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Name

OpenVMS Usage: socket_address

type: struct sockaddr

access: read only

mechanism: by reference

The address to which the socket should be bound. The exact format of the Address argument is determined by the

domain in which the socket was created.

NameLen

OpenVMS Usage: socket_address_length

type: longword (unsigned)

access: read only

mechanism: by value

The length of the Name argument, in bytes.

IO$_CONNECT
When used on a SOCK_STREAM socket, this function attempts to make a connection to another socket. When

used on a SOCK_DGRAM socket, this function permanently specifies the peer to which datagrams are sent to and

received from. The peer socket is specified by name, which is an address in the communications domain of the

socket. Each communications domain interprets the name parameter in its own way. IO$_CONNECT is equivalent

to the connect() socket library function.

If the address of the local socket has not yet been specified with IO$_BIND, the local address is also set to an

unused port number when IO$_CONNECT is called.

FORMAT

Status = SYS$QIOW(Efn, VMS_Channel, IO$_CONNECT, IOSB, AstAdr, AstPrm, Name, NameLen, 0, 0, 0, 0);

ARGUMENTS

VMS_Channel

OpenVMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Name

OpenVMS Usage: socket_address

type: struct sockaddr

access: read only

mechanism: by reference

The address of the peer to which the socket should be connected. The exact format of the Address argument is

determined by the domain in which the socket was created.

NameLen

OpenVMS Usage: socket_address_length

type: longword (unsigned)

access: read only

mechanism: by value

The length of the Name argument, in bytes.

IO$_GETPEERNAME
Returns the name of the peer connected to the specified socket. It is equivalent to the getpeername() socket library

function.

FORMAT

Status = SYS$QIOW(Efn, VMS_Channel, IO$_GETPEERNAME, IOSB, AstAdr, AstPrm, Address, AddrLen, 0, 0,

0, 0);

ARGUMENTS

VMS_Channel

OpenVMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Address

OpenVMS Usage: socket_address

type: struct sockaddr

access: write only

mechanism: by reference

A result parameter filled in with the address of the peer, as known to the communications layer. The exact format of

the Address argument is determined by the domain in which the communication is occurring.

AddrLen

OpenVMS Usage: socket_address_length

type: longword (unsigned)

access: modify

mechanism: by reference

On entry, contains the length of the space pointed to by Address, in bytes. On return, it contains the actual length, in

bytes, of the address returned.

IO$_GETSOCKNAME
Returns the current name of the specified socket. Equivalent to the getsockname() socket library function.

FORMAT

Status = SYS$QIOW(Efn, VMS_Channel, IO$_GETSOCKNAME, IOSB, AstAdr, AstPrm, Address, AddrLen, 0,

0, 0, 0);

ARGUMENTS

VMS_Channel

OpenVMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Address

OpenVMS Usage: socket_address

type: struct sockaddr

access: write only

mechanism: by reference

A result parameter filled in with the address of the local socket, as known to the communications layer. The exact

format of the Address argument is determined by the domain in which the communication is occurring.

AddrLen

OpenVMS Usage: socket_address_length

type: longword (unsigned)

access: modify

mechanism: by reference

On entry, contains the length of the space pointed to by Address, in bytes. On return, it contains the actual length, in

bytes, of the address returned.

IO$_GETSOCKOPT
Retrieves options associated with a socket. It is equivalent to the getsockopt() library routine. Options can exist at

multiple protocol levels; however, they are always present at the uppermost socket level.

When manipulating socket options, you must specify the level at which the option resides and the name of the

option. To manipulate options at the socket level, specify level as SOL_SOCKET. To manipulate options at any

other level, specify the protocol number of the appropriate protocol controlling the option. For example, to indicate

that an option is to be interpreted by the TCP protocol, set Level to the protocol number of TCP, as determined by

calling getprotobyname().

OptName and any specified options are passed without modification to the appropriate protocol module for

interpretation. The include file multinet_root:[multinet.include.sys]socket.h contains definitions for socket-level

options. Options at other protocol levels vary in format and name.

For more information on what socket options may be retrieved with IO$_GETSOCKOPT, see the socket option

sections.

FORMAT

Status = SYS$QIOW(Efn, VMS_Channel, IO$_GETSOCKOPT, IOSB, AstAdr, AstPrm, Level, OptName, OptVal,

OptLen, 0, 0);

ARGUMENTS

VMS_Channel

OpenVMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Level

OpenVMS Usage: option_level

type: longword (unsigned)

access: read only

mechanism: by value

The protocol level at which the option will be manipulated. Specify Level as SOL_SOCKET or a protocol number

as returned by getprotoent().

OptName

OpenVMS Usage: option_name

type: longword (unsigned)

access: read only

mechanism: by value

The option that is to be manipulated.

OptVal

OpenVMS Usage: dependent on OptName

type: byte buffer

access: write only

mechanism: by reference

A pointer to a buffer that is to receive the current value of the option. The format of this buffer is dependent on the

option requested.

OptLen

OpenVMS Usage: option_length

type: longword (unsigned)

access: modify

mechanism: by reference

On entry, contains the length of the space pointed to by OptVal, in bytes. On return, it contains the actual length, in

bytes, of the option returned.

IO$_IOCTL
Performs a variety of functions on the network; in particular, it manipulates socket characteristics, routing tables,

ARP tables, and interface characteristics. The IO$_IOCTL call is equivalent to the socket_ioctl() library routine.

A IO$_IOCTL request has encoded in it whether the argument is an input or output parameter, and the size of the

argument, in bytes. Macro and define statements used in specifying an IO$_IOCTL request are located in the file

multinet_root:[multinet.include.sys]ioctl.h.

FORMAT

Status = SYS$QIOW(Efn, VMS_Channel, IO$_IOCTL, IOSB, AstAdr, AstPrm, Request, ArgP, 0, 0, 0, 0);

ARGUMENTS

VMS_Channel

OpenVMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Request

OpenVMS Usage: ioctl_request

type: longword (unsigned)

access: read only

mechanism: by value

Which IO$_IOCTL function to perform. The available IO$_IOCTL functions are documented in the socket ioctl

sections.

ArgP

OpenVMS Usage: arbitrary

type: byte buffer

access: read, write, or modify depending on Request

mechanism: by reference

A pointer to a buffer whose format and function is dependent on the Request specified.

IO$_LISTEN
Specifies the number of incoming connections that may be queued while waiting to be accepted. This backlog must

be specified before accepting a connection on a socket. The IO$_LISTEN function applies only to sockets of type

SOCK_STREAM. The IO$_LISTEN call is equivalent to the listen() socket library function.

FORMAT

Status = SYS$QIOW(Efn, VMS_Channel, IO$_LISTEN, IOSB, AstAdr, AstPrm, BackLog, 0, 0, 0, 0, 0);

ARGUMENTS

VMS_Channel

OpenVMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Backlog

OpenVMS Usage: connection_backlog

type: longword (unsigned)

access: read only

mechanism: by value

Defines the maximum length of the queue of pending connections. If a connection request arrives when the queue is

full, the request is ignored. The backlog queue length is limited to 5.

IO$_RECEIVE (IO$_READVBLK)
Receives messages from a socket. This call is equivalent to the recvfrom(), recv(), and socket_ read() socket

library functions.

The length of the message received is returned in the second and third word of the I/O Status Block (IOSB). A count

of 0 indicates an end-of-file condition; that is, the connection has been closed. If a message is too long to fit in the

supplied buffer and the socket is type SOCK_DGRAM, excess bytes are discarded.

If no messages are available at the socket, the IO$_RECEIVE call waits for a message to arrive, unless the socket

is nonblocking (see socket_ioctl()).

FORMAT

Status = SYS$QIOW(Efn, VMS_Channel, IO$_RECEIVE, IOSB, AstAdr, AstPrm, Buffer, Size, Flags, From,

FromLen, 0);

ARGUMENTS

VMS_Channel

OpenVMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Buffer

OpenVMS Usage: arbitrary

type: byte buffer

access: write only

mechanism: by reference

The address of a buffer in which to place the data read.

Size

OpenVMS Usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

The length of the buffer specified by Buffer. The actual number of bytes read is returned in the Status.

Flags

OpenVMS Usage: mask_longword

type: longword (unsigned)

access: read only

mechanism: by value

Control information that affects the IO$_RECEIVE call. The Flags argument is formed by ORing one or more of

the following values:

#define MSG_OOB 0x1 /* process out-of-band data */

#define MSG_PEEK 0x2 /* peek at incoming message */

The MSG_OOB flag causes IO$_RECEIVE to read any out-of-band data that has arrived on the socket.

The MSG_PEEK flag causes IO$_RECEIVE to read the data present in the socket without removing the data.

This allows the caller to view the data, but leaves it in the socket for future IO$_RECEIVE calls.

From

OpenVMS Usage: special_structure

type: structure defined below

access: write only

mechanism: by reference

An optional pointer to a structure that, following the completion of the IO$_RECEIVE, contains the address of the

socket that sent the packet. This structure is defined as follows:

struct {

 unsigned short Length;

 struct sockaddr Address;

};

FromLen

OpenVMS Usage: word_unsigned

type: word (unsigned)

access: read only

mechanism: by value

The length of the buffer pointed to by the From argument, in bytes. It must be at least 18 bytes.

IO$_SELECT
Examines the specified channel to see if it is ready for reading, ready for writing, or has an exception condition

pending (the presence of out-of-band data is an exception condition).

The UNIX select() system call can be emulated by posting multiple IO$_SELECT calls on different channels.

Note! IO$_SELECT is only useful for channels assigned to the INET: device. It cannot be used for any other VMS I/O

device.

FORMAT

Status = SYS$QIOW(Efn, VMS_Channel, IO$_SELECT, IOSB, AstAdr, AstPrm, Modes, 0, 0, 0, 0, 0);

ARGUMENTS

VMS_Channel

OpenVMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Modes

OpenVMS Usage: mask_longword

type: longword (unsigned)

access: modify

mechanism: by reference

On input, the Modes argument is a bit mask of one or more of the following values:

#define SELECT_DONTWAIT (1<<0)

#define SELECT_READABLE (1<<1)

#define SELECT_WRITEABLE (1<<2)

#define SELECT_EXCEPTION (1<<3)

If the SELECT_DONTWAIT bit is set, the IO$_SELECT call will complete immediately, whether or not the

socket is ready for any I/O operations. If this bit is not set, the IO$_SELECT call will wait until the socket is ready

to perform one of the requested operations.

If the SELECT_READABLE bit is set, the IO$_SELECT call will check if the socket is ready for reading or a

connecting has been received and is ready to be accepted.

If the SELECT_WRITEABLE bit is set, the IO$_SELECT call will check if the socket is ready for writing or a

connect request has been completed.

If the SELECT_EXCEPTION bit is set, the IO$_SELECT call will check if the socket has out-of-band data ready

to read.

On output, the Modes argument is a bit mask that indicates which operations the socket is ready to perform. If the

SELECT_DONTWAIT operation was specified, the Modes value may be zero; if SELECT_DONTWAIT is not

specified, then one or more of the SELECT_READABLE, SELECT_WRITABLE, or SELECT_EXCEPTION

bits will be set.

IO$_SEND
Transmits a message to another socket. It is equivalent to the sendto(), send(), and socket_write() socket library

functions.

If no message space is available at the socket to hold the message to be transmitted, IO$_SEND blocks unless the

socket has been placed in non-blocking I/O mode via IO$_IOCTL. If the message is too long to pass through the

underlying protocol in a single unit, the error EMSGSIZE is returned and the message is not transmitted.

FORMAT

Status = SYS$QIOW(Efn, VMS_Channel, IO$_SEND, IOSB, AstAdr, AstPrm, Buffer, Size, Flags, To, ToLen, 0);

ARGUMENTS

VMS_Channel

OpenVMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Buffer

OpenVMS Usage: arbitrary

type: byte buffer

access: read only

mechanism: by reference

The address of a buffer containing the data to send.

Size

OpenVMS Usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

The length of the buffer specified by Buffer.

Flags

OpenVMS Usage: mask_longword

type: longword (unsigned)

access: read only

mechanism: by value

Control information that affects the IO$_SEND call. The Flags argument can be zero or the following:

#define MSG_OOB 0x1 /* process out-of-band data */

The MSG_OOB flag causes IO$_SEND to send out-of-band data on sockets that support this operation (such as

SOCK_STREAM).

To

OpenVMS Usage: socket_address

type: struct sockaddr

access: read only

mechanism: by reference

An optional pointer to the address to which the packet should be transmitted. The exact format of the Address

argument is determined by the domain in which the communication is occurring.

ToLen

OpenVMS Usage: socket_address_length

type: longword (unsigned)

access: read only

mechanism: by value

An optional argument that contains the length of the address pointed to by the To argument.

IO$_SENSEMODE
Reads the active connections status and returns status information for all of the active and listening connections.

FORMAT

Status = SYS$QIO(efn, chan, IO$_SENSEMODE, iosb, astadr, astprm, buffer, address, conn_type, 0, 0, 0)

ARGUMENTS

p1=buffer

OpenVMS Usage: vector_byte_unsigned

type: byte (unsigned)

access: write only

mechanism: by reference

Optional address of the 8-byte device characteristics buffer. Data returned is: the device class (DC$_SCOM) in the

first byte, the device type (0) in the second byte, and the default buffer size, which is the maximum datagram size, in

the high-order word of the first longword. IO$_SENSEMODE returns the second longword as 0.

p2=address

OpenVMS Usage: vector_word_unsigned

type: word (unsigned)

access: write only

mechanism: by descriptor

Address of the descriptor for the buffer to receive the status information on the active connections.

P3=value

OpenVMS Usage: Longword_unsigned

type: Longword (unsigned)

access: Read only

mechanism: by value

0 to get information about TCP connections, non-zero to get information about UDP connections.

Connection Status Information shows the 22 bytes of information returned for each connection.

Protocol type Word value is 4 for INETDRIVER stream sockets, and 5 for

BGDRIVER stream sockets.

Unit number Word value is the INETDRIVER, or BGDRIVER device unit number

for the connection.

Receive queue Word value is the number of bytes received from the peer waiting to

be delivered to the user through the IO$_READVBLK function.

Send queue Word value is the number of bytes waiting to be transmitted to or to

be acknowledged by the peer.

Local internet address Longword value is the local internet address (or 0 if the connection is

not open and no local internet address was specified for the

connection).

Local port number Word value is the local port number.

Peer internet address Longword value is the peer's internet address (or 0 if the connection

is not open and no peer internet address was specified for the

connection).

Peer port number Word value is the peer's port number, or 0 if the connection is not

open and you did not specify a peer port number for the connection.

TCP state Word value is the Transmission Control Protocol connection state

mask. See Table 3-1for the mask value definitions.

Figure 3-1 Connection Status Information

Status

SS$_BUFFEROVF Buffer too small for all connections

Truncated buffer returned

SS$_DEVINACT Device not active

Contact system manager why MultiNet (or INETDRIVER) not started

SS$_NORMAL Success

Status information returned

The byte count for the status information buffer is returned in the high-order word of the first longword of the I/O

status block. This may be less than the bytes requested. See I/O Status Block for more information.

The size in bytes of each connection's record (22 bytes) is returned in the low order word of the second longword of

the I/O status block.

The total number of active connections is returned in the high-order word of the second longword of the I/O status

block. This can be greater than the number of reported connections if the buffer is full.

Figure 3-2 I/O Status Block

Table 3-1 TCP State Mask Values

Mask

Value State

Mask

Value State

Mask

Value State

1 LISTEN 16 FIN-WAIT-1 256 LAST-ACK

2 SYN-SENT 32 FIN-WAIT-2 512 TIME-WAIT

4 SYN-RECEIVED 64 CLOSE-WAIT 1024 CLOSED

8 ESTABLISHED 128 CLOSING

IO$_SENSEMODE | IO$M_CTRL

SS$_BUFFEROVF Buffer too small for all characteristics

Truncated characteristics buffer is returned

SS$_DEVINACT Device not active

Contact system manager why MultiNet (or TCPDRIVER) not started

SS$_NORMAL Success

Characteristics returned

The byte count for the characteristics buffer is returned in the high-order word of the first longword of the I/O status

block. This may be less than the bytes requested. The number of bytes in the receive queue is returned in the low

order word of the second longword in the I/O status block. The number of bytes in the read queue is returned in the

high-order word of the second longword in the I/O status block. I/O Status Block shows the I/O Status Block.

Figure 3-3 I/O Status Block

Note! You can use the

SYS$GETDVI system service to obtain the local port number, peer port number, and peer internet address. The

DEVDEPEND field stores the local port number (low order word) and peer port number (high-order word). The

DEVDEPEND2 field stores the peer internet address.

Performs the following functions:

• Reads network device information

• Reads the routing table

• Reads the ARP information

• Reads the IP SNMP information

• Reads the ICMP SNMP information

• Reads the TCP SNMP information

• Reads the UDP SNMP information

FORMAT

Status = SYS$QIO(efn, chan, IO$_SENSEMODE | IO$M_CTRL, iosb, astadr, astprm, buffer, address, function,

line-id, 0, 0)

ARGUMENTS

p1=buffer

OpenVMS Usage: vector_byte_unsigned

type: byte (unsigned)

access: write only

mechanism: by reference

Optional address of the 8-byte device characteristics buffer. The data returned is the device class (DC$_SCOM) in

the first byte, the device type (0) in the second byte, and the default buffer size (0) in the high-order word of the first

longword. The second longword is returned as 0.

p2=address

OpenVMS Usage: vector_word_unsigned

type: Word (unsigned)

access: write only

mechanism: by descriptor

Address of the descriptor for the buffer to receive the information. The format of the buffer depends on the

information requested. Each buffer format is described separately in the section that follows.

If bit 12 (mask 4096) is set in the parameter identifier (PID), the PID is followed by a counted string. If bit 12 is

clear, the PID is followed by a longword value. While MultiNet currently never returns a counted string for a

parameter, this may change in the future.

p3=function

OpenVMS Usage: Longword-unsigned

type: Longword (unsigned)

access: read only

mechanism: by value

Code that designates the function.

The function codes are shown in P3 Function Codes .

Table 3-2 P3 Function Codes

Code Function

1 P1 of the QIO is not used

2 VMS descriptor of the space to put the return information

3 10

4 Not used

5 Not used

6 Not used

7 Read UDP SNMP counters

8 Read routing table

10 Read interface throughput information

p4=line-id

OpenVMS Usage: Longword-unsigned

type: Longword (unsigned)

access: read only

mechanism: by value

Specify this argument only if you are reading a network device's ARP table function.

Reading Network Device Information

Use IO$_SENSEMODE | IO$M_CTRL with p3=1 to read network device information. The information returned in

the buffer (specified by p2=address) can consist of multiple records. Each record consists of nine longwords, and

one record is returned for each device.

When you read network device information, the data in each record is returned in the order presented below. All are

longword values.

1 Line id (see the description of the line-id argument)

2 Line's local internet address

3 Line's internet address network mask

4 Line's maximum transmission unit (MTU) in the low-order word, and the line flags in the

high-order word

5 Number of packets transmitted (includes ARP packets for Ethernet lines)

6 Number of transmit errors

7 Number of packets received (includes ARP and trailer packets for Ethernet lines)

8 Number of receive errors

9 Number of received packets discarded due to insufficient buffer space

Reading the Routing Table

Use IO$_SENSEMODE | IO$M_CTRL with p3=8 to read the routing table. The information returned in the buffer

(specified by p2=address) can consist of multiple records. Each record consists of five longwords, and one record is

returned for each table entry.

The p3=8 function returns full routing information and is a superset of p3=2, which was retained for backwards

compatibility with existing programs. p3=2 and p3=8 return the same table of routing entries, in the following

order, except that p3=2 does not return items 7 and 8 (address mask and Path MTU):

1 Destination

internet address.

Destination host or network to which the datagram is bound. Returned

as a longword value.

2 Gateway

internet address.

Internet address to which the datagram for this route is transmitted.

Returned as a longword value.

3 Flags. Routing table entry's flag bits. Returned as a word value:

Mask 1, name GATEWAY, if set, the route is to a gateway (the

datagram is sent to the gateway internet address). If clear, the route is a

direct route.

Mask 2, name HOST, if set, the route is for a host. If clear, the route is

for a network.

Mask 4, name DYNAMIC, if set, the route was created by a received

ICMP redirect message.

Mask 8, name AUTOMATIC, if set, this route was added by

MULTINET_RAPD process and will be modified or remoted by that

process as appropriate.

Mask 16, name LOCKED, if set, the route cannot be changed by an

ICMP redirect message.

Mask 32, name INTERFACE, if set, the route is for a network

interface.

Mask 64, name DELETED, if set, the route is marked for deletion (it is

deleted when the reference count reaches 0).

Mask 128, name POSSDOWN, if set, the route is marked as possibly

down.

4 Reference

count.

Number of connections currently using the route. Returned as a word

value.

5 Use count. Number of times the route has been used for outgoing traffic. Returned

as a longword value.

6 Line ID. Line identification for the network device used to transmit the

datagram to the destination. See the description of the line-id argument

later in this section for the line ID codes. Line ID Values shows the line

identification values.

7 Address mask. Address mask for the destination address. Returned as a longword

value.

8 Path MTU. Path maximum transmission unit. Returned as a longword value.

Table 3-3 Line ID Values

Line ID Line ID Value Line ID Line ID Value Line ID Line ID Value

LO-0 ^X00000001 DN-n ^X00nn0241 PD-n ^X00nn0042

PSI-n ^X00nn0006 PPP-n ^X00nn0341

SL-n ^X00nn0141 SE-n ^X00nn0402

Note! The I/O status block (iosb) returns routing table entry size information for the p3=8 function to assist in diagnosing

buffer overflow situations. See the Status section for details.

Reading Interface Throughput Information

Use IO$_SENSEMODE | IO$M_CTRL with p3=10 to read network device information. The information returned

in the buffer (specified by p2=descriptor) can consist of multiple records. Each record consists of nine longwords,

and one record is returned for each device.

When you read network device information, the data in each record is returned in the order presented below. All are

longword values.

Table 3-4 QIO Parameters

Code Function

1 P1 of the QIO is not used

2 is a VMS descriptor of the space to put the return information

3 10

4 Not used

5 Not used

6 Not used

The returned data is in the following format (all values are integers):

1 Line ID

2 Average Out Bytes (for the last 6 seconds)

3 Average In Bytes

4 Average Out Packets

5 Average In Packets

Reading the ARP Table Function

Use IO$_SENSEMODE | IO$M_CTRL with function=3 to read a network device's ARP table function. The

information returned in the buffer (specified by p2=address) depends on the line id specified in line-id.

The line-id argument is the line id and is a longword value. The least significant byte of the line id is the major

device type code. The next byte is the device type subcode. The next byte is the controller unit number. The most

significant byte is ignored.

The information returned in the buffer can consist of multiple records. Each record consists of 12 bytes, and one

record is returned for each ARP table entry.

When reading a table function, the data in each record is returned in the following order:

1 Internet address. Returned as a longword value.

2 Physical address. Returned as a 6 byte value.

3 Flags. Returned as a word value. The ARP table entry’s flag bits are shown in ARP Table Entry Flag Bits .

Table 3-5 ARP Table Entry Flag Bits

Mask Name Description

1 PERMANENT If set, the entry can only be removed by a NETCU REMOVE ARP

command and if RARP is enabled, the local host responds if a

RARP request is received for this address. If clear, the entry can be

removed if not used within a short period.

2 PUBLISH If set, the local host responds to ARP requests for the internet

address (this bit is usually only set for the local hosts's entry). If

clear, the local host does not respond to received ARP requests for

this address.

4 LOCKED If set, the physical address cannot be changed by received ARP

requests/replies.

4096 LASTUSED If set, last reference to entry was a use rather than an update.

8192 CONFNEED If set, confirmation needed on next use.

16384 CONFPEND If set, confirmation pending.

32768 RESOLVED If set, the physical address is valid.

3

Status

SS$_BADPARAM Code specified in function argument invalid.

SS$_BUFFEROVF Buffer too small for all information

Truncated buffer returned.

SS$_DEVINACT Device not active

Contact your system manager to determine why MultiNet was not

started.

SS$_NORMAL Success

Requested information returned.

SS$_NOSUCHDEV Line identification specified in arp argument does not exist.

The byte count for the information or counters buffer is returned in the high-order word of the first longword of the

I/O status block. This can be less than the bytes requested.

• For the p3=2 routing table function, in the second longword of the I/O status block, bit 0 is always set, bit 1 is set if

the forwarding capability is enabled, and bit 2 is set if ARP replies for non-local internet addresses are enabled.

• For the p3=8 routing table function, the IOSB contains the following:

Status Code SS$_NORMAL or SS$_BUFFEROVF

Transfer Byte Count Number of bytes of returned information

Entry Size Number of bytes in each entry

Number of Entries Number of entries in the routing table

•

If the status is SS$_BUFFEROVF, you can determine the number of routing entries actually returned by calculating

(Transfer Byte Count) DIV (Entry Size) and comparing that with the Number of Entries value. Be sure to check the

Entry Size in the IO status block. Later versions of MultiNet may return more information for each entry, which will

return a larger Entry Size. Any additional information to be returned in the future will be added to the end of the

returned entry.

Reading the IP SNMP Counters Function

Use IO$_SENSEMODE | IO$M_CTRL with function=4 to read the IP SNMP counters.

The data returned is an array of longwords in the following format:

• Indicates whether or not this entity is acting as an IP router.

• The default value inserted in the IP header's time-to-live field.

• The total number of input datagrams received.

• The number of input datagrams discarded due to errors in their IP headers.

• The number of input datagrams discarded because the IP address in their IP header's destination field was not a valid

address to be received at this entity.

• The number of IP datagrams for which this entity was not their final destination, and for which forwarding to

another entity was required.

• The number of datagrams received but discarded because of an unknown or unsupported protocol.

• The number of input datagrams received but discarded for reasons other than errors.

• The total number of input datagrams successfully delivered to IP user protocols, including ICMP.

• The total number of IP datagrams that local IP user protocols (including ICMP) supplied to IP in request for

transmission.

• The number of output IP datagrams that were discarded for reasons other than errors.

• The number of IP datagrams discarded because no route could be found to transmit them to their destination.

• The maximum number of seconds that received fragments are held while they are awaiting reassembly at this entity.

• The number of IP fragments received that needed to be reassembled at this entity.

• The number of IP datagrams successfully reassembled.

• The number of failures detected by the IP reassembly algorithm.

• The number of IP datagrams that have been successfully fragmented at this entity.

• The number of IP datagrams that have been discarded at this entity because they could not be fragmented.

• The number of IP datagrams that have been created as a result of fragmentation at this entity.

Reading the ICMP SNMP Counters Function

Use IO$_SENSEMODE | IO$M_CTRL with function=5 to read the ICMP SNMP counters.

The data returned is an array of longwords in the following format:

• The total number of ICMP messages received.

• The number of ICMP messages received but determined as having ICMP-specific errors.

• The number of ICMP Destination Unreachable messages received.

• The number of ICMP Time Exceeded messages received.

• The number of ICMP Parameter Problem messages received.

• The number of ICMP Source Quench messages received.

• The number of ICMP Redirect messages received.

• The number of ICMP Echo (request) messages received.

• The number of ICMP Echo reply messages received.

• The number of ICMP Timestamp (request) messages received.

• The number of ICMP Timestamp Reply messages received.

• The number of ICMP Address Mask Request messages received.

• The number of ICMP Address Mask Reply messages received.

• The total number of ICMP messages that this entity attempted to send.

• The number of ICMP messages that this entity did not send because of ICMP-related problems.

• The number of ICMP Destination Unreachable messages sent.

• The number of ICMP Time Exceeded messages sent.

• The number of ICMP Parameter Problem messages sent.

• The number of ICMP Source Quench messages sent.

• The number of ICMP Redirect messages sent.

• The number of ICMP Echo (request) messages sent.

• The number of ICMP Echo reply messages sent.

• The number of ICMP Timestamp (request) messages sent.

• The number of ICMP Timestamp Reply messages sent.

• The number of ICMP Address Mask Request messages sent.

• The number of ICMP Address Mask Reply messages sent.

Reading the TCP SNMP Counters Function

Use IO$_SENSEMODE | IO$M_CTRL with function=6 to read TCP SNMP counters.

The data returned is an array of longwords in the following format:

• The algorithm used to determine the timeout value for retransmitting unacknowledged octets.

• The minimum value (measured in milliseconds) permitted by a TCP implementation for the retransmission timeout.

• The maximum value (measured in milliseconds) permitted by a TCP implementation for the retransmission timeout.

• The limit on the total number of TCP connections supported.

• The number of times TCP connections have made a transition to the SYN-SENT state from the CLOSED state.

• The number of times TCP connections have made a direct transition to the SYN-REVD state from the LISTEN

state.

• The number of failed connection attempts.

• The number of resets that have occurred.

• The number of TCP connections having a current state of either ESTABLISHED or

CLOSE-WAIT.

• The total number of segments received.

• The total number of segments sent.

• The total number of segments retransmitted.

Reading the UDP SNMP Counters Function

Use IO$_SENSEMODE | IO$M_CTRL with function=7 to read the UDP SNMP counters.

The data returned is an array of longwords in the following format:

• The total number of IDP datagrams delivered to UDP users.

• The total number of received UDP datagrams for which there was not an application at the destination port.

• The number of received UDP datagrams that could not be delivered for reasons other than the lack of an application

at the destination port.

• The total number of UDP datagrams sent from this entity.

IO$_SETCHAR
Sets special characteristics that control the operation of the INET: device, rather than the socket attached to it. These

operations are normally used by only the MULTINET_SERVER process to hand off a connection to a process that it

creates to handle the connection.

FORMAT

Status = SYS$QIOW(Efn, VMS_Channel, IO$_SETCHAR, IOSB, AstAdr, AstPrm, Flags, 0, 0, 0, 0, 0);

ARGUMENTS

VMS_Channel

OpenVMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Flags

OpenVMS Usage: mask_longword

type: longword (unsigned)

access: read only

mechanism: by reference

A bit mask of one or more of the following values. If IO$_SETCHAR is not called, all options are set to OFF.

#define SETCHAR_PERMANENT (1<<0)

#define SETCHAR_SHAREABLE (1<<1)

#define SETCHAR_HANDOFF (1<<2)

If the SETCHAR_PERMANENT bit is set when the last channel to the socket device is deassigned using the

SYS$DASSGN system service, the socket is not closed and the socket device is not deleted. Normally, the last

deassign closes the socket. If this bit has been set, it must be explicitly cleared before the socket can be deleted.

If the SETCHAR_SHAREABLE bit is set, the socket becomes a shareable device and any process can assign a

channel to it.

If the SETCHAR_HANDOFF bit is set, the socket is not closed and the socket device is not deleted when the last

channel to the socket device is deassigned. After this occurs, the socket reverts to a normal socket, and if a new

channel is assigned and deassigned, the socket is closed. The SETCHAR_HANDOFF bit is a safer version of the

SETCHAR_PERMANENT bit because it allows a single hand-off to another process without the risk of a socket

getting permanently stuck on your system.

IO$_SETMODE|IO$M_ATTNAST
Enables an AST to be delivered to your process when out-of-band data arrives on a socket. This is similar to the

UNIX 4.3BSD SIGURG signal being delivered. You cannot enable the delivery of the AST through the socket

library functions.

After the AST is delivered, you must explicitly reenable it using this call if you want the AST to be delivered when

future out-of-band data arrives.

FORMAT

Status = SYS$QIOW(Efn, VMS_Channel, IO$_SETMODE|IO$M_ATTNAST, IOSB, AstAdr, AstPrm, Routine,

Parameter, 0, 0, 0, 0);

ARGUMENTS

Routine

OpenVMS Usage: ast_procedure

type: procedure entry mask

access: call without stack unwinding

mechanism: by reference

The address of the AST routine to call when out-of-band data arrives on the socket. To disable AST delivery, set

Routine to 0.

Parameter

OpenVMS Usage: user_arg

type: longword (unsigned)

access: read only

mechanism: by value

The argument with which to call the AST routine.

IO$_SETSOCKOPT
Manipulates options associated with a socket. It is equivalent to the setsockopt() socket library function. Options

may exist at multiple protocol levels; however, they are always present at the uppermost socket level.

When manipulating socket options, you must specify the level at which the option resides and the name of the

option. To manipulate options at the socket level, specify Level as SOL_SOCKET. To manipulate options at any

other level, specify the protocol number of the appropriate protocol controlling the option. For example, to indicate

that an option is to be interpreted by the TCP protocol, set Level to the protocol number of TCP; see

getprotobyname().

OptName and any specified options are passed without modification to the appropriate protocol module for

interpretation. The include file multinet_root:[multinet.include.sys]socket.h contains definitions for socket-level

options. Options at other protocol levels vary in format and name.

FORMAT

Status = SYS$QIOW(Efn, VMS_Channel, IO$_SETSOCKOPT, IOSB, AstAdr, AstPrm, Level, OptName, OptVal,

OptLen, 0, 0);

ARGUMENTS

VMS_Channel

OpenVMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

Level

OpenVMS Usage: option_level

type: longword (unsigned)

access: read only

mechanism: by value

The protocol level at which the option will be manipulated. Specify Level as SOL_SOCKET, or a protocol number

as returned by getprotobyname().

OptName

OpenVMS Usage: option_name

type: longword (unsigned)

access: read only

mechanism: by value

The option that is to be manipulated. For a description of each of the valid options for IO$_ SETSOCKOPT, see

the socket option sections.

OptVal

OpenVMS Usage: dependent on OptName

type: byte buffer

access: read only

mechanism: by reference

A pointer to a buffer that contains the new value of the option. The format of this buffer depends on the option

requested.

OptLen

OpenVMS Usage: option_length

type: longword (unsigned)

access: read only

mechanism: by value

The length of the buffer pointed to by OptVal.

IO$_SHUTDOWN
Shuts down all or part of a full-duplex connection on the socket associated with VMS_Channel. This function is

usually used to signal an end-of-file to the peer without closing the socket itself, which would prevent further data

from being received. It is equivalent to the shutdown() socket library function.

FORMAT

Status = SYS$QIOW(Efn, VMS_Channel, IO$_SHUTDOWN, IOSB, AstAdr, AstPrm, How, 0, 0, 0, 0, 0);

ARGUMENTS

VMS_Channel

OpenVMS Usage: channel

type: word (signed)

access: read only

mechanism: by value

A channel to the socket.

How

OpenVMS Usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

Controls which part of the full-duplex connection to shut down, as follows: if How is 0, further receive operations

are disallowed; if How is 1, further send operations are disallowed; if How is 2, further send and receive operations

are disallowed.

IO$_SOCKET
Creates an end point for communication and returns an OpenVMS channel that describes the end point. It is

equivalent to the socket() socket library function.

Before issuing the IO$_SOCKET call, an OpenVMS channel must first be assigned to the INET0: device to get a

new channel to the network.

FORMAT

Status = SYS$QIOW(Efn, VMS_Channel, IO$_SOCKET, IOSB, AstAdr, AstPrm, Address_Family, Type,

Protocol, 0, 0, 0);

ARGUMENTS

Address_Family

OpenVMS Usage: address_family

type: longword (unsigned)

access: read only

mechanism: by value

An address family with which addresses specified in later operations using the socket will be interpreted. The

following formats are currently supported; they are defined in the include file

multinet_root:[multinet.include.sys]socket.h:

AF_INET Internet (TCP/IP) addresses

AF_PUP Xerox PUP addresses

AF_CHAOS CHAOSnet addresses

Type

OpenVMS Usage: socket_type

type: longword (unsigned)

access: read only

mechanism: by value

The semantics of communication using the created socket. The following types are currently defined:

SOCK_STREAM SOCK_DGRAM SOCK_RAW

A SOCK_STREAM socket provides a sequenced, reliable, two-way connection-oriented byte stream with an out-

of-band data transmission mechanism. A SOCK_DGRAM socket supports communication by connectionless,

unreliable messages of a fixed (typically small) maximum length. SOCK_RAW sockets provide access to internal

network interfaces. The type SOCK_RAW is available only to users with SYSPRV privilege.

The Type argument, together with the Address_Family argument, specifies the protocol to be used. For example, a

socket created with AF_INET and SOCK_STREAM is a TCP socket, and a socket created with AF_INET and

SOCK_DGRAM is a UDP socket.

Protocol

OpenVMS Usage: protocol_number

type: longword (unsigned)

access: read only

mechanism: by value

A protocol to be used with the socket. Normally, only a single protocol exists to support a particular socket type

using a given address format. However, many protocols may exist, in which case a particular protocol must be

specified by Protocol. The protocol number to use depends on the communication domain in which communication

will take place.

For TCP and UDP sockets, the protocol number MUST be specified as 0. For SOCK_RAW sockets, the protocol

number should be the value returned by getprotobyname().

SYS$CANCEL
Cancels any I/O IOSB status of SS$_CANCEL.

Outstanding I/O operations are automatically cancelled at image exit.

For more information on SYS$CANCEL, see the OpenVMS System Services Reference Manual.

FORMAT

Status = SYS$CANCEL(VMS_Channel);

SYS$DASSGN
Equivalent to the socket_close() function. When you deassign a channel, any outstanding I/O is completed with an

IOSB status of SS$_CANCEL. Deassigning a channel closes the network connection.

I/O channels are automatically deassigned at image exit.

For more information on SYS$DASSGN, see the OpenVMS System Services Reference Manual.

FORMAT

Status = SYS$DASSGN(VMS_Channel);

4. SNMP Extensible Agent API Routines

This chapter is for application programmers. It describes the Application Programming Interface (API) routines

required for an application program to export private Management Information Bases (MIBs) using the MultiNet

SNMP agent.

To be able to use your private Management Information Base (MIB) with MultiNet's SNMP agent, develop a

shareable image that exports the following application programming interface routines, in addition to routines you

may need to access the MIB variables:

SnmpExtensionInit

Called by the SNMPD agent after startup to initialize the MIB

subagent

SnmpExtensionInitEx

Registers multiple subtrees with the subagent (called by the SNMPD

agent at startup only implemented)

SnmpExtensionQuery

Completes the MIB subagent query (called by the SNMPD agent to

handle a get, getnext, or set request)

SnmpExtensionTrap

Sends an enterprise-specific trap (called by the SNMPD agent when

the subagent alerts the agent that a trap needs to be set)

Note! The routine names used in this API are taken from the Microsoft SNMP Extension Agent for Windows NT.

The SNMP shareable images need to be configured for the SNMP agent to interact with them.

See the Configuring MultiNet SNMP Agents chapter of the MultiNet for OpenVMS Installation and Administrator’s

Guide for details on configuring the SNMP agent.

SNMP subagent developers should use the include file SNMP_COMMON.H. found in the

MULTINET_COMMON_ROOT:[MULTINET.INCLUDE] directory. This file defines the data structures the API

uses.

For details on MultiNet's SNMP agent, see Configuring MultiNet SNMP Agents in the MultiNet for OpenVMS

Installation and Administrator’s Guide.

Requirements
You require the following before using the SNMP extensible agent API routines:

• Working knowledge of SNMP; specifically the following RFCs:

– RFC 1155, Structure and Identification of Management Information for TCP/IP-based Internets

– RFC 1157, A Simple Network Management Protocol (SNMP)

– RFC 1213, Management Information Base for Network Management of TCP/IP-based internets: MIB-II

• Working knowledge of OpenVMS shareable images

Linking the Extension Agent Image
To link the Extension Agent Image you need to create an option file. The two examples below are for VAX systems

and Alpha Systems, respectively.

VAX

!Note: Exclude SnmpExtensionInitEx if it is not needed.

!See the definition of this routine.

!

UNIVERSAL=SnmpExtensionInit, -

SnmpExtensionQuery, -

SnmpExtensionTrap, -

SnmpExtensionInitEx

SYS$SHARE:VAXCRTL/SHARE

!

!List your object/library files here

Alpha

!Note: Exclude SnmpExtensionInitEx if it is not needed.

!See the definition of this routine.

!

SYMBOL_VECTOR=(SnmpExtensionInit=PROCEDURE, -

SnmpExtensionQuery=PROCEDURE, -

SnmpExtensionTrap=PROCEDURE, -

SnmpExtensionInitEx=PROCEDURE)

!

!List your object/library files here

Your link statement should then look like this:

$ LINK /SHARE= image-name option-file/OPT

image-name is the name of the shareable image you want to build, and option-file is the option file mentioned above.

Installing the Extension Agent Image
You should copy the shareable image you build for your SNMP subagent to the SYS$SHARE.

CAUTION! Since the shareable image is loaded into the same process address space as the SNMPD server, an access violation

by the subagent shareable image can crash the server application. Ensure the integrity of your shareable image by

testing it thoroughly. Shareable image errors can also corrupt the server's memory space or may result in memory or

resource leaks.

Debugging Code
SNMP subagent developers can use a debug logical, MULTINET_SNMP_DEBUG, to set certain debug masks.

Define the logical as follows and use the mask values in Debugging Mask Values :

$ DEFINE MULTINET_SNMP_DEBUG mask

Table 4-1 Debugging Mask Values

Mask Value Description

0010 Raw SNMP input

0020 Raw SNMP output

0040 ASN.1 encoded message input

0080 ASN.1 encoded message output

1000 SNMP Subagent Developer debug mask (prints events and statuses)

Subroutine Reference
The following pages include the subroutine descriptions.

SnmpExtensionInit
Initializes the SNMP subagent and registers the subagent in the SNMPD agent. The subagent calls this routine at

startup.

Format

status = SnmpExtensionInit (trap-alert-routine, time-zero-reference, trap-event, supported-view)

Return Values

TRUE Subagent initialized successfully

FALSE Subagent initialization failed

Arguments

trap-alert-routine

OpenVMS usage: address

type: integer

access: read only

mechanism: by value

Address of the routine the subagent should call when it is ready to send a trap.

trap-event

OpenVMS usage: unsigned long

type: longword (unsigned)

access: write only

mechanism: by reference

Currently unused.

time-zero-reference

OpenVMS usage: unsigned long

type: longword (unsigned)

access: read only

mechanism: by value

Time reference the SNMP agent provides, in hundredths of a second. Use C routines time() and difftime() to

calculate MIB uptime (in hundredths of a second).

supported-view

OpenVMS usage: object identifier

type: AsnOBJID (see the SNMP_COMMON.H file)

access: write only

mechanism: by reference

Prefix of the MIB tree the subagent supports.

SnmpExtensionInitEx
Registers multiple MIB subtrees with agent.

This routine is called multiple times, once for each MIB subtree that needs to be registered. If the routine passes

back the first or next MIB subtree, return with TRUE. If all the MIB subtrees were passed back, return with FALSE.

Note! Only implement this routine if you have multiple MIB subtrees in your extendible agent. The MultiNet SNMP agent

executes this routine if it exists and overwrites MIB information set by SnmpExtensionInit.

Format

status = SnmpExtentionInitEx (supported-view)

Return Values

TRUE Returning first or next MIB subtree

FALSE All MIB subtrees were passed back

Arguments

supported-view

OpenVMS usage: object identifier

type: AsnOBJID (see the SNMP_COMMON.H file)

access: write only

mechanism: by reference

Prefix of the MIB tree the subagent supports.

Example

int SnmpExtensionInitEx (AsnOBJID *supportedView)

 {

 int view1[] = {1, 3, 6, 1, 4, 1, 12, 2, 1 };

 int view2[] = {1, 3, 6, 1, 4, 1, 12, 2, 2 };

 int view3[] = {1, 3, 6, 1, 4, 1, 12, 2, 5 };

 static int whichView = 0;

 switch (whichView++) {

 case 0:

 supportedView->idLength = 9;

 memcpy (supportedView->ids, view1, 9* sizeof (int));

 break;

 case 1:

 supportedView->idLength = 9;

 memcpy (supportedView->ids, view2, 9* sizeof (int));

 break;

 case 2:

 supportedView->idLength = 9;

 memcpy (supportedView->ids, view3, 9* sizeof (int));

 break;

 default:

 return (0);

 }

 return (1);

 }

SnmpExtensionQuery
Queries the SNMP subagent to get or set a variable in the MIB tree served by the subagent. This routine is called by

the SNMPD agent to handle a get, getnext, or set request.

Format

status = SnmpExtensionQuery (request-type, var-bind-list, error-status, error-index)

Return Values

TRUE Operation successfully completed

FALSE Operation could not be carried out by the subagent;

use error-status and error-index to provide more information

Arguments

request-type

OpenVMS usage: byte

type: unsigned char

access: read only

mechanism: by value

Identifies the type of request GET, SET, or GET NEXT.

var-bind-list

OpenVMS usage: user defined

type: RFC1157VarBindList (see the SNMP_COMMON.H file)

access: read-write

mechanism: by value

The list of name-value pairs used in the request. For a GET request the value is filled by the subagent and for a SET

request, the value is be used to change the current variable value in the subagent.

error-status

OpenVMS usage: integer

type: integer

access: write only

mechanism: by reference

Status of a failed operation.

error-index

OpenVMS usage: integer

type: integer

access: write only

mechanism: by reference

The index of the variable in the variable binding list for which the operation failed.

SnmpExtensionTrap
Sends a trap from the subagent. If the subagent wants to send a trap, it must first call the trap-alert-routine

(see the SnmpExtensionInit routine). The trap-alert-routine should be called with two parameters (objids,

idlength). For example:

If the Process Software’s DNS process wants to send trap information to all the communities that are interested then

the DNS server must be running and the objectids passed are 1, 3, 6, 1, 4, 1, 105, 1, 2, 1, 1, 1, 3, 1, and the length of

14.

• 1,3,6,1,4,1 is the default prefix

• 105 is the enterprise id for Process Software

• 1,2,1,1,1 are the Mib object ids for the DNS process

• 3,1 are the objectids for DNSUpTrap

The SNMP agent trap-alert-routine creates a table of all received trap mibs. For each of these entries, the agent then

calls the subagent's SnmpExtensionTrap routine when it is ready to send the trap.

Note! The SNMP agent calls the subagent from inside the trap-alert-routine.

Format

status = SnmpExtensionTrap (enterprise, generic-trap, specific-trap, time-stamp, var-bind-list)

Return Values

TRUE More traps to be generated

FALSE No more traps to be generated

Arguments

enterprise

OpenVMS usage: array of object identifiers

type: AsnOBJID (see the SNMP_COMMON.H file)

access: write only

mechanism: by reference

The prefix of the MIB for the enterprise sending the trap.

generic-trap

OpenVMS usage: integer

type: integer

access: write only

mechanism: by reference

The generic enterprise trap id(6).

specific-trap

OpenVMS usage: integer

type: integer

access: write only

mechanism: by reference

The enterprise-specific trap number.

Note! Since an enterprise can have many traps, the combination of enterprise id, generic trap, and specific trap should give

a unique identification for a trap.

time-stamp

OpenVMS usage: integer

type: integer (timeticks)

access: write only

mechanism: by reference

The time at which the trap was generated.

var-bind-list

OpenVMS usage: user defined

type: RFC1157VarBindList (see the SNMP_COMMON.H file)

access: read-write

mechanism: by value

The list of name-value pairs. This list contains name and value of the MIB variable for which the trap is generated.

5. RPC Fundamentals

Introduction
MultiNet RPC Services must be used with the HP C Socket Library.

This chapter is for RPC programmers. It provides basic information you need to know before using RPC Services to

write distributed applications, including:

• What RPC Services are

• What components are in RPC Services

• How RPC clients and servers communicate

• Important RPC concepts and terms

What Are RPC Services?
RPC Services are a set of software development tools that allow you to build distributed applications on OpenVMS

systems.

MultiNet Implementation
RPC Services are based on the Open Network Computing Remote Procedure Call (RPC) protocols developed by

Sun Microsystems, Inc. These protocols are defined in the following Requests for Comments (RFCs):

• RPC: Remote Procedure Call Protocol Specification, Version 2 (RFC 1057)

• XDR: External Data Representation Standard (RFC 1014)

Distributed Applications

A distributed application executes different parts of its programs on different hosts in a network. Computers on the

network share the processing workload, with each computer performing the tasks for which it is best equipped.

For example, a distributed database application might consist of a central database running on a VAX server and

numerous client workstations. The workstations send requests to the server. The server carries out the requests and

sends the results back to the workstations. The workstations use the results in other modules of the application.

RPCs allow programs to invoke procedures on remote hosts as if the procedures were local. RPC Services hides the

networking details from the application.

RPC Services facilitates distributed processing because it relieves the application programmer of performing low-

level network tasks such as establishing connections, addressing sockets, and converting data from one machine's

format to another.

Components of RPC Services
RPC Services comprises the following components:

Run-Time Libraries

(RTLs)

RPCGEN

Compiler

Port Mapper
 RPC Information

Run-Time Libraries (RTLs)
RPC Services provides a single shareable RTL. The library contains:

• RPC client and server routines

• XDR routines

The RPC RTL Management Routines, Chapter 10, and the chapters that follow it describe the RTLs in detail.

RPCGEN Compiler

RPCGEN is a compiler that creates the network interface portion of a distributed application. It effectively hides

from the programmer the details of writing and debugging low-level network interface code. The RPCGEN

Compiler, Chapter 8 , describes how to use RPCGEN.

Port Mapper

The Port Mapper helps RPC client programs connect to ports that are being used by RPC servers. A Port Mapper

runs on each host that implements RPC Services. These steps summarize how the Port Mapper works:

1 RPC servers register with the Port Mapper by telling it which ports they are using.

When an RPC client needs to reach a particular server, it supplies the Port Mapper with the numbers of

the remote program and program version it wants to reach. The client also specifies a transport protocol

(UDP or TCP). (provides details on these numbers.)

3 The Port Mapper provides the correct port number for the requested service. This process is called binding.

Once binding has taken place, the client does not have to call the Port Mapper for subsequent calls to

the same server. A service can register for different ports on different hosts. For example, a server can

register for port 800 on Host A and port 1000 on Host B. The Port Mapper is itself an RPC server and

uses the RPC RTL. The Port Mapper plays an important role in disseminating messages for broadcast

RPC. The Port Mapper is part of the Master Server Process. See the section for details.

RPC Information

Use the RPC information command to:

• Request a listing of all programs that are registered with the Port Mapper

You enter this command at the DCL prompt. (See RPC Information in Chapter 12, Building Distributed

Applications, for details.)

Client-Server Relationship
In RPC, the terms client and server do not describe particular hosts or software entities. Rather, they describe the

roles of particular programs in a given transaction. Every RPC transaction has a client and a server. The client is the

program that calls a remote procedure; the server is the program that executes the procedure on behalf of the caller.

A program can be a client or a server at different times. The program's role merely depends on whether it is making

the call or servicing the call.

External Data Representation (XDR)
External Data Representation (XDR) is a standard that solves the problem of converting data from one machine's

format to another.

RPC Services uses the XDR data description language to describe and encode data. Although similar to C language,

XDR is not a programming language. It merely describes the format of data, using implicit typing. XDR: External

Data Representation Standard (RFC 1014) defines the XDR language.

RPC Processing Flow
Remote and local procedure calls share some similarities. In both cases, a calling process makes arguments available

to a procedure. The procedure uses the arguments to compute a result, then returns the result to the caller. The caller

uses the results of the procedure and resumes execution.

Figure 5-1

 shows the underlying processing that makes a remote procedure call different from a local call.

The following steps describe the processing flow during a remote procedure call:

1 The client program passes arguments to the client stub procedure. (See Chapter 7, RPCGEN Compiler, for details on

how to create stubs.)

2 The client stub marshals the data by:

• Calling the XDR routines to convert the arguments from the local representation to XDR

• Placing the results in a packet

Using RPC RTL calls, the client stub sends the packet to the UDP or TCP layer for transmission to the server.

3 The packet travels on the network to the server, up through the layers to the server stub.

4 The server stub un-marshals the packet by converting the arguments from XDR to the local representation. Then it

passes the arguments to the server procedure.

Figure 5-1 RPC Processing Flow

Local Calls Versus Remote Calls
This section describes some of the ways in which local and remote procedure calls handle system crashes, errors,

and call semantics.

Handling System Crashes
Local procedure calls involve programs that reside on the same host. Therefore, the called procedure cannot crash

independently of the calling program.

Remote procedure calls involve programs that reside on different hosts. Therefore, the client program does not

necessarily know when the remote host has crashed.

Handling Errors
If a local procedure call encounters a condition that prevents the call from executing, the local operating system

usually tells the calling procedure what happened.

If a remote procedure call cannot be executed for some reason (e.g., errors occur on the network or remote host), the

client might not be informed of what happened. You may want to build a signaling or condition-handling

mechanism into the application to inform the client of such errors.

RPC returns certain types of errors to the client, such as those that occur when it cannot decode arguments. The RPC

server must be able to return processing-related errors, such as those that occur when arguments are invalid, to the

client. However, the RPC server may not return errors during batch processing or broadcast RPC.

Call Semantics

Call semantics determine how many times a procedure executes.

Local procedures are guaranteed to execute once and only once.

Remote procedures have different guarantees, depending on which transport protocol is used.

The TCP transport guarantees execution once and only once as long as the server does not crash. The UDP transport

guarantees execution at least once. It relies on the XID cache to prevent a remote procedure from executing multiple

times.

See for details on the XID cache.

Programming Interface
The RPC RTL is the programming interface to RPC. You may think of this interface as containing multiple levels.

The RPC RTL reference chapters describe each routine.

High-Level Routines

The higher-level RPC routines provide the simplest RPC programming interface. These routines call lower-level

RPC routines using default arguments, effectively hiding the networking details from the application programmer.

When you use high-level routines, you sacrifice control over such tasks as client authentication, port registration,

and socket manipulation, but you gain the benefits of using a simpler programming interface. Programmers using

high-level routines can usually develop applications faster than they can using low-level RPC routines.

You can use the RPCGEN compiler only when you use the highest-level RPC programming interface.

Mid-Level Routines
The mid-level routines provide the most commonly used RPC interface. They give the programmer some control

over networking tasks, but not as much control as the low-level routines permit.

For example, you can control memory allocation, authentication, ports, and sockets using mid-level routines.

The mid-level routines require you to know procedure, program, and version numbers, as well as input and output

types. Output data is available for future use. You can use the registerrpc and callrpc routines.

Low-Level Routines
The low-level routines provide the most complicated RPC interface, but they also give you the most control over

networking tasks such as client authentication, port registration, and socket manipulation. These routines are used

for the most sophisticated distributed applications.

Transport Protocols
RPC Services uses the transport protocols listed in RPC Transport Protocols. The RPC client and server must use

the same transport protocol for a given transaction.

Table 5-1 RPC Transport Protocols

Protocols Characteristics

UDP Unreliable datagram service

 Connectionless

 Used for broadcast RPC

 Maximum broadcast message size in either direction on an Ethernet line: 1500

 Execution is guaranteed at least once (see)

 Calls cannot be processed in batch

TCP Reliable

 Connection-oriented

 Can send an unlimited number of bytes per RPC call

 Execution is guaranteed once and only once

 Calls can be processed in batch

 No broadcasting

Note! You must use the HP C Socket Library with RPC Services.

XID Cache
The XID cache stores responses the server has sent. When the XID cache is enabled, the server does not have to

recreate every response to every request. Instead, the server can use the responses in the cache. Thus, the XID cache

saves computing resources and improves the performance of the server.

Only the UDP transports can use the XID cache. The reliability of the TCP transport generally makes the XID cache

unnecessary. UDP is inherently unreliable.

XID Cache Differences shows how the XID caches differ for the UDP and UDPA/TCPA transports.

Table 5-2 XID Cache Differences

UDP Transport UDPA/TCPA Transports

Places every response in the XID

cache

Allows the server to specify which responses are to

be cached, using the svcudp_enablecache and

svctcpa_enablecache routines

XID cache cannot be disabled Requires you to disable the XID cache after use

Cache Entries
Each entry in the XID cache contains:

• The encoded response that was sent over the network

• The internet address of the client that sent the request

• The transaction ID that the client assigned to the request

Cache Size
You determine the size of the XID cache. Consider these factors:

• How many clients are using the server.

• Approximately how long the cache should save the responses.

• How much memory you can allocate. Each entry requires about 8Kbytes.

The more active the server is, the less time the responses remain in the cache.

Execution Guarantees
As explained earlier in , remote procedures have different execution guarantees, depending on which transport

protocol is used. The XID cache affects the execution guarantee.

The TCP transport guarantees execution once and only once as long as the server does not crash. The UDP transport

guarantees execution at least once. If the XID cache is enabled, a UDP procedure is unlikely to execute more than

once.

Enabling XID Cache

Use the svcudp_enablecache routine to enable the XID cache. This routine is described in the RPC RTL reference

chapters.

Not enabling the XID cache saves memory.

Broadcast RPC
Broadcast RPC allows the client to send a broadcast call to all Port Mappers on the network and wait for multiple

replies from RPC servers.

For example, a host might use a broadcast RPC message to inform all hosts on a network of a system shutdown.

Normal RPC vs Broadcast RPC shows the differences between normal RPC and broadcast RPC.

Table 5-3 Normal RPC vs Broadcast RPC

Normal RPC Broadcast RPC

Client expects one answer Client expects many answers

Can use TCP or UDP Requires UDP

Server always responds to errors Server does not respond to errors;

Client does not know when errors occur

Port Mapper is desirable, but not

required if you use fixed port numbers

Requires Port Mapper services

Broadcast RPC sends messages to only one port — the Port Mapper port — on every host in the network. On each

host, the Port Mappers pass the messages to the target RPC server. The servers compute the results and send them

back to the client.

Identifying Remote Programs and Procedures
The RPC client must uniquely identify the remote procedure it wants to reach. Therefore, all remote procedure calls

must contain these three fields:

• A remote program number

• The version number of the remote program

• A remote procedure number

Remote Program Numbers
A remote program is a program that implements at least one remote procedure. Remote programs are identified by

numbers that you assign during application development. Use Remote Program Numbers to determine which

program numbers are available. The numbers are in groups of hexadecimal 20000000.

Table 5-4 Remote Program Numbers

Range Purpose

0 to 1FFFFFFF Defined and administered by Sun Microsystems. Should be identical

for all sites. Use only for applications of general interest to the

Internet community.

20000000 to 3FFFFFFF Defined by the client application program. Site-specific. Use

primarily for new programs.

40000000 to 5FFFFFFF Use for applications that generate program numbers dynamically.

60000000 to FFFFFFFF Reserved for the future. Do not use.

Remote Version Numbers
Multiple versions of the same program may exist on a host or network. Version numbers distinguish one version of a

program from another. Each time you alter a program, remember to increment its version number.

Remote Procedure Numbers
A remote program may contain many remote procedures. Remote procedures are identified by numbers that you

assign during application development. Follow these guidelines when assigning procedure numbers:

• Use 1 for the first procedure in a program. (Procedure 0 should do nothing and require no authentication to the

server.)

• For each additional procedure in a program, increment the procedure number by one.

Additional Terms
Before writing RPC applications, you should be familiar with the terms in Additional Terms .

Table 5-5 Additional Terms

Term Definition

Channel An OpenVMS term referring to a logical path that connects a process to a

physical device, allowing the process to communicate with that device. A

process requests OpenVMS to assign a channel to a device. Refer to Hewlett-

Packard’s documentation for more information on channels.

Client

handle

Information that uniquely identifies the server to which the client is sending the

request. Consists of the server's host name, program number, program version

number, and transport protocol.

See the following routines in the RPC RTL Client Routines:

authnone_create clnt_create clnt_perror / clnt_sperror

authunix_create clnttcp_create

authunix_create_default clntudp_create / clntudp_bufcreate

Port An abstract point through which a datagram passes from the host layer to the

application layer protocols.

Server

handle

Information that uniquely identifies the server. Content varies according to the

transport being used. See the following routines in RPC RTL Server Routines:

svcudp_create / svctcp_create svc_destroy

svc_freeargs svc_getargs

svc_register svc_sendreply

Socket An abstract point through which a process gains access to the Internet. A

process must open a socket and bind it to a specific destination. Note: The HP

C Socket Library must be used with RPC Services.

6. Building Distributed Applications with RPC

Introduction
This chapter is for RPC programmers. It explains:

• What components a distributed application contains

• How to use RPC to develop a distributed application, step by step

• How to get RPC information

Distributed Application Components
Application Components lists the components of a distributed application.

Table 6-1 Application Components

Component Description

Main program (client) An ordinary main program that calls a remote procedure as if local

Network interface Client and server stubs, header files, XDR routines for input

arguments and results

Server procedure Carries out the client's request (at least one is required)

These components may be written in any high-level language. The RPC Run-Time Library (RTL) routines are

written in the C language.

What You Need to Do
The following steps summarize what you need to do to build a distributed application:

1 Design the application.

2 Write an RPC interface definition. Compile it using RPCGEN, then edit the output files as necessary. (This step is

optional. An RPC interface definition is not required. If you do not write one, proceed to step 3.)

3 Write any necessary code that RPCGEN did not generate.

4 Compile the RPCGEN output files, server procedures, and main program using the appropriate language

compiler(s). RPCGEN output files must be compiled using HP C.

5 Link the object code, making sure you link in the RPC RTL.

6 Start the Port Mapper on the server host.

7 Execute the client and server programs.

Step 1: Design the Application
You must write a main (client) program and at least one server procedure. The network interface, however, may be

hand-written or created by RPCGEN. The network interface files contain client and server stubs, header files, and

XDR routines. You may edit any files that RPCGEN creates.

When deciding whether to write the network interface yourself, consider these factors:

Is execution time critical? Your hand-written code may execute faster than code that

RPCGEN creates.

Which RPC interface

layer do you want to use?

RPCGEN permits you to use only the highest layer interface. If

you want to use the lower layers, you must write original code.

The RPC Fundamentals, Chapter 6, describes the

characteristics of each RPC interface layer.

Which transport protocol

do you want to use?

You may write your own XDR programs, but it is usually best to let RPCGEN handle these.

Step 2: Write and Compile the Interface Definition
An interface definition is a program the RPCGEN compiler accepts as input. The RPCGEN Compiler, Chapter 8,

explains exactly what interface definitions must contain.

Interface definitions are optional. If you write the all of the network interface code yourself, you do not need an

interface definition.

You must write an interface definition if you want RPCGEN to generate network interface code.

After compiling the interface definition, edit the output file(s).

If you are not writing an interface definition, skip this step and proceed to step 3.

Step 3: Write the Necessary Code
Write any necessary code that RPCGEN did not create for you. Coding References lists the texts you may use as

references.

Table 6-2 Coding References

Reference Purpose

RFC 1057 Defines the RPC language. Use for writing interface definitions.

RFC 1014 Defines the XDR language. Use for writing XDR filter routines.

The RPC RTL Client

Routines chapter and

those that follow

Defines each routine in the RPC RTL. Use for writing stub procedures

and XDR filter routines.

Step 4: Compile All Files
Compile the RPCGEN output files, server procedures, and main program separately.

HP C (VAX and Alpha):

$ CC /STANDARD=RELAXED /WARNING=DISABLE=(IMPLICITFUNC) filename.C

Step 5: Link the Object Code
Link the object code files. Make sure you link in the RPC RTL. Use the following command.

HP C (VAX and Alpha):

$ LINK filenames, SYS$INPUT /OPTIONS

TCPIP$RPCXDR_SHR /SHARE

SYS$SHARE:DECC$SHR /SHARE

Ctrl/Z

After entering the command, press Ctrl/Z.

To avoid repetitive data entry, you may create an OpenVMS command procedure to execute these commands.

Step 6: Start the Port Mapper
The Port Mapper must be running on the server host. If it is not running, use the MULTINET

CONFIGURE/SERVER command to start it.

Step 7: Execute the Client and Server Programs
Perform these steps:

1 Run the server program interactively to debug it, or using the /DETACHED qualifier. Refer to HP’s documentation

for details.

2 Run the client main program.

Obtaining RPC Information
You can:

• Request a listing of all programs registered with a Port Mapper.

Requesting a Program Listing

To request a listing of all programs that are registered with the Port Mapper, enter the MULTINET SHOW

/RPC_PORTMAP command in the following format at the DCL prompt:

$ MULTINET SHOW /RPC_PORTMAP

If you add /REMOTE_HOST=hostname to this command:

$ MULTINET SHOW /RPC_PORTMAP /REMOTE_HOST=[host-name]

Specify the domain name of the host on which the Port Mapper resides. If you omit this parameter, RPC uses the

name of the local host. Sample RPC Information Output shows an example.

Example 6-1 Sample RPC Information Output

$ MULTINET SHOW/RPC_PORTMAP

 MultiNet registered RPC programs:

 Program Version Protocol Port

 ------- ------- -------- ----

 NLOCKMGR 3 TCP 2049

 NLOCKMGR 1 TCP 2049

 NLOCKMGR 3 UDP 2049

 NLOCKMGR 1 UDP 2049

 NFS 2 TCP 2049

 NFS 2 UDP 2049

 MOUNT 1 TCP 1024

 MOUNT 1 UDP 1028

 STATUS 1 TCP 1024

 STATUS 1 UDP 1024

7. RPCGEN Compiler

Introduction
This chapter is for RPC programmers.

What Is RPCGEN?
RPCGEN is the RPC Protocol Compiler. This compiler creates the network interface portion of a distributed

application, effectively hiding from the programmer the details of writing and debugging low-level network

interface code.

You are not required to use RPCGEN when developing a distributed application. If speed and flexibility are critical

to your application, you can write the network interface code yourself, using RPC Run-Time Library (RTL) calls

where they are needed.

Compiling with RPCGEN is one step in developing distributed applications. See Chapter 7, Building Distributed

Applications, for a complete description of the application development process.

RPCGEN allows you to use the highest layer of the RPC programming interface. The RPC Fundamentals, Chapter

6, provides details on these layers.

Software Requirements
The following software must be installed on your system before you can use RPCGEN:

VMS Version 5.0 or later HP C compiler Version 3.2 or later

Input Files
The RPCGEN compiler accepts as input programs called interface definitions, written in RPC Language (RPCL), an

extension of XDR language. RFC 1057 and RFC 1014 describe these languages in detail.

An interface definition must always contain the following information:

• Remote program number

• Version number of the remote program

• Remote procedure number(s)

• Input and output arguments

Interface Definition shows a sample interface definition.

Example 7-1 Interface Definition

/*

** RPCGEN input file for the print file RPC batching example.

**

** This file is used by RPCGEN to create the files PRINT.H and PRINT_XDR.C

** The client and server files were developed from scratch.

*/

const MAX_STRING_LEN = 1024; /* maximum string length */

/*

** This is the information that the client sends to the server

*/

struct a_record

{

 string ar_buffer< MAX_STRING_LEN>;

};

program PRINT_FILE_PROG

{ version PRINT_FILE_VERS_1

 {

 void PRINT_RECORD(a_record) = 1;

 u_long SHOW_COUNT(void) = 2;

 } = 1;

} = 0x20000003;

/* end file PRINT.X */

The default extension for RPCGEN input files is .X.

You do not need to call the RPC RTL directly when writing an interface definition. RPCGEN inserts the necessary

library calls in the output file.

Output Files
RPCGEN output files contain code in C language. RPCGEN Output Files lists the RPCGEN output files and

summarizes their purpose. You can edit RPCGEN output files during application development.

Table 7-1 RPCGEN Output Files

File Purpose

Client and server

stub calls

Interface between the network and the client and server programs. Stubs

use RPC RTL to communicate with the network.

XDR routines Convert data from a machine's local data format to XDR for mat, and vice

versa.

Header Contains common definitions, such as those needed for any structures

being passed.

Invoking RPC explains how to request specific output files.

RPCGEN File Naming Conventions shows the conventions you should use to name output files.

Table 7-2 RPCGEN File Naming Conventions

File Output Filename

Client stub inputname_CLNT.C

Server stub inputname_SVC.C

Header file inputname.H

XDR filter routines inputname_XDR.C

inputname is the name of the input file. For example, if the input file is TEST.X, the server stub is TEST_SVC.C.

When you use the RPCGEN command to create all output files at once, RPCGEN creates the output filenames listed

in RPCGEN File Naming Conventions by default. When you want to create specific kinds of output files, you must

specify the names of the output files in the command line.

Preprocessor Directives
RPCGEN runs the input files through the C preprocessor before compiling. You can use the macros listed in Macros

with the #ifdef preprocessor directive to indicate that specific lines of code in the input file are to be used only for

specific RPCGEN output files.

Table 7-3 Macros

File Macro

Client stub RPC_CLNT

Server stub RPC_SVC

Header file RPC_HDR

XDR filter routines RPC_XDR

Invoking RPCGEN
This section explains how to invoke RPCGEN to create:

• All output files at once

• Specific output files

• Server stubs for either the TCP or UDP transport

Creating All Output Files at Once

This command creates all four RPCGEN output files at once:

RPCGEN input

where input is the name of the file containing the interface definition.

In the following example, RPCGEN creates the output files PROGRAM.H, PROGRAM_CLNT.C,

PROGRAM_SVC.C, and PROGRAM_XDR.C:

RPCGEN PROGRAM.X

Creating Specific Output Files

This command creates only the RPCGEN output file that you specify:

RPCGEN {-c | -h | -l | -m} [-o output] input

-c Creates an XDR filter file (_XDR.C)

-h Creates a header file (.H)

-l Creates a client stub (_CLNT.C)

-m Creates a server stub (_SVC.C) that uses both the UDP and TCP transports

-o Specifies an output file (or the terminal if no output file is given)

output Name of the output file

input Name of an interface definition file with a .X extension

Follow these guidelines:

• Specify just one output file (-c, -h, -l, or -m) in a command line

• If you omit the output file, RPCGEN sends output to the terminal screen

Examples:

1 RPCGEN -h PROGRAM

RPCGEN accepts the file PROGRAM.X as input and sends the header file output to the screen, because no output

file is specified.

2 RPCGEN -l -o PROGRAM_CLNT.C PROGRAM.X

RPCGEN accepts the PROGRAM.X file as input and creates the PROGRAM_CLNT.C client stub file.

3 RPCGEN -m -o PROGRAM_SVC.C PROGRAM.X

RPCGEN accepts the PROGRAM.X file as input and creates the PROGRAM_SVC.C server stub file. The server

can use both the UDP and TCP transports.

Creating Server Stubs for TCP or UDP Transports

This command creates a server stub file for either the TCP or UDP transport:

RPCGEN -s {udp | tcp} [-o output] input

-s Creates a server (_SVC.C) that uses either the UDP or TCP transport (with -s, you

must specify either udp or tcp; do not also use -m)

udp Creates a UDP server

tcp Creates a TCP server

-o Specifies an output file (or the terminal if no output file is given)

output Name of the output file

input Name of an interface definition file with a .X extension

If you omit the output file, RPCGEN sends output to the terminal screen.

In this example, RPCGEN accepts the PROGRAM.X file as input and creates the PROGRAM_SVC.C output file,

containing a TCP server stub:

RPCGEN -s tcp -o PROGRAM_SVC.C PROGRAM.X

Error Handling
RPCGEN stops processing when it encounters an error. It indicates which line the error is on.

Restrictions
RPCGEN does not support the following:

• The syntax int x, y; . You must write this as int x; int y;

8. RPC RTL Management Routines

Introduction
This chapter is for RPC programmers. It introduces RPC Run-Time Library (RTL) conventions and documents the

management routines in the RPC RTL. These routines are the programming interface to RPC.

Management Routines
The RPC RTL contains:

• RPC management routines

• RPC client and server routines for the UDP and TCP transport layers

• On VAX and Alpha systems, RPC provides a single shareable image accessed via the TCPIP$RPCXDR_SHR

logical. This shareable image contains routines for all of the HP C floating-point types. The correct routines will be

called automatically based on the compiler options used to compile the RPC application. See the Hewlett-Packard C

documentation for how to use the floating-point compiler options.

Chapter 7, Building Distributed Applications with RPC, explains how to link in the RPC RTL.

Routine Name Conventions
In this chapter, all routines are documented according to their standard UNIX names.

Header Files
All RPC programs include the file named RPC.H. Locations for this file are TCPIP$RPC:RPC.H

The RPC.H file includes the files listed in Header Files Included In RPC.H .

Table 8-1 Header Files Included In RPC.H

Filename Purpose

AUTH.H Used for authentication.

AUTH_UNIX.H Contains XDR definitions for UNIX-style authentication.

CLNT.H Contains various RPC client definitions.

IN.H Defines structures for the internet and socket addresses (in_addrand and

sockaddr_in). This file is part of the C Socket Library.

RPC_MSG.H Defines the RPC message format.

SVC.H Contains various RPC server definitions.

SVC_AUTH.H Used for server authentication.

TYPES.H Defines UNIX C data types.

XDR.H Contains various XDR definitions.

NETDB.H Defines structures and routines to parse /etc/rpc.

There is an additional header file not included by RPC.H that is used by xdr_pmap and xdr_pmaplist routines. The

file name is pmap_prot.h, and the location is:

TCPIP$RPC:PMAP_PROT.H

Management Routines
RPC management routines retrieve and maintain information that describes how a process is using RPC. This

section describes each management routine and function in detail. The following information is provided for each

routine:

• Format

• Arguments

• Description

• Diagnostics, or status codes returned, if any

The management routines are

get_myaddress getrpcbynumber getrpcport

get_myaddress
Returns the internet address of the local host.

Format

#include

void get_myaddress (struct sockaddr_in *addr);

Argument

addr

Address of a sockaddr_in structure that will be loaded with the host internet address. The port number is always

set to htons(PMAPPORT).

Description

The get_myaddress routine returns the internet address of the local host without doing any name translation or

DNS lookups.

getrpcbynumber
Gets an RPC entry.

Format

#include

struct rpcent *getrpcbynumber(number)

int number;

Argument

number

Program name or number.

Description

The getrpcbynumber routine returns a pointer to an object with the following structure containing the broken-out

fields of a line in the RPC program number database, /etc/rpc.

struct rpcent {

 char *r_name; /* name of server for this RPC program */

 char **r_aliases; /* alias list */

 long r_number; /* RPC program number */

 };

The members of this structure are:

r_name Name of the server for this RPC program

r_aliases Zero-terminated list of alternate names for the RPC program

r_number RPC program number for this service

The getrpcbynumber routine sequentially searches from the beginning of the file until a matching RPC program

name or program number is found, or until an EOF is encountered.

Diagnostics

A NULL pointer is returned on EOF or error.

getrpcport
Gets an RPC port number.

Format

int getrpcport(host, prognum, versnum, proto)

char *host;

int prognum, versnum, proto;

Arguments

host

Host running the RPC program.

prognum

Program number.

proto

Protocol name. Must be IPPROTO_TCP or IPPROTO_UDP.

Description

The getrpcport routine returns the port number for version versnum of the RPC program prognum running on

host and using protocol proto.

It returns 0 if it cannot contact the portmapper, or if prognum is not registered. If prognum is registered but not with

versnum, it still returns a port number (for some version of the program), indicating that the program is indeed

registered. The version mismatch is detected on the first call to the service.

9. RPC RTL Client Routines

Introduction
This chapter is for RPC programmers. It documents the client routines in the RPC Run-Time Library (RTL). These

routines are the programming interface to RPC.

Common Arguments
Many client, Port Mapper, and server routines use the same arguments.

Common Arguments lists these arguments and defines their purpose. Arguments that are unique to each routine are

documented together with their respective routines in this and the following chapters

Table 9-1 Common Arguments

Argument Purpose

args_ptr Address of the buffer to contain the decoded RPC arguments.

auth RPC authentication client handle created by the authnone_create,

authunix_create, or authunix_create_default routine.

clnt Client handle returned by any of the client create routines.

in Input arguments for the service procedure.

inproc XDR routine that encodes input arguments.

out Results of the remote procedure call.

outproc XDR routine that decodes output arguments.

procnum Number of the service procedure.

prognum Program number of the service program.

protocol Transport protocol for the service. Must be IPPROTO_UDP or IPPROTO_TCP.

s String containing the message of your choice. The routines append an error

message to this string.

sockp Socket to be used for this remote procedure call. If sockp is RPC_ANYSOCK,

the routine creates a new socket and defines sockp. The clnt_destroy routine

closes the socket.

If sockp is a value other than RPC_ANYSOCK, the routine uses this socket

and ignores the internet address of the server.

versnum Version number of the service program.

xdr_args XDR procedure that describes the RPC arguments.

xdrs Structure containing XDR encoding and decoding information.

xprt RPC server handle.

Client Routines
The client routines are called by the client main program or the client stub procedures.

The following sections describe each client routine in detail. The client routines are

auth_destroy clnt_destroy

authnone_create clnt_geterr

authunix_create clnt_pcreateerror / c

authunix_create_default clnt_perrno / c

callrpc clnt_perror / c

clnt_broadcast clntraw_create

clnt_call clnttcp_create

clnt_control clntudp_create / c

clnt_create

auth_destroy

A macro that destroys authentication information associated with an authentication handle.

Format

void auth_destroy (AUTH *auth)

Argument

auth

RPC authentication client handle created by the authnone_create, authunix_create, or authunix_create_default

routine.

Description

Use auth_destroy to free memory that was allocated for authentication handles. This routine undefines the value of

auth by deallocating private data structures.

Do not use this memory space after auth_destroy has completed. You no longer own it.

See Also

authnone_create, authunix_create, authunix_create_default

authnone_create

Creates and returns a null RPC authentication handle for the client process.

Format

#include

AUTH *authnone_create();

Arguments

None.

Description

This routine is for client processes that require no authentication. RPC uses it as a default when it creates a client

handle.

See Also

authnone_create, authunix_create_default, clnt_create, clntraw_create, clnttcp_create,

clntudp_create / c

authunix_create

Creates and returns an RPC authentication handle for the client process. Use this routine when the server requires

UNIX-style authentication.

Format

#include

AUTH *authunix_create (char *host, int uid, int gid, int len, int gids);

Arguments

host

Address of the name of the host that created the authentication information. This is usually the local host running the

client process.

uid

User ID of the person who is executing this process.

gid

User's group ID.

len

Number of elements in the *gids array.

gids

Address of the array of groups to which the user belongs.

Description

Since the client does not validate the uid and gid, it is easy to impersonate an unauthorized user. Choose values the

server expects to receive. The application must provide OpenVMS-to-UNIX authorization mapping.

You can use a Socket Library lookup routine to get the host name.

See Also

authnone_create, authunix_create_default

authunix_create_default

Calls the authunix_create routine and provides default values as arguments.

Format

#include

AUTH *authunix_create_default()

Arguments

See below.

Description

Like the authunix_create routine, authunix_create_default provides UNIX-style authentication for the client process.

However, authunix_create_default does not require you to enter any arguments. Instead, this routine provides default

values for the arguments used by authunix_create, listed in Default Arguments .

Table 9-2 Default Arguments

Argument Default Value

host local host domain name

uid getuid ()

gid getgid ()

len 0

gids 0

You can replace this call with authunix_create and provide appropriate values.

Example

auth_destroy(client->cl_auth);

client->cl_auth = authunix_create_default();

This example overrides the authnone_create routine, where client is the value returned by the clnt_create,

clntraw_create, clnttcp_create, or clntudp_create / c routine.

See Also

callrpc

callrpc

Format

#include

int callrpc (char *host, u_long prognum, u_long versnum, u_long procnum, xdrproc_t

inproc, u_char *in,

xdrproc_t outproc, u_char *out);

Arguments

host

Host where the procedure resides.

prognum, versnum, procnum, inproc, in, outproc, out

See Common Arguments for a description of the above arguments.

Description

The callrpc routine performs the same functions as the clnt_create, and clnt_destroy routines.

Since the callrpc routine uses the UDP transport protocol, messages can be no larger than 8Kbytes. This routine does

not allow you to control timeouts or authentication.

If you want to use the TCP transport, use the clnt_create or clnttcp_create routine.

Diagnostics

The callrpc routine returns zero if it succeeds, and the value of enum clnt_stat cast to an integer if it fails.

You can use the clnt_perrno / c routine to translate failure status codes into messages.

See Also

clnt_broadcast, clnt_call, clnt_create, clnt_destroy, clnt_perrno / c, clnttcp_create

clnt_broadcast

Broadcasts a remote procedure call to all local networks, using the broadcast address.

Format

#include

enum clnt_stat clnt_broadcast (u_long prognum, u_long versnum, u_long procnum,

xdrproc_t inproc, u_char *in,

xdrproc_t outproc, u_char *out, resultproc_t eachresult);

Arguments

prognum, versnum, procnum, inproc, in, outproc, out

See Common Arguments for a description of the above arguments.

eachresult

Each time clnt_broadcast receives a response, it calls the eachresult routine. If eachresult returns zero,

clnt_broadcast waits for more replies. If eachresult returns a nonzero value, clnt_broadcast stops waiting for replies.

The eachresult routine uses this form:

int eachresult(out, addr)

u_char *out;

struct sockaddr_in *addr;

out Contains the results of the remote procedure call, in the local data format.

*addr Is the address of the host that sent the results.

Description

The clnt_broadcast routine performs the same functions as the callrpc routine. However, clnt_broadcast sends a

message to all local networks, using the broadcast address. The clnt_broadcast routine uses the UDP protocol.

Maximum Message Size indicates how large a broadcast message can be.

Table 9-3 Maximum Message Size

Line Maximum Size

Ethernet 1500 bytes

proNet 2044 bytes

Diagnostics

This routine returns diagnostic values defined in the CLNT.H file for enum clnt_stat.

See Also

callrpc, clnt_perrno / c

clnt_call

A macro that calls a remote procedure.

Format

enum clnt_stat clnt_call (CLIENT *clnt, u_long procnum,

xdrproc_t inproc, u_char *in, xdrproc_t outproc, u_char *out,

struct timeval tout);

Arguments

clnt, procnum, inproc, in, outproc, out

See Common Arguments for a description of the above arguments.

tout

Time allowed for the results to return to the client, in seconds and microseconds. If you use the clnt_control routine

to change the CLSET_TIMEOUT code, this argument is ignored.

Description

Use the clnt_call routine after using clnt_create. After you have finished with the client handle, use the clnt_destroy

routine. You can use the clnt_perror / c routine to print messages for any errors that occurred.

Diagnostics

This routine returns diagnostic values defined in the CLNT.H file for enum clnt_stat.

See Also

clnt_control, clnt_create, clnt_destroy, clnt_perrno / c

clnt_control

A macro that changes or retrieves information about an RPC client process.

Format

bool_t clnt_control (CLIENT *clnt, u_long code, void *info);

Arguments

clnt

Client handle returned by any of the client create routines.

code

Code listed in Valid Codes .

Table 9-4 Valid Codes

Code Type Purpose

CLSET_TIMEOUT struct timeval Set total timeout

CLGET_TIMEOUT struct timeval Get total timeout

CLSET_RETRY_TIMEOUT* struct timeval Set retry timeout

CLGET_RETRY_TIMEOUT* struct timeval Get retry timeout

CLGET_SERVER_ADDR struct sockaddr_in Get server address

* Valid only for the UDP transport protocol.

The timeval is specified in seconds and microseconds. The total timeout is the length of time that the client waits

for a reply. The default total timeout is 25 seconds.

The retry time is the length of time that UDP waits for the server to reply before transmitting the request. The

default retry timeout is 5 seconds. You might want to increase the retry time if your network is slow.

For example, suppose the total timeout is 10 seconds and the retry time is five seconds. The client sends the request

and waits five seconds. If the client does not receive a reply, it sends the request again. If the client does not receive

a reply within five seconds, it does not send the request again.

If you use CLSET_TIMEOUT to set the timeout, theclnt_call routine ignores the timeout parameter it receives for all

future calls.

info

Address of the information being changed or retrieved.

Diagnostics

This routine returns TRUE if it succeeds, and FALSE if it fails.

See Also

clnt_call, clnt_create, clnt_destroy, clntraw_create, clnttcp_create, clntudp_create /

c

clnt_create

Creates an RPC client handle.

Format

#include

CLIENT *clnt_create (char *host, u_long prognum, u_long versnum, char *proto);

Arguments

host

Address of the string containing the name of the remote host where the server is located.

prognum, versnum

See Common Arguments for a description of the above arguments.

proto

Address of a string containing the name of the transport protocol. Valid values are UDP and TCP.

Description

The clnt_create routine creates an RPC client handle for prognum. An RPC client handle is a structure containing

information about the RPC client. The client can use the UDP or TCP transport protocol.

This routine uses the Port Mapper. You cannot control the local port.

The default sizes of the send and receive buffers are 8800 bytes for the UDP transport, and 4000 bytes for the TCP

transport.

The retry time for the UDP transport is five seconds.

Use the clnt_create routine instead of the callrpc or clnt_broadcast routines if you want to use one of the following:

• The TCP transport

• An authentication other than null

• More than one active client at the same time

You can also use clntraw_create to use the IP protocol, clnttcp_create to use the TCP protocol, or clntudp_create / c

to use the UDP protocol.

The clnt_create routine uses the global variable rpc_createerr. rpc_createerr is a structure that contains the

most recent service creation error. Use rpc_createerr if you want the client program to handle the error. The

value of rpc_createerr is set by any RPC client creation routine that does not succeed.

The rpc_createerr variable is defined in the CLNT.H file.

Diagnostics

The clnt_create routine returns the address of the client handle, or zero (if it could not create the client handle).

If the clnt_create routine fails, you can use the clnt_pcreateerror / c routine to obtain diagnostic information.

See Also

clnt_call, clnt_control, clnt_destroy, clntraw_create, clnt_pcreateerror / c,

clnttcp_create, clntudp_create / c

clnt_destroy

A macro that destroys an RPC client handle.

Format

void clnt_destroy (CLIENT *clnt);

Argument

clnt

Client handle returned by any of the client create routines.

Description

The clnt_destroy routine destroys the client's RPC handle by deallocating all memory related to the handle. The

client is undefined after the clnt_destroy call.

If theclnt_create routine had previously opened a socket, this routine closes the socket. Otherwise, the socket

remains open.

See Also

clnt_create, clntraw_create, clnttcp_create, clntudp_create / c

clnt_geterr

A macro that returns an error code indicating why an RPC call failed.

Format

void clnt_geterr (CLIENT *clnt, struct rpc_err *errp);

Arguments

clnt

Client handle returned by any of the client create routines.

errp

Address of the structure containing information that indicates why an RPC call failed. This information is the same

as clnt_stat contains, plus one of the following: the C error number, the range of server versions supported, or

authentication errors.

Description

This routine is primarily for internal diagnostic use.

Example

#define PROGRAM 1

#define VERSION 1

 CLIENT *clnt;

 struct rpc_err err;

 clnt = clnt_create("server name", PROGRAM, VERSION, "udp");

 /* calls to RPC library */

 clnt_geterr(clnt, &err);

This example creates a UDP client handle and performs some additional RPC processing. If an RPC call fails,

clnt_geterr returns the error code.

See Also

clnt_perror / c

clnt_pcreateerror / clnt_spcreateerror

Return a message indicating why RPC could not create a client handle.

Format

#include

void clnt_pcreateerror (char *s);

char *clnt_spcreateerror (char *s);

Argument

s

String containing the message of your choice. The routines append an error message to this string.

Description

The clnt_pcreateerror / c routine prints a message to SYS$OUTPUT.

The clnt_pcreateerror / c routine returns the address of a string. Use this routine if:

• You want to save the string.

• You do not want to use printf to print the message.

• The message format is different from the one that clnt_perrno / c supports.

The clnt_pcreateerror / c routine overwrites the string it returns, unless you save the results.

Use these routines when the clnt_create, clntraw_create, clnttcp_create, or clntudp_create / c routine fails.

See Also

clnt_create, clntraw_create, clnttcp_create, clntudp_create / c

clnt_perrno / clnt_sperrno

Return a message indicating why the callrpc or clnt_broadcast routine failed to create a client handle.

Format

#include

void clnt_perrno (enum clnt_stat stat);

char *clnt_sperrno (enum clnt_stat stat);

Argument

stat

Appropriate error condition. Values for stat are defined in the CLNT.H file.

Description

The clnt_perrno / c routine prints a message to SYS$OUTPUT.

The clnt_perrno / c routine returns the address of a string. Use this routine instead if:

• You want to save the string.

• You do not want to use printf to print the message.

• The message format is different from the one that clnt_perrno / c supports.

To save the string, copy it into your own memory space.

See Also

callrpc, clnt_broadcast

clnt_perror / clnt_sperror

Return a message if the clnt_call routine fails.

Format

#include

void clnt_perror (CLIENT *clnt, char *s);

char *clnt_sperror (CLIENT *clnt, char *s);

Arguments

clnt

See Common Arguments for a description of the above argument. String containing the message to output.

Description

Use these routines after clnt_call.

The clnt_perror / c routine prints an error message to SYS$OUTPUT.

The clnt_perror / c routine returns a string. Use this routine if:

• You want to save the string.

• You do not want to use printf to print the message.

• The message format is different from the one that clnt_perror / c supports.

The clnt_perror / c routine overwrites the string with each call. Copy the string into your own memory space if you

want to save it.

See Also

clnt_call, clnt_create, clntraw_create, clnttcp_create, clntudp_create / c

clntraw_create

Returns an RPC client handle. The remote procedure call uses the IP transport.

Format

#include

CLIENT *clntraw_create (struct sockaddr_in *addr,

u_long prognum, u_long versnum, int *sockp, u_long sendsize,

u_long recvsize);

Arguments

addr, prognum, versnum

See Common Arguments for a description of the above arguments.

sockp

Socket to be used for this remote procedure call. sockp can specify the local address and port number. If sockp is

RPC_ANYSOCK, then a port number is assigned. The example shown for the clntudp_create / c routine shows how

to set up sockp to specify a port. See Common Arguments for a description of sockp and RPC_ANYSOCK.

addr

Internet address of the host on which the server resides.

sendsize

Size of the send buffer. If you enter a value less than 100, then 4000 is used as the default.

recvsize

Size of the receive buffer. If you enter a value less than 100, then 4000 is used as the default.

Description

The clntraw_create routine creates an RPC client handle for addr, prognum, and versnum. The client uses the IP

transport. The routine is similar to the clnt_create routine, except clnttcp_create allows you to specify a socket and

buffer sizes. If you specify the port number as zero by using addr->sin_port, the Port Mapper provides the

number of the port on which the remote program is listening.

The transport used to pass messages to the service is actually a buffer within the process's address space, so the

corresponding RPC server should live in the same address space (see also svcraw_create). This allows simulation of

RPC and getting RPC overheads, such as round trip times, without kernel interference.

The clnttcp_create routine uses the global variable rpc_createerr, which is a structure that contains the most

recent service creation error. Use rpc_createerr if you want the client program to handle the error. The value of

rpc_createerr is set by any RPC client creation routine that does not succeed. The rpc_createerr variable is

defined in the CLNT.H file.

Diagnostics

The clntraw_createroutine returns the address of the client handle, or zero (if it could not create the client handle). If

the routine fails, use the clnt_pcreateerror / c routine to obtain additional diagnostic information.

See Also

clnt_call, clnt_control, clnt_create, clnt_destroy, clnt_pcreateerror / c,

clnttcp_create, clntudp_create / c

clnttcp_create

Returns an RPC client handle. The remote procedure call uses the TCP transport.

Format

#include

CLIENT *clnttcp_create (struct sockaddr_in *addr,

u_long prognum, u_long versnum, int *sockp, u_long sendsize,

u_long recvsize);

Arguments

addr, prognum, versnum

See Common Arguments for a description of the above arguments.

sockp

Socket to be used for this remote procedure call. sockp can specify the local address and port number. If sockp is

RPC_ANYSOCK, then a port number is assigned. The example shown for the clntudp_create / c routine shows how

to set up sockp to specify a port. See Common Arguments for a description of sockp and RPC_ANYSOCK.

addr

Internet address of the host on which the server resides.

sendsize

Size of the send buffer. If you enter a value less than 100, then 4000 is used as the default.

recvsize

Size of the receive buffer. If you enter a value less than 100, then 4000 is used as the default.

Description

The clnttcp_create routine creates an RPC client handle for addr, prognum, and versnum. The client uses the TCP

transport. The routine is similar to the clnt_create routine, except clnttcp_create allows you to specify a socket and

buffer sizes. If you specify the port number as zero by using addr->sin_port, the Port Mapper provides the

number of the port on which the remote program is listening.

The clnttcp_createroutine uses the global variable rpc_createerr. rpc_createerr is a structure that contains

the most recent service creation error. Use rpc_createerr if you want the client program to handle the error. The

value of rpc_createerr is set by any RPC client creation routine that does not succeed. The rpc_createerr

variable is defined in the CLNT.H file.

Diagnostics

The clnttcp_create routine returns the address of the client handle, or zero (if it could not create the client handle). If

the routine fails, use the clnt_pcreateerror / c routine to obtain additional diagnostic information.

See Also

clnt_call, clnt_control, clnt_create, clnt_destroy, clnt_pcreateerror / c,

clntudp_create / c

clntudp_create / clntudp_bufcreate
Returns an RPC client handle. The remote procedure call uses the UDP transport.

Format

#include

CLIENT *clntudp_create (struct sockaddr_in *addr,

u_long prognum, u_long versnum, struct timeval wait,

int *sockp);

CLIENT *clntudp_bufcreate (struct sockaddr_in *addr,

u_long prognum, u_long versnum, struct timeval wait,

int *sockp, u_long sendsize, u_long recvsize);

Arguments

addr

Internet address of the host on which the server resides.

prognum, versnum, sockp

See Common Arguments for a description of the above arguments.

wait

Time interval the client waits before resending the call message. This value changes the CLSET_RETRY_TIMEOUT

code. The clnt_call routine uses this value.

sendsize

Size of the send buffer. If you enter a value less than 100, then 4000 is used as the default.

recvsize

Size of the receive buffer. If you enter a value less than 100, then 4000 is used as the default.

Description

These routines create an RPC client handle for addr, prognum, and versnum. The client uses the UDP transport

protocol.

If you specify the port number as zero by using addr->sin_port, the Port Mapper provides the number of the port

on which the remote program is listening.

Note! Use the clntudp_create / c routine only for procedures that handle messages shorter than 8K bytes. Use the

clntudp_create / c routine for procedures that handle messages longer than 8K bytes.

The clntudp_create / c routine uses the global variable rpc_createerr. rpc_createerr is a structure that

contains the most recent service creation error. Use rpc_createerr if you want the client program to handle the

error. The value of rpc_createerr is set by any RPC client creation routine that does not succeed.

The rpc_createerr variable is defined in the CLNT.H file.

Example

main()

{

 int sock;

 u_long prog = PROGRAM, vers = VERSION;

 CLIENT *clnt;

 struct sockaddr_in local_addr, remote_addr;

 struct timeval timeout = { 35, 0},

 retry = { 5, 0};

 remote_addr.sin_family = AF_INET;

 remote_addr.sin_port = 0; /* consult the remote port mapper */

 remote_addr.sin_addr.s_addr = 0x04030201; /* internet

 addr 1.2.3.4 */

 local_addr.sin_family = AF_INET;

 local_addr.sin_port = 12345; /* use port 12345 */

 local_addr.sin_addr.s_addr = 0x05030201; /* internet addr

 1.2.3.5 */

 sock = socket(AF_INET, SOCK_DGRAM, 0);

 /* bind the socket to the local addr */

 bind(sock, &local_addr, sizeof(local_addr));

 /* create a client that uses the local IA and port given above */

 clnt = clntudp_create(&remote_addr, prog, vers, retry, &sock);

 /* use a connection timeout of 35 seconds, not the default */

 clnt_control(clnt, CLSET_TIMEOUT, &timeout);

 /*call the server here*/

}

This example defines a socket structure, binds the socket, and creates a UDP client handle.

Diagnostics

These routines return the address of the client handle, or zero (if they cannot create the client handle).

If these routines fail, you can obtain additional diagnostic information by using the clnt_pcreateerror / c routine.

See Also

clnt_call, clnt_control, clnt_create, clnt_destroy, clnt_pcreateerror / c,

clnttcp_create

10. RPC RTL Port Mapper Routines

Introduction
This chapter is for RPC programmers. It documents the port mapper routines in the RPC Run-Time

Library (RTL). These routines are the programming interface to RPC.

Port Mapper Routines
Port Mapper routines provide a simple callable interface to the Port Mapper. They allow you to request

Port Mapper services and information about port mappings. The table belowPort Mapper

Routines summarizes the purpose of each Port Mapper routine.

Table 10-1 Port Mapper Routines

Routine Purpose

pmap_getmaps Returns a list of Port Mappings for the specified host.

pmap_getport Returns the port number on which a specified service is waiting.

pmap_rmtcall Requests the Port Mapper on a remote host to call a procedure on that host.

pmap_set Registers a remote service with a remote port.

pmap_unset Unregisters a service so it is no longer mapped to a port.

Port Mapper Arguments
Port Mapper routines use many of the same arguments as client routines. See Table 9-1 in the RPC RTL Client

Routines chapter for a list of these arguments.

The following sections describe each Port Mapper routine in detail.

pmap_getmaps
Returns a list of Port Mappings for the specified host.

Format

struct pmaplist *pmap_getmaps (struct sockaddr_in *addr);

Argument

addr

Address of a structure containing the internet address of the host whose Port Mapper is being called.

Description

The pmap_getmaps routine returns a list of current RPC server-to-Port Mappings on the host at addr. The list

structure is defined in the PMAP_PROT.H file.

The MULTINET SHOW /RPC_PORTMAP command uses this routine.

Diagnostics

If an error occurs (for example, pmap_getmaps cannot get a list of Port Mappings, the internet address is invalid, or

the remote Port Mapper does not exist), the routine returns either NULL or the address of the list.

See Also

pmap_getport, pmap_set, pmap_unset

pmap_getport
Returns the port number on which a specified service is waiting.

Format

u_short pmap_getport (struct sockaddr_in *addr,

u_long prognum, u_long versnum, u_long protocol);

Arguments

addr

Address of a structure containing the internet address of the remote host on which the server resides.

prognum, versnum, protocol

See Table 9-1 in the RPC RTL Client Routines chapter for a list of these arguments.

Diagnostics

If the requested mapping does not exist or the routine fails to contact the remote Port Mapper, the routine returns

either the port number or zero.

The pmap_getport routine uses the global variable rpc_createerr. rpc_createerr is a structure that contains

the most recent service creation error. Use rpc_createerr if you want the service program to handle the error.

The value of rpc_createerr is set by any RPC server creation routine that does not succeed.

The rpc_createerr variable is defined in the CLNT.H file.

See Also

pmap_getmaps, pmap_set, pmap_unset

pmap_rmtcall
Requests the Port Mapper on a remote host to call a procedure on that host.

Format

enum clnt_stat pmap_rmtcall (struct sockaddr_in *addr,

u_long prognum, u_long versnum, u_long procnum,

xdrproc_t inproc, u_char *in, xdrproc_t outproc, u_char *out, struct

timeval tout, u_long *portp);

Arguments

addr

Address of a structure containing the internet address of the remote host on which the server resides.

prognum, versnum, procnum, inproc, in, outproc, out

See Table 9-1 in the RPC RTL Client Routines chapter for a list of these arguments.

tout

Time allowed for the results to return to the client, in seconds and microseconds.

portp

Address where pmap_rmtcall will write the port number of the remote service.

Description

The pmap_rmtcall routine allows you to get a port number and call a remote procedure in one call. The routine

requests a remote Port Mapper to call a prognum, versnum, and procnum on the Port Mapper's host. The remote

procedure call uses the UDP transport.

If pmap_rmtcall succeeds, it changes portp to contain the port number of the remote service.

After calling the pmap_rmtcall routine, you may call the clnt_perrno / clnt_sperrno routine.

Diagnostics

This routine returns diagnostic values defined in the CLNT.H file for enum clnt_stat.

See Also

clnt_broadcast, clnt_perrno / clnt_sperrno

pmap_set
Registers a remote service with a remote port.

Format

bool_t pmap_set (u_long prognum, u_long versnum,

u_long protocol, u_short port);

Arguments

prognum, versnum, protocol

See Table 9-1 in the RPC RTL Client Routines chapter for a list of these arguments.

port

Remote port number.

Description

The pmap_set routine calls the local Port Mapper to tell it which port and protocol the prognum, versnum is using.

You are not likely to use pmap_set, because svc_register calls it.

Diagnostics

The pmap_set routine returns TRUE if it succeeds, and FALSE if it fails.

See Also

pmap_getport, pmap_getmaps, pmap_unset, svc_register

pmap_unset
Unregisters a service so it is no longer mapped it to a port.

Format

bool_t pmap_unset (u_long prognum, u_long versnum);

Arguments

prognum, versnum

See Table 9-1 in the RPC RTL Client Routines chapter for a list of these arguments.

Description

The pmap_unset routine calls the local Port Mapper and, for all protocols, removes the prognum and versnum from

the list that maps servers to ports.

You are not likely to use pmap_unset, because svc_unregister calls it.

Diagnostics

The pmap_unset routine returns TRUE if it succeeds, FALSE if it fails.

See Also

pmap_getport, pmap_getmaps, pmap_set, svc_unregister

11. RPC RTL Server Routines

Introduction
This chapter is for RPC programmers. It documents the server routines in the RPC Run-Time Library (RTL). These

routines are the programming interface to RPC.

Server Routines
The server routines are called by the server program or the server stub procedures. Server Routines lists each server

routine and summarizes its purpose.

Table 11-1 Server Routines

Routine Purpose

registerrpc Performs creation and registration tasks for server.

svc_destroy Macro that destroys RPC server handle.

svc_freeargs Macro that frees memory allocated when RPC arguments were

decoded.

svc_getargs Macro that decodes RPC arguments.

svc_getreqset Reads data for each server connection.

svc_register Adds specified server to list of active servers, and registers service

program with Port Mapper.

svc_run Waits for RPC requests and calls svc_getreqset routine to dispatch to

appropriate RPC service program.

svc_sendreply Sends results of remote procedure call to client.

svc_unregister Calls Port Mapper to unregister specified program and version for all

protocols.

svcerr_auth

svcerr_decode

svcerr_noproc

svcerr_noprog

svcerr_progvers

svcerr_systemerr

svcerr_weakauth

Sends error code when server cannot authenticate client.

Sends error code to client if server cannot decode arguments.

Sends error code to client if server cannot implement requested

procedure.

Sends error code to client when requested program is not registered

with Port Mapper.

Sends error code to client when requested program is registered with

Port Mapper, but requested version is not registered.

Sends error code to client when server encounters error not handled by

particular protocol.

Sends error code to client when server cannot perform remote

procedure call because it received insufficient (but correct)

authentication parameters.

svcfd_create Returns address of structure containing server handle for specified TCP

socket.

svctcp_create Returns address of server handle that uses TCP transport.

svcudp_bufcreate

svcudp_create /

Returns address of server handle that uses UDP transport. For

procedures that pass messages longer than 8Kbytes.

Returns address of server handle that uses UDP transport. For

procedures that pass messages shorter than 8Kbytes.

svcudp_enablecache Enables XID cache for specified UDP transport server.

xprt_register Adds UDP or TCP server socket to list of sockets.

xprt_unregister Removes UDP or TCP server socket from list of sockets.

The following sections describe each server routine in detail.

registerrpc
Performs creation and registration tasks for the server.

Format

#include

int registerrpc (u_long prognum, u_long versnum, u_long procnum,

u_char *(*procname) (), xdrproc_t inproc, xdrproc_t outproc);

Arguments

prognum, versnum, procnum, inproc, outproc

See Table 9-1 in the RPC RTL Client Routines chapter for a list of these arguments.

procname

Address of the routine that implements the service procedure. The routine uses the following format:

u_char *procname(out);

u_char *out;

 out is the address of the data decoded by outproc.

Description

The registerrpc routine performs the following tasks for a server:

• Creates a UDP server handle.

• Calls the svc_register routine to register the program with the Port Mapper.

• Adds prognum, versnum, and procnum to an internal list of registered procedures. When the server receives a

request, it uses this list to determine which routine to call.

A server should call registerrpc for every procedure it implements, except for the NULL procedure.

Diagnostics

The registerrpc routine returns zero if it succeeds, and -1 if it fails.

See Also

svc_register

svc_destroy
Macro that destroys the RPC server handle.

Format

void svc_destroy (SVCXPRT *xprt);

Argument

xprt

RPC server handle.

Description

The svc_destroy routine destroys xprt by deallocating private data structures. After this call, xprt is undefined.

If the server creation routine received RPC_ANYSOCK as the socket, svc_destroy closes the socket. Otherwise, you

must close the socket.

See Also

svcfd_create, svctcp_create, svcudp_create /

svc_freeargs
Macro that frees the memory that was allocated when the RPC arguments were decoded.

Format

bool_t svc_freeargs (SVCXPRT *xprt, xdrproc_t xdr_args,

char *args_ptr);

Arguments

xprt, xdr_args, args_ptr

See Table 9-1 in the RPC RTL Client Routines chapter for a list of these arguments.

Description

The svc_freeargs routine calls the xdr_free routine.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

svc_getargs, xdr_free

svc_getargs
Macro that decodes the RPC arguments.

Format

bool_t svc_getargs (SVCXPRT *xprt, xdrproc_t xdr_args,

u_char *args_ptr);

Arguments

xprt, xdr_args, args_ptr

See Table 9-1 in the RPC RTL Client Routines chapter for a list of these arguments.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

svc_freeargs

svc_getreqset
Reads data for each server connection.

Format

#include

void svc_getreqset (int rdfds);

Argument

rdfds

Address of the read socket descriptor array. This array is returned by the select routine.

Description

The server calls svc_getreqset when it receives an RPC request. The svc_getreqset routine reads in data for each

server connection, then calls the server program to handle the data.

The svc_getreqset routine does not return a value. It finishes executing after all rdfds sockets have been serviced.

You are unlikely to call this routine directly, because the svc_run routine calls it. However, there are times when you

cannot call svc_run. For example, suppose a program services RPC requests and reads or writes to another socket at

the same time. The program cannot call svc_run. It must call select and svc_getreqset.

The svc_getreqset routine is for servers that implement custom asynchronous event processing, do not use the

svc_run routine.

You may use the global variable svc_fdset with svc_getreqset. The svc_fdset variable lists all sockets the

server is using. It contains an array of structures, where each element is a socket pointer and a service handle. It uses

the following format:

struct sockarr svc_fdset [MAXSOCK +1];

This is how to use svc_fdset: first, copy the socket handles from svc_fdset into a temporary array that ends

with a zero. Pass the array to the select() routine. The select() routine overwrites the array and returns it. Pass this

array to the svc_getreqset routine.

You may use svc_fdset when the server does not use svc_run.

The svc_fdset variable is not compatible with UNIX.

Example

#define MAXSOCK 10

 int readfds[MAXSOCK+1], /* sockets to select from */

 i, j;

 for(i = 0, j = 0; i < MAXSOCK; i++)

 if((svc_fdset[i].sockname != 0) && (svc_fdset[i].sockname !=

1))

 readfds[j++] = svc_fdset[i].sockname;

 readfds[j] = 0; /* list of sockets ends w/ a zero */

 switch(select(0, readfds, 0, 0, 0))

 {

 case -1: /* an error happened */

 case 0: /* time out */

 break;

 default: /* 1 or more sockets ready for reading */

 errno = 0;

 ONCRPC_SVC_GET_REQSET(readfds);

 if(errno == ENETDOWN || errno == ENOTCONN)

 sys$exit(SS$_THIRDPARTY);

 }

See Also

svc_run

svc_register
Adds the specified server to a list of active servers, and registers the service program with the Port Mapper.

Format

#include

bool_t svc_register (SVCXPRT *xprt, u_long prognum,

u_long versnum, void (*dispatch) (), u_long protocol);

Arguments

xprt, prognum, versnum

See Table 9-1 in the RPC RTL Client Routines chapter for a list of these arguments.

dispatch

Routine that svc_register calls when the server receives a request for prognum, versnum. This routine determines

which routine to call for each server procedure. This routine uses the following form:

void dispatch(request, xprt)

struct svc_req *request;

SVCXPRT *xprt;

The svc_getreqset and svc_run routines call dispatch.

protocol

Must be IPPROTO_UDP, IPPROTO_TCP, or zero. Zero indicates that you do not want to register the server with

the Port Mapper.

Diagnostics

The svc_register routine returns TRUE if it succeeds and FALSE if it fails.

See Also

pmap_set, svc_getreqset, svc_unregister

svc_run
Waits for RPC requests and calls the svc_getreqset routine to dispatch to the appropriate RPC service program.

Format

#include

void svc_run()

Arguments

None.

Description

The svc_run routine calls the select() routine to wait for RPC requests. When a request arrives, svc_run calls the

svc_getreqset routine. Then svc_run calls select() again.

The svc_run routine never returns.

You may use the global variable svc_fdset with svc_run. See the svc_getreqset routine for more information on

svc_fdset.

See Also

svc_getreqset

svc_sendreply
 Sends the results of a remote procedure call to the client.

Format

#include

bool_t svc_sendreply (SVCXPRT *xprt, xdrproc_t outproc, caddr_t *out);

Arguments

xprt, outproc, out

See Table 9-1 in the RPC RTL Client Routines chapter for a list of these arguments.

Description

The routine sends the results of a remote procedure call to the client.

Diagnostics

These routines returns TRUE if they succeed and FALSE if they fail.

svc_unregister
Calls the Port Mapper to unregister the specified program and version for all protocols. The program and version are

removed from the list of active servers.

Format

#include

void svc_unregister (u_long prognum, u_long versnum);

Arguments

prognum, versnum

See Table 9-1 in the RPC RTL Client Routines chapter for a list of these arguments.

See Also

pmap_unset, svc_register

svcerr_auth

svcerr_decode

svcerr_noproc

svcerr_noprog

svcerr_progvers

svcerr_systemerr

svcerr_weakauth

Sends various error codes to the client process.

Format

#include

void svcerr_auth (SVCXPRT *xprt, enum auth_stat why);

void svcerr_decode (SVCXPRT *xprt);

void svcerr_noproc (SVCXPRT *xprt);

void svcerr_noprog (SVCXPRT *xprt);

void svcerr_progvers (SVCXPRT *xprt, u_long low-vers, u_long high-vers);

void svcerr_systemerr (SVCXPRT *xprt);

void svcerr_weakauth (SVCXPRT *xprt);

Arguments

xprt

RPC server handle.

why

Error code defined in the AUTH.H file.

low-vers

Lowest version number in the range of versions that the server supports.

high-vers

Highest version in the range of versions that the server supports.

Description

svcerr_auth

See svc_getreqset. Calls svcerr_auth when it cannot authenticate a client. The svcerr_auth routine returns an error

code (why) to the caller.

svcerr_decode

Sends an error code to the client if the server cannot decode the arguments.

svcerr_noproc

Sends an error code to the client if the server does not implement the requested procedure.

svcerr_noprog

Sends an error code to the client when the requested program is not registered with the Port Mapper. Generally, the

Port Mapper informs the client when a server is not registered. Therefore, the server is not expected to use this

routine.

svcerr_progvers

Sends an error code to the client when the requested program is registered with the Port Mapper, but the requested

version is not registered.

svcerr_systemerr

Sends an error code to the client when the server encounters an error that is not handled by a particular protocol.

svcerr_weakauth

Sends an error code to the client when the server cannot perform a remote procedure call because it received

insufficient (but correct) authentication parameters. This routine calls the svcerr_auth routine. The value of why is

AUTH_TOOWEAK, which means "access permission denied."

svcfd_create
Returns the address of a structure containing a server handle for the specified TCP socket.

Format

#include

SVCXPRT *svcfd_create (int sock, u_long sendsize, u_long recvsize);

Arguments

sock

Socket number. Do not specify a file descriptor.

sendsize

Size of the send buffer. If you enter a value less than 100, then 4000 is used as the default.

recvsize

Size of the receive buffer. If you enter a value less than 100, then 4000 is used as the default.

Description

The svcfd_create routine returns the address of a server handle for the specified TCP socket. This handle cannot use

a file. The server calls the svcfd_create routine after it accepts a TCP connection.

Diagnostics

This routine returns zero if it fails.

See Also

svctcp_create

svcraw_create
Creates a server handle for memory-based Sun RPC for simple testing and timing.

Format

#include

SVCXPRT svcraw_create ();

Argument

None.

Description

The svcraw_create routine creates a toy Sun RPC service transport, to which it returns a pointer. The transport is

really a buffer within the process's address space, so the corresponding client should live in the same address space.

This routine allows simulation of and acquisition of Sun RPC overheads (such as round trip times) without any

kernel interference.

Diagnostics

This routine returns NULL if it fails.

See Also

clntraw_create

svctcp_create
Returns the address of a server handle that uses the TCP transport.

Format

#include

SVCXPRT *svctcp_create (int sock, u_long sendsize, u_long recvsize);

Arguments

sock

Socket for this service. The svctcp_create routine creates a new socket if you enter RPC_ANYSOCK. If the socket

is not bound to a TCP port, svctcp_create binds it to an arbitrary port.

sendsize

Size of the send buffer. If you enter a value less than 100, then 4000 bytes is used as the default.

recvsize

Size of the receive buffer. If you enter a value less than 100, then 4000 bytes is used as the default.

Diagnostics

The svctcp_create routine returns either the address of the server handle, or zero (if it could not create the server

handle).

See Also

svcfd_create, svc_destroy

svcudp_create / svcudp_bufcreate
Returns the address of a server handle that uses the UDP transport.

Format

#include

SVCXPRT *svcudp_create (int sock);

SVCXPRT *svcudp_bufcreate (int sock, u_long sendsize,

u_long recvsize);

Arguments

sock

Socket for this service. The svcudp_create / routine creates a new socket if you enter RPC_ANYSOCK. If the socket

is not bound to a UDP port, thesvcudp_create / routine binds it to an arbitrary port.

sendsize

Size of the send buffer. The minimum size is 100 bytes. The maximum size is 65468, the maximum UDP packet

size. If you enter a value less than 100, then 4000 is used as the default.

recvsize

Size of the receive buffer. The minimum size is 100 bytes. The maximum size is 65000, the maximum UDP packet

size. If you enter a value less than 100, then 4000 is used as the default.

Description

Use the svc_create routine only for procedures that pass messages shorter than 8Kbytes long. Use the

svcudp_bufcreate routine for procedures that pass messages longer than 8Kbytes.

Diagnostics

These routines return either a server handle, or zero (if they could not create the server handle).

See Also

svc_destroy, svcudp_enablecache

svcudp_enablecache
Enables the XID cache for the specified UDP transport server.

Format

bool_t svcudp_enablecache (SVCXPRT *xprt, u_long size);

Arguments

xprt

RPC server handle.

size

Number of entries permitted in the XID cache. You may estimate this number based on how active the server is, and

on how long you want to retain old replies.

Description

Use the svcudp_enablecache routine after a UDP server handle is created. The server places all outgoing responses

in the XID cache. The cache can be used to improve the performance of the server, for example, by preventing the

server from recalculating the results or sending incorrect results.

You cannot disable the XID cache for UDP servers.

The RPC Fundamentals, Chapter 6, provides more information on the XID cache.

Example

#define FALSE 0

#define UDP_CACHE_SIZE 10

 SVCXPRT *udp_xprt;

 udp_xprt = svcudp_create(RPC_ANYSOCK);

 if(svcudp_enablecache(udp_xprts, UDP_CACHE_SIZE) == FALSE)

 printf("XID cache was not enabled");

 else

 printf("XID cache was enabled");

Diagnostics

This routine returns TRUE if it enables the XID cache, and FALSE if the cache was previously enabled or an error

occurs.

xprt_register
Adds a TCP or UDP server socket to a list of sockets.

Format

#include

void xprt_register (SVCXPRT *xprt);

Argument

xprt

RPC server handle.

Description

The xprt_register and xprt_unregister routines maintain a list of sockets. This list ensures that the correct server is

called to process the request. The xprt_register routine adds the server socket to the svc_fdset variable, which also

stores the server handle that is associated with the socket. The svc_run routine passes the list of sockets to the

select() routine. The select() routine returns to svc_run a list of sockets that have outstanding requests.

You are unlikely to call this routine directly because svc_register calls it.

See Also

svc_register, xprt_unregister

xprt_unregister
Removes a TCP or UDP server socket from a list of sockets.

Format

#include

void xprt_unregister (SVCXPRT *xprt);

Argument

xprt

RPC server handle.

Description

This list of sockets ensures that the correct server is called to process the request. See the xprt_unregister routine for

a description of how this list is maintained.

You are unlikely to call this routine directly because svc_unregister calls it.

See Also

svc_unregister, xprt_register

12. RPC RTL XDR Routines

Introduction
This chapter is for RPC programmers. It documents the XDR routines in the RPC Run-Time Library (RTL). These

routines are the programming interface to RPC.

XDR Routines
This section explains what XDR routines do and when you would call them. It also provides quick reference and

detailed reference sections describing each XDR routine.

What XDR Routines Do
Most XDR routines share these characteristics:

• They convert data in two directions: from the host's local data format to XDR format (called encoding or

marshalling), or the other way around (called decoding or unmarshalling).

• They use xdrs, a structure containing instructions for encoding, decoding, and deallocating memory.

• They return a boolean value to indicate success or failure.

Some XDR routines allocate memory while decoding an argument. To free this memory, call the xdr_free routine

after the program is done with the decoded value.

XDR Actions shows the order in which XDR routines perform encoding and decoding.

Table 12-1 XDR Actions

Client Server

1. Encodes arguments

2. Decodes results

3. Frees results from memory

1. Decodes arguments

2. Encodes results

3. Frees arguments from memory

When to Call XDR Routines
Under most circumstances, you are not likely to call any XDR routines directly. The clnt_call and svc_sendreply

routines call the XDR routines.

You would call the XDR routines directly only when you write your own routines to convert data to or from XDR

format.

Quick Reference
XDR Encoding and Decoding Routines lists the XDR routines that encode and decode data.

Table 12-2 XDR Encoding and Decoding Routines

This routine... Encodes and decodes...

xdr_array Variable-length array

xdr_bool Boolean value

xdr_bytes Bytes

xdr_char Character

xdr_double Double-precision floating point number

xdr_enum Enumerated type

xdr_float Floating point value

xdr_hyper VAX quad word to an XDR hyper-integer, or the other way

xdr_int Four-byte integer

xdr_long Longword

xdr_opaque Contents of a buffer (treats the data as a fixed length of bytes and does not

attempt to interpret them)

xdr_pointer Pointer to a data structure

xdr_reference Pointer to a data structure (the address must be non-zero)

xdr_short Two-byte unsigned integer

xdr_string Null-terminated string

xdr_u_char Unsigned character

xdr_u_hyper VAX quad word to an XDR unsigned hyper-integer

xdr_u_int Four-byte unsigned integer

xdr_u_long Unsigned longword

xdr_u_short Two-byte unsigned integer

xdr_union Union

xdr_vector Vector (fixed length array)

xdr_void Nothing

xdr_wrapstring Null-terminated string

XDR Support Routines lists the XDR routines that perform various support functions.

Table 12-3 XDR Support Routines

This routine... Does this...

xdr_free Deallocates a data structure from memory

xdrmem_create Creates a memory buffer XDR stream

xdrrec_create Creates a record-oriented XDR stream

xdrrec_endofrecord Marks the end of a record

xdrrec_eof Goes to the end of the current record, then verifies whether any more

data can be read

xdrrec_skiprecord Goes to the end of the current record

xdrstdio_create Initializes an stdio stream

Upper Layer XDR Routines lists the upper layer XDR routines that support RPC.

Table 12-4 Upper Layer XDR Routines

This routine... Encodes and decodes...

xdr_accepted_reply Part of an RPC reply message after the reply is accepted

xdr_authunix_parms UNIX-style authentication information

xdr_callhdr Static part of an RPC request message header (encoding only)

xdr_callmsg RPC request message

xdr_netobj Data in the netobj structure

xdr_opaque_auth Authentication information

xdr_pmap Port Mapper parameters

xdr_pmaplist List of Port Mapping data

xdr_rejected_reply Part of an RPC reply message after the reply is rejected

xdr_replymsg RPC reply header; it then calls the appropriate routine to convert the

rest of the message

The following sections describe each XDR routine in detail.

xdr_accepted_reply
Converts an RPC reply message from local format to XDR format, or the other way around.

Format

#include

bool_t xdr_accepted_reply (XDR *xdrs, struct accepted_reply *ar);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

ar

Address of the structure containing the RPC reply message.

Description

The xdr_replymsg routine calls the xdr_accepted_reply routine.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_replymsg

xdr_array
Converts a variable-length array from local format to XDR format, or the other way around.

Format

#include

bool_t xdr_array (XDR *xdrs, u_char **addrp, u_long *sizep, u_long maxsize, u_long

elsize, xdrproc_t elproc);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

addrp

Address of the address containing the array being converted. If addrp is zero, then xdr_array allocates ((*sizep)

*elsize) number of bytes when it decodes.

sizep

Address of the number of elements in the array.

maxsize

Maximum number of elements the array can hold.

elsize

Size of each element, in bytes.

elproc

XDR routine that handles each array element.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_authunix_parms
Converts UNIX-style authentication information from local format to XDR format, or the other way around.

Format

#include

bool_t xdr_authunix_parms (XDR *xdrs, struct authunix_parms *aupp);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

aupp

UNIX-style authentication information being converted.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_bool
Converts a boolean value from local format to XDR format, or the other way around.

Format

#include

bool_t xdr_bool (XDR *xdrs, bool_t *bp);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

bp

Address of the boolean value.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_bytes
Converts bytes from local format to XDR format, or the other way around.

Format

#include

bool_t xdr_bytes (XDR *xdrs, u_char **cpp, u_long *sizep, u_long maxsize);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

cpp

Address of the address of the buffer containing the bytes being converted. If *cpp is zero, xdr_bytes allocates

maxsize bytes when it decodes.

sizep

Address of the actual number of bytes being converted.

maxsize

Maximum number of bytes that can be used. The server protocol determines this number.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_callhdr
Encodes the static part of an RPC request message header.

Format

#include

bool_t xdr_callhdr (XDR *xdrs, struct rpc_msg *chdr);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

chdr

Address of the data being converted.

Description

The xdr_callhdr routine converts the following fields: transaction ID, direction, RPC version, server program

number, and server version. It converts the last four fields once, when the client handle is created.

The clnttcp_create and clntudp_create / clntudp_bufcreate routines call the xdr_callhdr routine.

Diagnostics

This routine always returns TRUE.

See Also

clnt_call, clnttcp_create, clntudp_create / clntudp_bufcreate, xdr_callmsg

xdr_callmsg
Converts an RPC request message from local format to XDR format, or the other way around.

Format

#include

bool_t xdr_callmsg (XDR *xdrs, struct rpc_msg *cmsg);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

cmsg

Address of the message being converted.

Description

The xdr_callmsg routine converts the following fields: transaction ID, RPC direction, RPC version, program

number, version number, procedure number, client authentication.

The pmap_rmtcall, svc_sendreply, and svc_sendreply_dq routines call xdr_callmsg.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_callhdr

xdr_char
Converts a character from local format to XDR format, or the other way around.

Format

#include

bool_t xdr_char (XDR *xdrs, char *cp);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

cp

Address of the character being converted.

Description

This routine provides the same functionality as the xdr_u_char routine.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_u_char

xdr_double
Converts a double-precision floating point number between local and XDR format.

Format

#include

bool_t xdr_double (XDR *xdrs, double *dp);

Arguments

xdrs

Pointer to an XDR stream handle created by one of the XDR stream handle creation routines.

dp

Pointer to the double-precision floating point number.

Description

This routine provides a filter primitive that translates between double-precision numbers and their external

representations. It is actually implemented by four XDR routines:

xdr_double_D Converts VAX D format floating point numbers

xdr_double_G Converts VAX G format floating point numbers

xdr_double_T Converts IEEE T format floating point numbers

xdr_double_X Converts IEEE X format floating point numbers

You can reference these routines explicitly or you can use compiler settings to control which routine is used when

you reference the xdr_double routine.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_enum
Converts an enumerated type from local format to XDR format, or the other way around.

Format

#include

bool_t xdr_enum (XDR *xdrs, enum_t *ep);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

ep

Address containing the enumerated type.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_float
Converts a floating point value from local format to XDR format, or the other way around.

Format

#include

bool_t xdr_float (XDR *xdrs, float *fp);

Arguments

xdrs

Pointer to an XDR stream handle created by one of the XDR stream handle creation routines.

fp

Pointer to a single-precision floating point number.

Description

This routine provides a filter primitive that translates between double-precision numbers and their external

representations. It is actually implemented by four XDR routines:

xdr_float_F Converts VAX F format floating point numbers

xdr_float_S Converts IEEE T format floating point numbers

You can reference these routines explicitly or you can use compiler settings to control which routine is used when

you reference the xdr_float routine.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_free
Deallocates a data structure from memory.

Format

#include

void xdr_free (xdrproc_t proc, u_char *objp);

Arguments

proc

XDR routine that describes the data structure.

objp

Address of the data structure.

Description

Call this routine after decoded data is no longer needed. Do not call it for encoded data.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_hyper
Converts a VAX quad word to an XDR hyper-integer, or the other way around.

Format

bool_t xdr_hyper (XDR *xdrs, quad *ptr);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

ptr

Address of the structure containing the quad word. The quad word is stored in standard VAX quad word format,

with the low-order longword first in memory.

Description

This routine provided the same functionality as the xdr_u_hyper routine.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_u_hyper

xdr_int
Converts one four-byte integer from local format to XDR format, or the other way around.

Format

#include

bool_t xdr_int (XDR *xdrs, int *ip);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

ip

Address containing the integer.

Description

This routine provides the same functionality as the xdr_u_int, xdr_long, and xdr_u_long routines.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_u_int, xdr_long, xdr_u_long

xdr_long
Converts one longword from local format to XDR format, or the other way around.

Format

#include

bool_t xdr_long (XDR *xdrs, u_long *lp);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

lp

Address containing the longword.

Description

This routine provides the same functionality as the xdr_u_long, xdr_int, and xdr_u_int routines.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_u_long, xdr_int, xdr_u_int

xdr_netobj
Converts data in the netobj structure from the local data format to XDR format, or the other way around.

Format

bool_t xdr_netobj (XDR *xdrs, netobj *ptr);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

ptr

Address of the following structure:

typedef struct

{

 u_long n_len;

 byte *n_bytes;

} netobj;

This structure defines the data being converted.

Description

The netobj structure is an aggregate data structure that is opaque and contains a counted array of 1024 bytes.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_opaque
Converts the contents of a buffer from the local data format to XDR format, or the other way around. This routine

treats the data as a fixed length of bytes and does not attempt to interpret them.

Format

#include

bool_t xdr_opaque (XDR *xdrs, char *cp, u_long cnt);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

cp

Address of the buffer containing opaque data.

cnt

Byte length.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_opaque_auth
Converts authentication information from the local data format to XDR format, or the other way around.

Format

#include

bool_t xdr_opaque_auth (XDR *xdrs, struct opaque_auth *ap);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

ap

Address of the authentication information. This data was created by the authnone_create, authunix_create, or

authunix_create_default routine.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_pmap
Converts Port Mapper parameters from the local data format to XDR format, or the other way around.

Format

#include "MULTINET_INCLUDE:PMAP_PROT.H"

bool_t xdr_pmap (XDR *xdrs, struct pmap *regs);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

regs

Address of a structure containing the program number, version number, protocol number, and port number. This is

the data being converted.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_pmaplist
Converts a list of Port Mapping data from the local data format to XDR format, or the other way around.

Format

#include "TCPIP$RPC:PMAP_PROT.H"

bool_t xdr_pmaplist (XDR *xdrs, struct pmaplist **rpp);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

rpp

Address of the address of the structure containing Port Mapper data. If this routine is used to decode a Port Mapper

listing, rpp is set to the address of the newly allocated linked list of structures.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_pointer
Converts a recursive data structure from the local data format to XDR format, or the other way around.

Format

#include tcpip$rpc:xdr.h

bool_t xdr_pointer (XDR *xdrs, u_char **objpp, u_long obj_size,

xdrproc_t xdr_obj);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

objpp

Address of the address containing the data being converted. May be zero.

obj_size

Size of the data structure in bytes.

xdr_obj

XDR routine that describes the object being pointed to. This routine can describe complex data structures, and these

structures may contain pointers.

Description

An XDR routine for a data structure that contains pointers to other structures, such as a linked list, would call the

xdr_pointer routine. The xdr_pointer routine encodes a pointer from an address into a boolean. If the boolean is

TRUE, the data follows the boolean.

Example

bool_t xdr_pointer(xdrs, objpp, obj_size, xdr_obj)

 XDR *xdrs;

 char **objpp;

 longw obj_size;

 xdrproc_t xdr_obj;

{

 bool_t more_data;

/*

** determine if the pointer is a valid address (0 is invalid)

*/

 if(*objpp != NULL)

 more_data = TRUE;

 else

 more_data = FALSE;

/*

** XDR the flag

** If we are decoding, then more_data is overwritten.

*/

 if(!xdr_bool(xdrs, &more_data))

 return(FALSE);

/*

** If there is no more data, set the pointer to 0 (No effect if we

** were encoding) and return TRUE

*/

 if(!more_data)

 {

 *objpp = NULL;

 return(TRUE);

 }

/*

** Otherwise, call xdr_reference. The result is that xdr_pointer is

** the same as xdr_reference, except that xdr_pointer adds a Boolean

** to the encoded data and will properly handle NULL pointers.

*/

 return(xdr_reference(xdrs, objpp, obj_size, xdr_obj));

} /* end function xdr_pointer() */

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_reference
This routine recursively converts a structure that is referenced by a pointer inside the structure.

Format

#include tcpip$rpc:xdr.h

bool_t xdr_reference (XDR *xdrs, u_char **objpp, u_long obj_size, xdrproc_t xdr_obj);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

objpp

Address of the address of a structure containing the data being converted. If objpp is zero, the xdr_reference routine

allocates the necessary storage when decoding. This argument must be non-zero when encoding.

When xdr_reference encodes data, it passes *objpp to xdr_obj. When decoding, xdr_reference allocates memory

if *objpp equals zero.

obj_size

Size of the referenced structure.

xdr_obj

XDR routine that describes the object being pointed to. This routine can describe complex data structures, and these

structures may contain pointers.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_rejected_reply
Converts the remainder of an RPC reply message after the header indicates that the reply is rejected.

Format

#include tcpip$rpc:xdr.h

bool_t xdr_rejected_reply (XDR *xdrs, struct rejected_reply *rr);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

rr

Address of the structure containing the reply message.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_replymsg
Converts the RPC reply header, then calls the appropriate routine to convert the rest of the message.

Format

#include tcpip$rpc:xdr.h

bool_t xdr_replymsg (XDR *xdrs, struct rpc_msg *rmsg);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

rmsg

Address of the structure containing the reply message.

Description

The xdr_replymsg routine calls the xdr_rejected_reply or xdr_accepted_reply routine to convert the body of the RPC

reply message from the local data format to XDR format, or the other way around.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_accepted_reply, xdr_rejected_reply

xdr_short
Converts a two-byte integer from the local data format to XDR format, or the other way around.

Format

#include tcpip$rpc:xdr.h

bool_t xdr_short (XDR *xdrs, short *sp);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

sp

Address of the integer being converted.

Description

This routine provides the same functionality as xdr_u_short.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_u_short

xdr_string
Converts a null-terminated string from the local data format to XDR format, or the other way around.

Format

#include tcpip$rpc:xdr.h

bool_t xdr_string (XDR *xdrs, char **cpp, u_long maxsize);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

cpp

Address of the address of the first byte in the string.

maxsize

Maximum length of the string. The service protocol determines this value.

Description

The xdr_string routine is the same as the xdr_wrapstring routine, except xdr_string allows you to specify the

maxsize.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_wrapstring

xdr_u_char
Converts an unsigned character from local format to XDR format, or the other way around.

Format

#include tcpip$rpc:xdr.h

bool_t xdr_u_char (XDR *xdrs, u_char bp);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

bp

Address of the character being converted.

Description

This routine provides the same functionality as xdr_char.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_char

xdr_u_hyper
Converts a VAX quad word to an XDR unsigned hyper-integer, or the other way around.

Format

bool_t xdr_u_hyper (XDR *xdrs, quad *ptr);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

ptr

Address of the structure containing the quad word. The quad word is stored in standard VAX format, with the low-

order longword first in memory.

Description

This routine provides the same functionality as the xdr_hyper routine.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_hyper

xdr_u_int
Converts a four-byte unsigned integer from local format to XDR format, or the other way around.

Format

#include tcpip$rpc:xdr.h

bool_t xdr_u_int (XDR *xdrs, int *ip);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

ip

Address of the integer.

Description

This routine provides the same functionality as xdr_int, xdr_long, and xdr_u_long.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_int

xdr_u_long
Converts an unsigned longword from local format to XDR format, or the other way around.

Format

#include tcpip$rpc:xdr.h

bool_t xdr_u_long (XDR *xdrs, u_long *lp);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

lp

Address of the longword.

Description

This routine provides the same functionality as xdr_long, xdr_int, and xdr_u_int.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_long, xdr_int, xdr_u_int

xdr_u_short
Converts a two-byte unsigned integer from the local data format to XDR format, or the other way around.

Format

#include tcpip$rpc:xdr.h

bool_t xdr_u_short (XDR *xdrs, u_short *sp);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

sp

Address of the integer being converted.

Description

This routine provides the same functionality as xdr_short.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_short

xdr_union
Converts a union from the local data format to XDR format, or the other way around.

Format

#include tcpip$rpc:xdr.h

bool_t xdr_union (XDR *xdrs, enum_t *dscmp, u_char *unp, xdr_discrim *choices,

xdrproc_t dfault);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

dscmp

Integer from the choices array.

unp

Address of the union.

choices

Address of an array. This array maps integers to XDR routines.

dfault

XDR routine that is called if the dscmp integer is not in the choices array.

Description

The xdr_union routine searches the array choices for the value of dscmp. If it finds the value, it calls the

corresponding XDR routine to process the remaining data. If xdr_union does not find the value, it calls the dfault

routine.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_vector
Converts a vector (fixed length array) from the local data format to XDR format, or the other way around.

Format

#include tcpip$rpc:xdr.h

bool_t xdr_vector (XDR *xdrs, u_char *basep, u_long nelem, u_long elmsize, xdrproc_t

xdr_elem);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

basep

Address of the array.

nelem

Number of elements in the array.

elmsize

Size of each element.

xdr_elem

Converts each element from the local data format to XDR format, or the other way around.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_void
Converts nothing.

Format

#include tcpip$rpc:xdr.h

bool_t xdr_void (XDR *xdrs, u_char *ptr);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

ptr

Ignored.

Description

Use this routine as a place-holder for a program that passes no data. The server and client expect an XDR routine to

be called, even when there is no data to pass.

Diagnostics

This routine always returns TRUE.

xdr_wrapstring
Converts a null-terminated string from the local data format to XDR format, or the other way around.

Format

#include tcpip$rpc:xdr.h

bool_t xdr_wrapstring (XDR *xdrs, char **cpp);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

cpp

Address of the address of the first byte in the string.

Description

The xdr_wrapstring routine calls the xdr_string routine. The xdr_wrapstring routine hides the maxsize argument

from the programmer. Instead, the maximum size of the string is assumed to be 232 - 1.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_string

xdrmem_create
Creates a memory buffer XDR stream.

Format

#include tcpip$rpc:xdr.h

void xdrmem_create (XDR *xdrs, u_char *addr, u_long size, enum xdr_op op);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

addr

Address of the buffer containing the encoded data.

size

Size of the addr buffer.

op

Operations you will perform on the buffer. Valid values are XDR_ENCODE, XDR_DECODE, and XDR_FREE. You may

change this value.

Description

The xdrmem_creater outine initializes a structure so that other XDR routines can write to a buffer.

xdrrec_create
Creates a record-oriented XDR stream.

Format

#include tcpip$rpc:xdr.h

void xdrrec_create (XDR *xdrs, u_long sendsize, u_long recvsize,

u_char *tcp_handle, int (*readit)(), int (*writeit)();

Arguments

xdrs

Address of the structure being created. The xdrrec_create routine will write XDR encoding and decoding

information to this structure.

sendsize

Size of the send buffer in bytes. The minimum size is 100 bytes. If you specify fewer than 100 bytes, 4000 bytes is

used as the default.

recvsize

Size of the receive buffer in bytes. The minimum size is 100 bytes. If you specify fewer than 100 bytes, 4000 bytes

is used as the default.

tcp_handle

Address of the client or server handle.

readit

Address of a user-written routine that reads data from the stream transport. This routine must use the following

format:

int readit(tcp_handle, buffer, len)

u_char *tcp_handle;

u_char *buffer;

u_long len;

*tcp_handle is the client or server handle

*buffer is the buffer to fill

len is the number of bytes to read

The readit routine returns either the number of bytes read, or -1 if an error occurs.

writeit

Address of a user-written routine that writes data to the stream transport. This routine must use the following format:

int writeit(tcp_handle, buffer, len)

u_char *tcp_handle;

u_char *buffer;

u_long len;

*tcp_handle is the client or server handle.

*buffer is the address of the buffer being written.

len is the number of bytes to write.

The writeit routine returns either the number of bytes written, or -1 if an error occurs.

Description

The xdrrec_create routine requires one of the following:

• The TCP transport

• A stream-oriented interface (such as file I/O) not supported by MultiNet. The stream consists of data organized into

records. Each record is either an RPC request or reply.

The clnttcp_create and svcfd_create routines call the xdrrec_create routine.

See Also

clnttcp_create, svcfd_create, xdrrec_endofrecord, xdrrec_eof, xdrrec_skiprecord

xdrrec_endofrecord
Marks the end of a record.

Format

#include tcpip$rpc:xdr.h

bool_t xdrrec_endofrecord (XDR *xdrs, bool_t sendnow);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

sendnow

Indicates when the calling program will send the record to the writeit routine (see xdrrec_create).

If sendnow is TRUE, xdrrec_endofrecord sends the record now. If sendnow is FALSE, xdrrec_endofrecord writes

the record to a buffer and sends the buffer when it runs out of buffer space.

Description

A client or server program calls the xdrrec_endofrecord routine when it reaches the end of a record it is writing. The

program must call the xdrrec_create routine before calling xdrrec_endofrecord.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdrrec_create, xdrrec_eof, xdrrec_skiprecord

xdrrec_eof
Goes to the end of the current record, then verifies whether any more data can be read.

Format

#include tcpip$rpc:xdr.h

bool_t xdrrec_eof (XDR *xdrs);

Argument

xdrs

Address of the structure containing XDR encoding and decoding information.

Description

The client or server program must call the xdrrec_create routine before calling xdrrec_eof.

Diagnostics

This routine returns TRUE if it reaches the end of the data stream, and FALSE if it finds more data to read.

See Also

xdrrec_create, xdrrec_endofrecord, xdrrec_skiprecord

xdrrec_skiprecord
Goes to the end of the current record.

Format

#include tcpip$rpc:xdr.h

bool_t xdrrec_skiprecord (XDR *xdrs);

Argument

xdrs

Address of the structure containing XDR encoding and decoding information.

Description

A client or server program calls the xdrrec_skiprecord routine before it reads data from a stream. This routine

ensures that the program starts reading a record from the beginning.

The xdrrec_skiprecord routine is similar to the xdrrec_eof routine, except that xdrrec_skiprecord does not verify

whether any more data can be read.

The client or server program must call the xdrrec_create routine before calling xdrrec_skiprecord.

Diagnostics

This routine returns TRUE if it has skipped to the start of a record. Otherwise, it returns FALSE.

See Also

xdrrec_create, xdrrec_endofrecord, xdrrec_eof

xdrstdio_create
Initializes a stdio XDR stream.

Format

#include tcpip$rpc:xdr.h

void xdrstdio_create (XDR *xdrs, FILE *file, enum xdr_op op);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

file

File pointer FILE *, which is to be associated with the stream.

op

An XDR operation, one of: XDR_ENCODE, XDR_DECODE, or XDR_FREE.

Description

The xdrstdio_create routine initializes an stdio stream for the specified file.

