
i

TCPware
®
 for OpenVMS

Programmer's Guide

Part Number: N-6003-60-NN-A

January 2014

This document is a guide to the programming functions of TCPware for OpenVMS.

Revision/Update: This is a revised manual.

Operating System/Version: VAX/VMS V5.5-2 or later, OpenVMS VAX V6.0 or later,

OpenVMS Alpha V6.1 or later, or OpenVMS I64 V8.2 or later

Software Version: 6.0

Process Software

Framingham, Massachusetts

USA

ii

The material in this document is for informational purposes only and is subject to change without notice. It should not be

construed as a commitment by Process Software. Process Software assumes no responsibility for any errors that may appear in

this document.

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the

Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

The following third-party software may be included with your product and will be subject to the software license agreement.

Network Time Protocol (NTP). Copyright © 1992 by David L. Mills. The University of Delaware makes no representations

about the suitability of this software for any purpose.

Point-to-Point Protocol. Copyright © 1989 by Carnegie-Mellon University. All rights reserved. The name of the University may

not be used to endorse or promote products derived from this software without specific prior written permission. Redistribution

and use in source and binary forms are permitted provided that the above copyright notice and this paragraph are duplicated in

all such forms and that any documentation, advertising materials, and other materials related to such distribution and use

acknowledge that the software was developed by Carnegie Mellon University. The name of the University may not be used to

endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS

PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT

LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

RES_RANDOM.C. Copyright © 1997 by Niels Provos <provos@physnet.uni-hamburg.de> All rights reserved. Redistribution

and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer

in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgement: This

product includes software developed by Niels Provos.

4. The name of the author may not be used to endorse or promote products derived from this software without specific prior

written permission.

Copyright © 1990 by John Robert LoVerso. All rights reserved. Redistribution and use in source and binary forms are permitted

provided that the above copyright notice and this paragraph are duplicated in all such forms and that any documentation,

advertising materials, and other materials related to such distribution and use acknowledge that the software was developed by

John Robert LoVerso.

Kerberos. Copyright © 1989, DES.C and PCBC_ENCRYPT.C Copyright © 1985, 1986, 1987, 1988 by Massachusetts Institute

of Technology. Export of this software from the United States of America is assumed to require a specific license from the

United States Government. It is the responsibility of any person or organization contemplating export to obtain such a license

before exporting. WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this software and its

documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies

and that both that copyright notice and this permission notice appear in supporting documentation, and that the name of M.I.T.

not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission. M.I.T.

makes no representations about the suitability of this software for any purpose. It is provided "as is" without express or implied

warranty.

DNSSIGNER (from BIND distribution) Portions Copyright (c) 1995-1998 by Trusted Information Systems, Inc.

Portions Copyright (c) 1998-1999 Network Associates, Inc.

Permission to use, copy, modify, and distribute this software for any purpose with or without fee is hereby granted, provided that

the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND

TRUSTED INFORMATION SYSTEMS DISCLAIMS

ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL TRUSTED INFORMATION SYSTEMS BE LIABLE

FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER

RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE

OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF

THIS SOFTWARE.

ERRWARN.C. Copyright © 1995 by RadioMail Corporation. All rights reserved. Redistribution and use in source and binary

forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer

in the documentation and/or other materials provided with the distribution.

3. Neither the name of RadioMail Corporation, the Internet Software Consortium nor the names of its contributors may be used

iii

to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS

PROVIDED BY RADIOMAIL CORPORATION, THE INTERNET SOFTWARE CONSORTIUM AND CONTRIBUTORS

``AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO

EVENT SHALL RADIOMAIL CORPORATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software was written for

RadioMail Corporation by Ted Lemon under a contract with Vixie Enterprises. Further modifications have been made for the

Internet Software Consortium under a contract with Vixie Laboratories.

IMAP4R1.C, MISC.C, RFC822.C, SMTP.C Original version Copyright © 1988 by The Leland Stanford Junior University

NS_PARSER.C Copyright © 1984, 1989, 1990 by Bob Corbett and Richard Stallman

This program is free software. You can redistribute it and/or modify it under the terms of the GNU General Public License as

published by the Free Software Foundation, either version 1, or (at your option) any later version. This program is distributed in

the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software

Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139 USA

IF_ACP.C Copyright © 1985 and IF_DDA.C Copyright © 1986 by Advanced Computer Communications

IF_PPP.C Copyright © 1993 by Drew D. Perkins

ASCII_ADDR.C Copyright © 1994 Bell Communications Research, Inc. (Bellcore)

DEBUG.C Copyright © 1998 by Lou Bergandi. All Rights Reserved.

NTP_FILEGEN.C Copyright © 1992 by Rainer Pruy Friedrich-Alexander Universitaet Erlangen-Nuernberg

RANNY.C Copyright © 1988 by Rayan S. Zachariassen. All Rights Reserved.

MD5.C Copyright © 1990 by RSA Data Security, Inc. All Rights Reserved.

Portions Copyright © 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989 by SRI International

Portions Copyright © 1984, 1989 by Free Software Foundation

Portions Copyright © 1993, 1994, 1995, 1996, 1997, 1998 by the University of Washington. Permission to use, copy, modify,

and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above

copyright notices appear in all copies and that both the above copyright notices and this permission notice appear in supporting

documentation, and that the name of the University of Washington or The Leland Stanford Junior University not be used in

advertising or publicity pertaining to distribution of the software without specific, written prior permission. This software is

made available "as is", and THE UNIVERSITY OF WASHINGTON AND THE LELAND STANFORD JUNIOR

UNIVERSITY DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO THIS SOFTWARE,

INCLUDING WITHOUT LIMITATION ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE, AND IN NO EVENT SHALL THE UNIVERSITY OF WASHINGTON OR THE LELAND

STANFORD JUNIOR UNIVERSITY BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES

OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN

ACTION OF CONTRACT, TORT (INCLUDING NEGLIGENCE) OR STRICT LIABILITY, ARISING OUT OF OR IN

CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Portions Copyright © 1980, 1982, 1985, 1986, 1988, 1989, 1990, 1993 by The Regents of the University of California. All

rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following

conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer

in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgement:

This product includes software developed by the University of California, Berkeley and its contributors.

iv

4. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from

this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Portions Copyright © 1993 by Hewlett-Packard Corporation.

Permission to use, copy, modify, and distribute this software for any purpose with or without fee is hereby granted, provided that

the above copyright notice and this permission notice appear in all copies, and that the name of Hewlett-Packard Corporation not

be used in advertising or publicity pertaining to distribution of the document or software without specific, written prior

permission. THE SOFTWARE IS PROVIDED "AS IS" AND HEWLETT-PACKARD CORP. DISCLAIMS ALL

WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL HEWLETT-PACKARD CORPORATION BE LIABLE FOR

ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER

RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE

OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF

THIS SOFTWARE.

Portions Copyright © 1995 by International Business Machines, Inc.

International Business Machines, Inc. (hereinafter called IBM) grants permission under its copyrights to use, copy, modify, and

distribute this Software with or without fee, provided that the above copyright notice and all paragraphs of this notice appear in

all copies, and that the name of IBM not be used in connection with the marketing of any product incorporating the Software or

modifications thereof, without specific, written prior

permission. To the extent it has a right to do so, IBM grants an immunity from suit under its patents, if any, for the use, sale or

manufacture of products to the extent that such products are used for performing Domain Name System dynamic updates in

TCP/IP networks by means of the Software. No immunity is granted for any product per se or for any other function of any

product. THE SOFTWARE IS PROVIDED "AS IS", AND IBM DISCLAIMS ALL WARRANTIES, INCLUDING ALL

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT

SHALL IBM BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY

DAMAGES WHATSOEVER ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS

SOFTWARE, EVEN IF IBM IS APPRISED OF THE POSSIBILITY OF SUCH DAMAGES.

Portions Copyright © 1995, 1996, 1997, 1998, 1999, 2000 by Internet Software Consortium. All Rights Reserved. Permission

to use, copy, modify, and distribute this software for any purpose with or without fee is hereby granted, provided that the above

copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET

SOFTWARE CONSORTIUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING

ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL INTERNET

SOFTWARE CONSORTIUM BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES

OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN

ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION

WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright (c) 1996-2000 Internet Software Consortium.

Use is subject to license terms which appear in the file named ISC-LICENSE that should have accompanied this file when you

received it. If a file named ISC-LICENSE did not accompany this file, or you are not sure the one you have is correct, you may

obtain an applicable copy of the license at: http://www.isc.org

This file is part of the ISC DHCP distribution. The documentation associated with this file is listed in the file

DOCUMENTATION, included in the top-level directory of this release. Support and other services are available for ISC

products - see http://www.isc.org for more information.

ISC LICENSE, Version 1.0

1. This license covers any file containing a statement following its copyright message indicating that it is covered by this

license. It also covers any text or binary file, executable, electronic or printed image that is derived from a file that is covered by

this license, or is a modified version of a file covered by this license, whether such works exist now or in the future. Hereafter,

such works will be referred to as "works covered by this license," or "covered works."

2. Each source file covered by this license contains a sequence of text starting with the copyright message and ending with

"Support and other services are available for ISC products - see http://www.isc.org for more information." This will hereafter be

referred to as the file's Bootstrap License.

3. If you take significant portions of any source file covered by this license and include those portions in some other file, then

you must also copy the Bootstrap License into that other file, and that file becomes a covered file. You may make a good-faith

v

judgement as to where in this file the bootstrap license should appear.

4. The acronym "ISC", when used in this license or generally in the context of works covered by this license, is an abbreviation

for the words "Internet Software Consortium."

5. A distribution, as referred to hereafter, is any file, collection of printed text, CD ROM, boxed set, or other collection, physical

or electronic, which can be distributed as a single object and which contains one or more works covered by this license.

6. You may make distributions containing covered files and provide copies of such distributions to whomever you choose, with

or without charge, as long as you obey the other terms of this license. Except as stated in (9), you may include as many or as few

covered files as you choose in such distributions.

7. When making copies of covered works to distribute to others, you must not remove or alter the Bootstrap License. You may

not place your own copyright message, license, or similar statements in the file prior to the original copyright message or

anywhere within the Bootstrap License. Object files and executable files are exempt from the restrictions specified in this

clause.

8. If the version of a covered source file as you received it, when compiled, would normally produce executable code that would

print a copyright message followed by a message referring to an ISC web page or other ISC documentation, you may not modify

the file in such a way that, when compiled, it no longer produces executable code to print such a message.

9. Any source file covered by this license will specify within the Bootstrap License the name of the ISC distribution from which

it came, as well as a list of associated documentation files. The associated documentation for a binary file is the same as the

associated documentation for the source file or files from which it was derived. Associated documentation files contain human-

readable documentation which the ISC intends to accompany any distribution.

If you produce a distribution, then for every covered file in that distribution, you must include all of the associated

documentation files for that file. You need only include one copy of each such documentation file in such distributions.

Absence of required documentation files from a distribution you receive or absence of the list of documentation files from a

source file covered by this license does not excuse you from this from this requirement. If the distribution you receive does not

contain these files, you must obtain them from the ISC and include them in any redistribution of any work covered by this

license. For information on how to obtain required documentation not included with your distribution, see: http://www.isc.org.

If the list of documentation files was removed from your copy of a covered work, you must obtain such a list from the ISC. The

web page at http://www.isc.org contains pointers to lists of files for each ISC distribution covered by this license.

It is permissible in a source or binary distribution containing covered works to include reformatted versions of the

documentation files. It is also permissible to add to or modify the documentation files, as long as the formatting is similar in

legibility, readability, font, and font size to other documentation in the derived product, as long as any sections labeled

CONTRIBUTIONS in these files are unchanged except with respect to formatting, as long as the order in which the

CONTRIBUTIONS section appears in these files is not changed, and as long as the manual page which describes how to

contribute to the Internet Software Consortium (hereafter referred to as the Contributions Manual Page) is unchanged except

with respect to formatting.

Documentation that has been translated into another natural language may be included in place of or in addition to the required

documentation, so long as the CONTRIBUTIONS section and the Contributions Manual Page are either left in their original

language or translated into the new language with such care and diligence as is required to preserve the original meaning.

10. You must include this license with any distribution that you make, in such a way that it is clearly associated with such

covered works as are present in that distribution. In any electronic distribution, the license must be in a file called "ISC-

LICENSE".

If you make a distribution that contains works from more than one ISC distribution, you may either include a copy of the ISC-

LICENSE file that accompanied each such ISC distribution in such a way that works covered by each license are all clearly

grouped with that license, or you may include the single copy of the ISC-LICENSE that has the highest version number of all the

ISC-LICENSE files included with such distributions, in which case all covered works will be covered by that single license file.

The version number of a license appears at the top of the file containing the text of that license, or if in printed form, at the top of

the first page of that license.

11. If the list of associated documentation is in a seperated file, you must include that file with any distribution you make, in

such a way that the relationship between that file and the files that refer to it is clear. It is not permissible to merge such files in

the event that you make a distribution including files from more than one ISC distribution, unless all the Bootstrap Licenses refer

to files for their lists of associated documentation, and those references all list the same filename.

12. If a distribution that includes covered works includes a mechanism for automatically installing covered works, following that

installation process must not cause the person following that process to violate this license, knowingly or unknowingly. In the

event that the producer of a distribution containing covered files accidentally or wilfully violates this clause, persons other than

the producer of such a distribution shall not be held liable for such violations, but are not otherwise excused from any

requirement of this license.

vi

13. COVERED WORKS ARE PROVIDED "AS IS". ISC DISCLAIMS ALL WARRANTIES WITH REGARD TO

COVERED WORKS INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE.

14. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES OR

ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION

OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE

USE OF COVERED WORKS.

Use of covered works under different terms is prohibited unless you have first obtained a license from ISC granting use pursuant

to different terms. Such terms may be negotiated by contacting ISC as follows:

 Internet Software Consortium

 950 Charter Street

 Redwood City, CA 94063

 Tel: 1-888-868-1001 (toll free in U.S.)

 Tel: 1-650-779-7091

 Fax: 1-650-779-7055

 Email: info@isc.org

 Email: licensing@isc.org

DNSSAFE LICENSE TERMS

This BIND software includes the DNSsafe software from RSA Data Security, Inc., which is copyrighted software that can only

be distributed under the terms of this license agreement.

The DNSsafe software cannot be used or distributed separately from the BIND software. You only have the right to use it or

distribute it as a bundled, integrated product.

The DNSsafe software can ONLY be used to provide authentication for resource records in the Domain Name System, as

specified in RFC 2065 and successors. You cannot modify the BIND software to use the

DNSsafe software for other purposes, or to make its cryptographic functions available to end-users for other uses.

If you modify the DNSsafe software itself, you cannot modify its documented API, and you must grant RSA Data Security the

right to use, modify, and distribute your modifications, including the right to use

any patents or other intellectual property that your modifications depend upon.

You must not remove, alter, or destroy any of RSA's copyright notices or license information. When distributing the software to

the Federal Government, it must be licensed to them as "commercial computer software" protected under 48 CFR 12.212 of the

FAR, or 48 CFR 227.7202.1 of the DFARS.

You must not violate United States export control laws by distributing the DNSsafe software or information about it, when such

distribution is prohibited by law.

THE DNSSAFE SOFTWARE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY WHATSOEVER. RSA HAS NO

OBLIGATION TO SUPPORT, CORRECT, UPDATE OR MAINTAIN THE RSA SOFTWARE. RSA DISCLAIMS ALL

WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO ANY MATTER WHATSOEVER, INCLUDING ALL

IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-

INFRINGEMENT OF THIRD PARTY RIGHTS.

If you desire to use DNSsafe in ways that these terms do not permit, please contact:

 RSA Data Security, Inc.

 100 Marine Parkway

 Redwood City, California 94065, USA

to discuss alternate licensing arrangements.

Secure Shell (SSH). Copyright © 2000. This License agreement, including the Exhibits (―Agreement‖), effective as of the latter

date of execution (―Effective Date‖), is hereby made by and between Data Fellows, Inc., a California corporation, having

principal offices at 675 N. First Street, 8th floor, San Jose, CA 95112170 (―Data Fellows‖) and Process Software, Inc., a

Massachusetts corporation, having a place of business at 959 Concord Street, Framingham, MA 01701 (―OEM‖).

Portions copyright 1988 - 1994 Epilogue Technology Corporation.

Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.

vii

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

 notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

 notice, this list of conditions and the following disclaimer in

 the documentation and/or other materials provided with the

 distribution.

3. All advertising materials mentioning features or use of this

 software must display the following acknowledgment:

 "This product includes software developed by the OpenSSL Project

 for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to

 endorse or promote products derived from this software without

 prior written permission. For written permission, please contact

 openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL"

 nor may "OpenSSL" appear in their names without prior written

 permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following

 acknowledgment:

 "This product includes software developed by the OpenSSL Project

 for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY

EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR

ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED

OF THE POSSIBILITY OF SUCH DAMAGE.

==

This product includes cryptographic software written by Eric Young

(eay@cryptsoft.com). This product includes software written by Tim

Hudson (tjh@cryptsoft.com).

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

All rights reserved.

This package is an SSL implementation written

by Eric Young (eay@cryptsoft.com).

The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as

the following conditions are aheared to. The following conditions

apply to all code found in this distribution, be it the RC4, RSA,

lhash, DES, etc., code; not just the SSL code. The SSL documentation

included with this distribution is covered by the same copyright terms

except that the holder is Tim Hudson (tjh@cryptsoft.com).

viii

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution

as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the copyright

 notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

 notice, this list of conditions and the following disclaimer in the

 documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software

 must display the following acknowledgement:

 "This product includes cryptographic software written by

 Eric Young (eay@cryptsoft.com)"

 The word 'cryptographic' can be left out if the rouines from the library

 being used are not cryptographic related :-).

4. If you include any Windows specific code (or a derivative thereof) from

 the apps directory (application code) you must include an acknowledgement:

 "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

The licence and distribution terms for any publically available version or

derivative of this code cannot be changed. i.e. this code cannot simply be

copied and put under another distribution licence

[including the GNU Public Licence.]

All other trademarks, service marks, registered trademarks, or registered service marks mentioned in this document are the

property of their respective holders.

TCPware is a registered trademark and Process Software and the Process Software logo are trademarks of Process Software.

Copyright ©1997, 1998, 1999, 2000, 2002, 2004 Process Software Corporation. All rights reserved. Printed in USA.

Copyright ©2000, 2001, 2002, 2005, 2007 Process Software. All rights reserved. Printed in USA.

If the examples of URLs, domain names, internet addresses, and web sites we use in this documentation reflect any that actually

exist, it is not intentional and should not to be considered an endorsement, approval, or recommendation of the actual site, or any

products or services located at any such site by Process Software. Any resemblance or duplication is strictly coincidental.

Contents

ix

Contents

Contents .. ix

Preface .. xxvi

Introducing This Guide .. xxvi

What You Need to Know Beforehand ... xxvi

How This Guide Is Organized .. xxvi

Online Help.. xxvi

Obtaining Customer Support ... xxvii

License Information .. xxviii

Maintenance Services ... xxviii

Reader's Comments Page ... xxviii

Documentation Set ... xxviii

Conventions Used ... xxix

Chapter 1 Network Programming Overview .. 1

Introduction .. 1

TCP/IP Programming Concepts ... 1

Connection-Oriented Services and TCP .. 1

Connectionless Services and UDP ... 3

Socket Concepts .. 3

Naming Communication Endpoints .. 4

Data Representation and Exchange .. 4

Data Encoding Schemes .. 4

Native Byte Order and Network Byte Order ... 4

Programming Services Options ... 5

Device Drivers ... 6

VAX C and DEC C Socket Library and UCX Compatibility Services .. 6

Contents

x

TCPware Socket Library .. 6

System Queue Input/Output (QIO) Calls .. 7

BGDRIVER .. 7

TCPDRIVER, UDPDRIVER, and IPDRIVER ... 7

INETDRIVER ... 8

FTP Library Routines ... 8

TELNET Library Routines ... 8

ONC RPC Services .. 8

Network Programming with Sockets .. 9

Using Socket Calls in Network Programming .. 9

Socket System Calls ... 9

BSD Socket Data Structures .. 12

sockaddr_in Structure .. 13

hostent Structure .. 13

servent Structure .. 14

Multicasting .. 14

Sending IP Multicast Datagrams ... 15

Receiving IP Multicast Datagrams .. 15

Writing Application Programs ... 15

Writing a Stream Client ... 16

Writing a Stream Server .. 16

Writing a Datagram Client .. 17

Writing a Datagram Server ... 18

Writing Servers ... 18

Chapter 2 UCX Compatibility Services ... 20

Introduction .. 20

Multicasting .. 21

Logicals .. 22

Sample Programs .. 22

Debugging and Tracing .. 23

Chapter 3 TCPDRIVER Services .. 24

Introduction .. 24

Contents

xi

Sequence of Operations .. 24

Other Operations .. 25

TCPDRIVER System Service Call Format .. 25

TCPDRIVER System Service Call Arguments .. 26

TCPDRIVER System Service Call Function Codes ... 29

IO$_CREATE .. 30

IO$_READVBLK .. 33

IO$_SENSEMODE .. 35

IO$_SENSEMODE | IO$M_CTRL.. 39

IO$_SENSEMODE | IO$M_RD_COUNT ... 42

IO$_SETMODE | IO$M_ATTNAST ... 44

IO$_SETMODE | IO$M_CTRL .. 46

IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN ... 50

IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP .. 51

IO$_WRITEVBLK .. 53

IO$_WRITEVBLK | IO$M_EXTEND .. 55

SYS$ASSIGN ... 58

SYS$CANCEL .. 60

SYS$DASSGN ... 61

Sample Programs .. 62

C Programs .. 62

FINGER .. 62

FINGERD .. 63

FORTRAN Program .. 63

ALPHA and I64 ... 63

VAX .. 63

Chapter 4 UDPDRIVER Services ... 64

Introduction .. 64

Sequence of Operations .. 64

Other Operations .. 65

User Datagram Protocol Implementation Notes .. 65

UDPDRIVER System Service Call Format ... 65

UDPDRIVER System Service Call Arguments ... 66

Contents

xii

UDPDRIVER System Service Call Function Codes .. 68

IO$_READVBLK .. 70

IO$_SENSEMODE .. 73

Status .. 74

IO$_SENSEMODE | IO$M_CTRL.. 76

IO$_SENSEMODE | IO$M_RD_COUNT ... 79

IO$_SETMODE | IO$M_CTRL .. 80

IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN ... 84

IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP .. 85

IO$_WRITEVBLK .. 87

IO$_WRITEVBLK | IO$M_EXTEND .. 90

SYS$ASSIGN ... 92

SYS$CANCEL .. 94

SYS$DASSGN ... 95

Sample Programs .. 96

C Programs .. 96

FORTRAN Program .. 96

VAX .. 96

Alpha and I64 .. 97

Chapter 5 IPDRIVER Services ... 98

Introduction .. 98

Sequence of Operations .. 99

Other Operations .. 99

Internet Protocol Implementation Notes ... 100

IPDRIVER System Service Call Format ... 100

IPDRIVER System Service Call Arguments ... 101

IPDRIVER User Interface System Service Call Function Codes .. 103

IO$_READVBLK .. 105

IO$_SENSEMODE | IO$M_CTRL.. 107

Reading Extended Characteristics .. 109

Reading Network Device Information .. 109

Reading the Routing Table .. 110

Reading the ARP Table Function ... 112

Contents

xiii

IO$_SENSEMODE | IO$M_RD_COUNT ... 115

IO$_SETMODE | IO$M_CTRL .. 117

IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN ... 120

IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP .. 121

IO$_WRITEVBLK .. 123

SYS$ASSIGN ... 128

SYS$CANCEL .. 130

SYS$DASSGN ... 131

IPDRIVER External Interface .. 131

I/O Functions for the External Interface ... 132

Sequence of Operations for the Network Interface Program .. 132

IPDRIVER External Interface System Service Call Codes ... 132

IO$_INITIALIZE (External) .. 134

IO$_READVBLK (External) ... 137

IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN (External) ... 139

IO$_WRITEVBLK (External) ... 140

Chapter 6 INETDRIVER Services ... 142

Introduction .. 142

Sequence of Operations .. 142

Client Operations .. 142

Server Operations ... 143

Multicasting .. 144

Other Operations .. 144

INETDRIVER Socket Library ... 145

INETDRIVER System Service Call Format ... 145

INETDRIVER System Service Call Arguments .. 146

INETDRIVER System Service Call Function Codes ... 148

IO$_ACCEPT .. 149

IO$_ACCEPT_WAIT ... 152

IO$_BIND... 153

IO$_CONNECT ... 155

IO$_GETPEERNAME .. 157

IO$_GETSOCKNAME ... 159

Contents

xiv

IO$_GETSOCKOPT ... 161

IO$_IOCTL ... 164

IO$_LISTEN .. 166

IO$_RECEIVE ... 168

IO$_SEND .. 172

IO$_SETCHAR .. 176

IO$_SETMODE | IO$M_ATTNAST ... 178

IO$_SETSOCKOPT .. 180

IO$_SHUTDOWN ... 184

IO$_SOCKET .. 186

SYS$ASSIGN ... 188

SYS$CANCEL .. 190

SYS$DASSGN ... 191

Sample Programs .. 192

Chapter 7 FTP Library .. 193

Introduction .. 193

Building an FTP Client .. 195

Connection Control Block ... 195

Transferring Files ... 197

Error Status Codes ... 198

Library Routines .. 198

FTP_ACCOUNT .. 199

FTP_ALLOCATE_CCB.. 201

FTP_APPEND_FILE ... 202

FTP_AUTH ... 205

FTP_CCC .. 207

FTP_CHECK_FEATURES ... 208

FTP_CLOSE_CONNECTION .. 209

FTP_CREATE_DIRECTORY .. 210

FTP_DEALLOCATE_CCB ... 212

FTP_DELETE_DIRECTORY .. 213

FTP_DELETE_FILE .. 214

FTP_GET_CCB .. 215

Contents

xv

FTP_GET_FILE .. 217

FTP_GET_LIST .. 220

FTP_GET_NAME_LIST ... 222

FTP_LOGIN_USER .. 224

FTP_OPEN_CONNECTION ... 227

FTP_PASSWORD .. 230

FTP_PBSZ ... 232

FTP_PRINT_DIRECTORY .. 234

FTP_PROT .. 236

FTP_PUT_FILE.. 238

FTP_QUOTE ... 241

FTP_RENAME_FILE .. 243

FTP_SET_DEBUG ... 245

FTP_SET_DIRECTORY .. 247

FTP_SET_PASV .. 249

FTP_SET_STRU .. 250

FTP_SET_TYPE ... 252

FTP_USER .. 254

Chapter 8 Socket Library ... 256

Introduction .. 256

Transitioning to the C Socket Library: Include (Header) Files ... 256

Transitioning to the C Socket Library: Linking Applications ... 257

Sample Programs .. 257

Debugging programs that use the C socket library ... 258

Chapter 9 TELNET Library .. 259

Introduction .. 259

Connection Control Block ... 260

Library Routines Reference ... 263

TEL_ABORT_CONNECTION ... 264

TEL_ALLOCATE_CCB .. 265

TEL_CLOSE_CONNECTION .. 266

TEL_CREATE_TERMINAL ... 267

TEL_DEALLOCATE_CCB ... 269

Contents

xvi

TEL_GET_CCB .. 270

TEL_OPEN_CONNECTION ... 271

TEL_RECEIVE_DATA .. 273

TEL_SEND_COMMAND ... 275

TEL_SEND_DATA ... 276

TEL_SEND_URGENT .. 277

TEL_SET_CCB ... 278

User Command Processing ... 279

Chapter 10 SNMP Extendible Agent API Routines ... 280

Introduction .. 280

Requirements .. 280

Linking the Extension Agent Image ... 281

Installing the Extension Agent Image .. 281

Sample Code and Data Structures .. 282

Debugging Code .. 282

Subroutine Reference ... 282

SnmpExtensionInit .. 283

SnmpExtensionInitEx .. 285

SnmpExtensionQuery ... 287

SnmpExtensionTrap .. 289

Chapter 11 Token Authentication API Functions ... 292

Introduction .. 292

Supported Languages .. 293

How to Use Functions ... 293

Header Files ... 293

Activating Program Shareable Image .. 293

Function Reference ... 294

creadcfg... 295

sd_init ... 296

sd_auth ... 297

sd_check ... 298

sd_next .. 299

sd_pin .. 300

Contents

xvii

sd_close .. 301

Chapter 12 ONC RPC Fundamentals .. 302

Introduction .. 302

What Are ONC RPC Services? .. 302

TCPware Implementation ... 302

Distributed Applications ... 302

Components of ONC RPC Services .. 303

Run-Time Libraries (RTLs) ... 303

RPCGEN Compiler ... 303

Port Mapper .. 303

RPCINFO Command .. 304

Client-Server Relationship ... 304

External Data Representation (XDR) ... 304

ONC RPC Processing Flow ... 304

Local Calls versus Remote Calls ... 305

Handling System Crashes .. 305

Handling Errors ... 305

Call Semantics ... 305

Programming Interface ... 306

High-Level Routines .. 306

Mid-Level Routines ... 306

Low-Level Routines ... 306

Transport Protocols ... 307

XID Cache .. 307

Cache Entries .. 307

Cache Size ... 308

Execution Guarantees ... 308

Enabling XID Cache ... 308

Active Cache .. 308

Broadcast RPC ... 308

ONC RPC Batch Facilities ... 309

Batch Requirements ... 309

Identifying Remote Programs and Procedures ... 309

Contents

xviii

Remote Program Numbers ... 310

Remote Version Numbers ... 310

Remote Procedure Numbers .. 310

Additional Terms ... 310

Chapter 13 Building Distributed Applications with RPC 313

Introduction .. 313

Distributed Application Components.. 313

What You Need to Do ... 314

Step 1: Design the Application .. 314

Step 2: Write and Compile the Interface Definition ... 314

Step 3: Write the Necessary Code .. 315

Building a Structure .. 315

Step 4: Compile All Files .. 315

Step 5: Link the Object Code ... 316

Step 6: Start the Port Mapper ... 316

Step 7: Execute the Client and Server Programs .. 316

Using Asynchronous Transports ... 316

Writing an Asynchronous Server .. 317

Before You Begin... 317

Writing the Code ... 317

How Asynchronous Transports Affect Memory ... 317

Asynchronous System Traps ... 317

RPCINFO Utility ... 318

Requesting a Program Listing ... 318

Calling a NULL Routine .. 318

Chapter 14 RPCGEN Compiler ... 320

Introduction .. 320

What Is RPCGEN? .. 320

Software Requirements .. 320

Input Files .. 320

Output Files ... 321

Preprocessor Directives .. 322

Invoking RPCGEN... 323

Contents

xix

Creating All Output Files at Once .. 323

Creating Specific Output Files ... 324

Examples: .. 324

Creating Server Stubs for TCP or UDP Transports .. 324

Error Handling ... 325

Restrictions ... 325

Chapter 15 RPC RTL Management Routines .. 326

Introduction .. 326

Management Routines .. 326

Routine Name Conventions .. 327

Header Files ... 327

Boolean Values .. 328

TCPware/Sun Implementation Differences .. 328

Management Routines .. 330

get_myaddress .. 331

getrpcbynumber ... 332

getrpcport ... 333

ONCRPC_GET_CHAR ... 334

ONCRPC_GET_STATS .. 336

ONCRPC_SET_CHAR .. 338

Chapter 16 ONC RPC RTL Client Routines .. 340

Introduction .. 340

Common Arguments ... 340

Client Routines .. 341

auth_destroy ... 342

authnone_create .. 343

authunix_create .. 344

authunix_create_default .. 345

callrpc .. 346

clnt_broadcast .. 347

clnt_call ... 349

clnt_control ... 350

clnt_create .. 351

Contents

xx

clnt_destroy .. 353

clnt_freeres ... 354

clnt_geterr .. 355

clnt_pcreateerror / clnt_spcreateerror .. 356

clnt_perrno / clnt_sperrno ... 357

clnt_perror / clnt_sperror ... 358

clntraw_create .. 359

clnttcp_create ... 361

clntudp_create / clntudp_bufcreate .. 363

Chapter 17 ONC RPC RTL Port Mapper Routines ... 365

Introduction .. 365

Port Mapper Routines ... 365

Port Mapper Arguments ... 366

Routine Descriptions ... 366

pmap_freemaps .. 367

pmap_getmaps ... 368

pmap_getport ... 369

pmap_rmtcall .. 370

pmap_set .. 371

pmap_unset .. 372

Chapter 18 ONC RPC RTL Server Routines ... 373

Introduction .. 373

Server Routines ... 373

Routine Descriptions ... 375

registerrpc ... 376

svc_destroy ... 377

svc_freeargs .. 378

svc_getargs ... 379

svc_getcaller ... 380

svc_getchan .. 381

svc_getport ... 382

svc_getreqset .. 383

svc_register ... 385

Contents

xxi

svc_run .. 386

svc_sendreply / svc_sendreply_dq ... 387

svc_unregister ... 388

svcerr_auth ... 389

svcfd_create .. 391

svcraw_create ... 392

svctcp_create .. 393

svctcpa_create .. 394

svctcpa_enablecache .. 395

svctcpa_freecache .. 396

svctcpa_getxdrs .. 397

svctcpa_shutdown .. 398

svcudp_create / svcudp_bufcreate .. 399

svcudp_enablecache ... 400

svcudpa_create / svcudpa_bufcreate ... 401

svcudpa_enablecache ... 402

svcudpa_freecache ... 404

svcudpa_getxdrs ... 405

svcudpa_shutdown ... 406

xprt_register ... 407

xprt_unregister ... 408

Chapter 19 ONC RPC RTL XDR Routines ... 409

Introduction .. 409

XDR Routines ... 409

What XDR Routines Do ... 409

When to Call XDR Routines ... 409

Quick Reference .. 410

Routine Descriptions ... 411

xdr_accepted_reply .. 412

xdr_array ... 413

xdr_authunix_parms ... 414

xdr_bool .. 415

xdr_bytes .. 416

Contents

xxii

xdr_callhdr .. 417

xdr_callmsg ... 418

xdr_char .. 419

xdr_double .. 420

Diagnostics .. 421

xdr_enum .. 422

xdr_float .. 423

xdr_free ... 424

xdr_hyper .. 425

xdr_int ... 426

xdr_long .. 427

xdr_netobj ... 428

xdr_opaque ... 429

xdr_opaque_auth ... 430

xdr_pmap .. 431

xdr_pmaplist ... 432

xdr_pointer ... 433

xdr_reference ... 435

xdr_rejected_reply .. 436

xdr_replymsg .. 437

xdr_short ... 438

xdr_string .. 439

xdr_u_char .. 440

xdr_u_hyper .. 441

xdr_u_int ... 442

xdr_u_long .. 443

xdr_u_short ... 444

xdr_union .. 445

xdr_vector ... 446

xdr_void .. 447

xdr_wrapstring .. 448

xdrmem_create... 449

xdrrec_create .. 450

Contents

xxiii

xdrrec_endofrecord .. 452

xdrrec_eof ... 453

xdrrec_skiprecord ... 454

xdrstdio_create ... 455

Chapter 20 ONC RPC Sample Programs ... 456

Introduction .. 456

Introducing Sample Programs ... 456

Running Sample Programs .. 456

Running GETSYI Client ... 457

Running PRINT Client .. 458

Running SYSINFO Client .. 458

Miscellaneous Clients and Servers .. 458

Batch RPC Sample Programs ... 459

Broadcast RPC Sample Programs .. 460

Appendix A TCPware Socket Library .. 461

Introduction .. 461

Include (Header) Files ... 461

Linking Applications .. 464

Sample Programs .. 465

Subroutine Categories... 466

Socket Operations ... 466

Lookup Operations .. 466

Byte Order Conversion Operations ... 467

Byte String Operations .. 467

Internet Address Conversion Subroutines .. 467

Server Operation ... 467

Subroutine Data Structures .. 467

WIN/TCP Socket Library Support .. 469

Using WIN/TCP Applications Under TCPware ... 469

Recompiling and Linking WIN/TCP Applications ... 470

Socket Library Reference .. 470

accept .. 471

bcmp ... 473

Contents

xxiv

bcopy ... 474

bind ... 475

bzero ... 476

connect ... 477

getdomainname / gethostname ... 479

gethostbyaddr ... 480

gethostbyname ... 481

gethostid ... 483

getnetbyaddr .. 484

getnetbyname ... 485

getpeername... 486

getprotobyname ... 487

getprotobynumber ... 488

getservbyname ... 489

getservbyport .. 490

getsockname ... 491

getsockopt .. 492

HNS_LOOKUPHOST ... 493

HNS_LOOKUPIA... 494

htonl .. 495

htons ... 496

inet_ .. 497

ipso_getauthbyname .. 499

ipso_getauthbynumber .. 500

ipso_getlevelbyname .. 501

ipso_getlevelbynumber .. 502

listen .. 503

ntohl .. 504

ntohs ... 505

pneterror ... 506

recvfrom .. 507

resolver ... 509

select ... 512

Contents

xxv

sendto ... 514

setdomainname / sethostname.. 516

setsockopt ... 517

shutdown .. 519

socket .. 520

socket_close .. 521

socket_ioctl ... 522

socket_read / socket_recv .. 524

socket_send / socket_write .. 526

tcpware_atolineid ... 528

tcpware_gettimezone ... 529

tcpware_lineidtoa ... 530

tcpware_server ... 531

tcpware_settimezone ... 532

Sample Discard Protocol Programs ... 533

Contents

xxvi

Preface

Introducing This Guide

This guide describes the TCPware services and libraries from the programmer's perspective. It is for network

application programmers.

What You Need to Know Beforehand

Before using TCPware, you should be familiar with:

• Computer networks in general.

• HP’s OpenVMS operating system and file system.

How This Guide Is Organized

This guide has the following contents:

• PART I, Introduction to Programming—Introduces network programming and the TCPware programming

functions.

• PART II, UCX Compatibility Programming—Describes TCPware's support for the BGDRIVER and

VAXCRTL socket routines.

• PART III, QIO Programming—Describes the TCPDRIVER, UDPDRIVER, IPDRIVER, and INETDRIVER

QIO programming interfaces.

• PART IV, Programming Libraries—Describes the FTP Library, Socket Library, and TELNET Library

routines.

• PART V, Application Programming Interfaces—Describes the Simple Network Management Protocol

(SNMP) extendible agent application programming interface (API) routines, and the Token Authentication

API functions.

• PART VI, ONC RPC Programming—Describes the Remote Procedure Call (RPC) routines.

• PART VII, Appendix—Reference for programming the Socket Library routines for versions of OpenVMS

earlier than 5.3.

• Index to this guide.

Online Help

You can use help at the DCL prompt to find the following:

• Topical help—Access TCPware help topics as follows:

Preface

xxvii

$ HELP TCPWARE [topic]

The topic entry is optional. You can also enter topics and subtopics at the following prompt and its subprompts:

TCPWARE Subtopic?

Online help is also available from within certain TCPware components: FTP-OpenVMS Client and Server,

Network Control Utility (NETCU), TELNET-OpenVMS Client, NSLOOKUP, and TRACEROUTE. Use the

HELP command from within each component.

Example: NETCU>HELP [topic]

• Error messages help – Access help for TCPware error messages only as follows:

$ HELP TCPWARE MESSAGES

If the error message is included in the MESSAGES help, it identifies the TCPware component and provides a

meaning and user action. See the Instructions under MESSAGES.

Obtaining Customer Support

You can use the following customer support services for information and help about TCPware and other

Process Software products if you subscribe to our Product Support Services. (If you bought TCPware products

through an authorized TCPware reseller, contact your reseller for technical support.) Contact Technical Support

directly using the following methods:

• Electronic Mail

E-mail relays your question to us quickly and allows us to respond, as soon as we have information for you.

Send e-mail to support@process.com.Be sure to include your:

– Name

– Telephone number

– Company name

– Process Software product name and version number

– Operating system name and version number

Describe the problem in as much detail as possible. You should receive an immediate automated response

telling you that your call was logged.

• Telephone

If calling within the continental United States or Canada, call Process Software Technical Support toll-free at

1-800-394-8700. If calling from outside the continental United States or Canada, dial 1-508-628-5074. Please

be ready to provide your name, company name, and telephone number.

• World Wide Web

There is a variety of useful technical information available on our World Wide Web home page,

http://www.process.com (select Customer Support).

• Internet Newsgroup

You can also access the VMSnet newsgroup, vmsnet.networks.tcp-ip.tcpware. Process Software's

Engineering and Technical Support professionals monitor and respond to this open forum newsgroup on a

timely basis.

Preface

xxviii

License Information

TCPware for OpenVMS includes a software license that entitles you to install and use it on one machine. Please

read and understand the Software License Agreement before installing the product. If you want to use TCPware

on more than one machine, you need to purchase additional licenses. Contact Process Software or your

distributor for details.

Maintenance Services

Process Software offers a variety of software maintenance and support services. Contact us or your distributor

for details about these services.

Reader's Comments Page

TCPware guides may include Reader's Comments as their last page. If you find an error in this guide or have

any other comments about it, please let us know. Return a completed copy of the Reader's Comments page, or

send e-mail to techpubs@process.com.

Please make your comments specific, including page references whenever possible. We would appreciate your

comments about our documentation.

Documentation Set

The documentation set for TCPware for OpenVMS consists of the following:

• Release Notes for the current version of TCPware for OpenVMS—For all users, system mangers, and

application programmers. The Release Notes are available online on your TCPware for OpenVMS media and

are accessible before or after software installation.

• Installation & Configuration Guide—For system managers and those installing the software. The guide

provides installation and configuration instructions for the TCPware for OpenVMS products.

• User's Guide—For all users. This guide includes an introduction to TCPware for OpenVMS products as well

as a reference for the user functions arranged alphabetically by product, utility, or service.

• Management Guide—For system managers. This guide contains information on functions not normally

available to the general network end user. It also includes implementation notes and troubleshooting

information.

• Network Control Utility (NETCU) Command Reference—For users and system managers. This reference

covers all the commands available with the Network Control Utility (NETCU) and contains troubleshooting

information.

• Programmer's Guide—For network application programmers. This guide gives application programmers

information on the callable interfaces between TCPware for OpenVMS and application programs.

• Online help—

– Topical help, using HELP TCPWARE [topic]

– Error messages help, using HELP TCPWARE MESSAGES

Preface

xxix

Conventions Used

Convention Meaning

host Any computer system on the network. The local host is your computer.

A remote host is any other computer.

monospaced type System output or user input. User input is in bold type.

Example: Is this configuration correct? YES

Monospaced type also indicates user input where the case of the entry

should be preserved.

italic type Variable value in commands and examples. For example, username

indicates that you must substitute your actual username. Italic text

also identifies documentation references.

[directory] Directory name in an OpenVMS file specification. Include the brackets

in the specification.

[optional-text] (Italicized text and square brackets) Enclosed information is optional.

Do not include the brackets when entering the information.
Example: START/IP line address [info]

This command indicates that the info parameter is optional.

{value | value} Denotes that you should use only one of the given values. Do not

include the braces or vertical bars when entering the value.

Note!

Information that follows is particularly noteworthy.

CAUTION!

Information that follows is critical in preventing a system interruption or

security breach.

key Press the specified key on your keyboard.

Ctrl/key Press the control key and the other specified key simultaneously.

Return Press the Return or Enter key on your keyboard.

Network Programming Overview

1

Chapter 1 Network Programming Overview

Introduction

This chapter introduces TCP/IP network programming. It describes TCP/IP programming generally and outlines

areas where TCPware provides added functions or has specific requirements. This chapter includes sample

client and server programs and describes the following:

• TCP/IP programming concepts

• Data representation and exchange

• Programming services options

• Network programming with sockets

• Multicasting

• Sample application programs

For details on TCP/IP network programming, see the list of reference texts in the User's Guide and the

following books:

• Comer, Douglas E. & David L. Stevens [1993], Internetworking with TCP/IP, Volume III: Client-Server

Programming and Applications (BSD Socket Version), Prentice-Hall

• Stevens, W. Richard [1990], UNIX Network Programming, Prentice-Hall

This chapter is designed for an audience of experienced programmers who need information specific to

TCPware programming.

TCP/IP Programming Concepts

TCP/IP programming requires determining the following:

• Whether to use a connection-oriented (TCP) or connectionless (UDP) networking service

• Creating sockets

• Naming the communication endpoints (internet addresses and port numbers)

Connection-Oriented Services and TCP

Connection-oriented services and protocols support applications that send multiple messages between peer

applications. These services and protocols require that applications establish a logical connection (virtual

circuit) between them before they can exchange data. They provide data transfer that is reliable, ordered, full

duplex, and flow controlled. They:

• Verify receipt of data.

• Compute checksums.

• Provide sequence numbers to ensure correct segment order.

Network Programming Overview

2

• Retransmit lost segments.

• Inform users of dropped network connections. TCP is such a connection-oriented protocol, designed for

applications that need reliable data delivery between similar and dissimilar systems. Examples of applications

that use TCP are:

– FTP

– TELNET

– SMTP

Since these services and protocols are more complex than connectionless services, they have higher overhead.

In a connection-oriented service:

• The source and destination uniquely identify each connection.

• You can multiplex connections across the network to paired host processes.

• Data streams break into portions encapsulated with control information, such as addresses. Encapsulated

pieces pass through the network to the peer host.

With TCP, the number of blocks and size (in number of bytes) of a send operation need not equal that of a

receive operation. The protocol may bundle several sends into one receive: a receive operation can receive more

or fewer bytes than in a single send operation.

For example, if you do five send operations, you may not need five receive operations to get all the data. If a

client application sends five 10-byte blocks of data (five send operations) over the network and the server

program initiates a 100-byte read operation, the program can receive all 50 bytes at one time.

TCP (unlike DECnet) does not support the concept of messages. TCP is a byte-stream protocol that does not

distinguish record or read/write boundaries. The individual applications have to perform messaging as needed.

The client and server have to agree on a message protocol and implement it. Here are three possible strategies:

Messages of fixed

length

Data acquisition applications are examples of this type of strategy.

When you use this strategy, make sure the application reads a

complete message-length of data from the network. After the read,

the application must go back and process any residual data left over

from the last complete message. For example, if you issue a read for

100 bytes and do not get 100 bytes, you need to update the pointers

and the length, and go back until you read the full 100 bytes.

Messages preceded by

byte count length

Other protocols prefix each message with a byte count. This could

be a 16- or 32-bit quantity. RPC is an example of an application

protocol that uses this strategy. If you use this technique, use the

conversion routines for native- and network-byte order described in

the Native Byte Order and Network Byte Order. This guarantees that

the client and server agree on the byte order sequences for that

number.

Messages separated by

a <CR><LF>

sequence

FTP is an application that uses this type of messaging strategy. A

program receiving data searches for <CR><LF> characters and

processes the data preceding these characters as one record. If there

is more data in the buffer, the program looks for the next

<CR><LF> sequence and processes the data preceding it as a

separate message.

Network Programming Overview

3

Connectionless Services and UDP

Connectionless services present data with a destination address, and the network delivers it on a best-effort

basis. This is independent of other data exchanged between the same pair of hosts. Connectionless services are

unreliable but have lower overhead than connection-oriented services. In a connectionless service:

• The client or server must perform data tracking and adaptive retransmission strategies.

• Applications cannot depend on the underlying transport for reliable delivery.

• Each message or portion of a message contains all delivery data.

• Operation is best in LANs since WANs can introduce more errors.

UDP is a full-duplex, connectionless datagram delivery protocol with low overhead. UDP is an excellent choice

for applications that need the highest performance and can tolerate this level of service. Examples of

applications that use UDP are:

• NFS

• DNS

• SNMP

UDP can lose, delay, or duplicate requests, or deliver them out of order. The application requesting the service

must detect and correct transmission errors. For example, an application may retransmit a request if it does not

receive a reply. Applications typically do this by enabling a short timeout period and retransmitting the request

if the application does not get a response within the timeout period.

Under UDP, a server could receive multiple requests since the reply might simply be lost. This case can cause

problems if some operations are not repeatable. Use UDP on LANs where transmission errors are less frequent

and round-trip times more predictable. UDP is also well-suited for broadcast and multicast applications, and

applications that cannot tolerate the overhead of virtual circuits.

NFS often uses UDP. Here is an example of what could happen during an NFS file deletion request:

1 The client issues a delete request.

2 The server receives and processes the request.

3 The server deletes the file and returns a reply that it deleted the file.

4 The reply gets lost.

5 Not having received a confirmation, the client reissues the original delete request.

6 The server gets the request and replies that the file no longer exists.

7 The server's reply confuses the client.

Note that you might need to add application design features if some operations are not repeatable. Remote

Procedure Calls (RPCs) that NFS uses handle this situation by keeping a cache of recent requests and replies. In

this case, if NFS receives a duplicate request, it sends the cached reply that it successfully deleted the file.

For DNS and SNMP, these issues are not as severe. For example, DNS resolves host name and internet

addresses. It does not matter how many times you reissue a request; the response is the same and you get the

information you need.

Socket Concepts

Most TCP/IP programming uses a Berkeley System Distribution (BSD) UNIX abstraction called sockets.

Network programs use sockets to exchange data across the network. Socket programming is synchronous: each

socket deals with only one connection at a time.

Socket programming requires a socket descriptor that is analogous to the file descriptor used in file

programming. In socket programming (as in file programming), you create the socket descriptor, use it to read

or write, then destroy the descriptor by closing the connection. The operation of creating a socket descriptor

involves naming the communication endpoints.

Network Programming Overview

4

Naming Communication Endpoints

Naming communication endpoints involves assigning:

Internet

addresses

Internet addresses uniquely identify the source and destination host interfaces.

Any exchange of information involves two addresses, one for the source and

one for the destination.

Port numbers Port numbers uniquely identify a source and destination port. Similar to

DECnet object numbers, port numbers identify the particular application or

service used. The TCP protocol specifies sockets that have a protocol port

number and an IP address. This protocol uses the AF_INET address family

type.

TCP/IP programming uses well-known port numbers to contact a known

service. For example, to do a file transfer you need to open a connection to

port 21. Port 21 is the FTP server port number. Other services have specific

port numbers as defined by the current Assigned Numbers RFC. If you write

an application, you need to assign a port number. Any client that wants to use

the service you create connects to that port number.

 The Assigned Numbers RFC also designates a clearinghouse for assigning port numbers. Get a unique port

number from this center when you develop a network service. However, if you are developing a private

application, you can create your own port number so long as another service does not use it.

Sockets define endpoint addresses in data structures coded in C. Most application programs use predefined

address structures, such as sockaddr_in, as defined in the BSD Socket Data Structures.

Data Representation and Exchange

This section discusses concepts about how data is formatted and exchanged between systems: data encoding

schemes and native as opposed to network byte order.

Data Encoding Schemes

Different hardware and operating system platforms represent data with different encoding schemes. For

example, representing floating point and integer values differ on various hardware platforms.

Your programs must decide on a compatible encoding scheme and perform any required conversion between

network format and local hardware representation format. Another approach is to exchange data in ASCII

instead of binary representation.

Native Byte Order and Network Byte Order

The sequence for storing binary data on a given machine is native byte order. The sequence for transmitting

binary data over the network is network byte order.

Some machines are little-endian; others are big-endian. Little-endian machines (VAX systems, for example)

store binary data with the least significant byte first.

Big-endian machines (Sun systems, for example) store and transmit binary data with the most significant byte

first. Network byte order is always in the big-endian format. Socket libraries require network addresses in

network byte order.

Network Programming Overview

5

Figure 1-1 shows the format for storing the decimal value 512 as a 16-bit (2 byte) quantity on little-endian and

big-endian systems.

Figure 1-1 Big- and Little-Endian Storage of 512 as a Word

When communicating between a client and server, both need to agree to the byte sequence for transmitting data.

Depending on what type of system you are on, the host's native byte order may not be the same as network byte

order. For example, the byte order for VAX systems is little-endian, the opposite of network byte order.

Several routines convert between network and native byte order. Use these routines to make sure that the data is

in the right format. Always use these conversion routines, even if the local host byte order is the same as

network byte order. Doing so guarantees that the order of information is correct and you can port the source

code.

The function htons converts a short integer (16 bits) from host native to network byte order. The function

ntohs converts a short integer from network to host native byte order. The htonl and ntohl functions

convert long integers (32 bits) between the two.

For example, if you use a messaging strategy that uses a byte count length (as described in the "Messages

preceded by byte count length" bulleted item), use these routines to encode the byte count length field. This way

the order of information is correct, whether you are communicating between a VAX and Sun system or between

two VAX systems.

Programming Services Options

This section describes the interface and services options you can use when writing TCP/IP networking

applications. It includes information on the following:

• Device drivers

• VAX C and DEC C socket libraries and UCX Compatibility

• TCPware Socket Library routines

• System Queue Input/Output (QIO) interface calls

• FTP Library routines

• TELNET Library routines

• ONC RPC Services

Use the DEC C or VAX C socket libraries with C-based applications. Note that any high-level language that

passes C-like arguments can call these routines.

Network Programming Overview

6

Programming with sockets (rather than using the QIO interface discussed in the System Queue Input/Output

(QIO) Calls subsection) makes network programs more portable across UNIX environments and more

compatible with other socket-based TCP/IP applications. Sockets are easy to program since they look like

standard subroutine calls and hide some of the complexity of the QIO interface system calls.

However, writing event-driven programs is much easier with the QIO interface than with sockets. This is true

since sockets do not fit the standard OpenVMS event-driven IO model. The QIO interface provides access to

the full range of TCPware functions; the Socket Library provides access to a subset of the available TCPware

functions.

Device Drivers

TCPware uses the standard OpenVMS network interface device drivers that operate the hardware controller.

These device drivers include DEC's Ethernet device drivers and third-party device drivers (PNDRIVER for

Proteon's proNET controller; and NADRIVER, NBDRIVER, and NCDRIVER for the HYPERchannel driver).

Because TCP-OpenVMS uses these standard OpenVMS device drivers, other applications using these drivers

(such as DECnet, but not other TCP/IP implementations) can continue to run at the same time and use the same

hardware.

VAX C and DEC C Socket Library and UCX Compatibility Services

The VAX C and DEC C socket routines are the preferred methods of network programming in that they offer

the greatest flexibility. These socket routines are available because of the TCPware UCX Compatibility

Services.

See HP’s VAX C Run Time Library Manual or DEC C Language Reference Manual for information on these

socket library routines.

The TCPware UCX Compatibility Services provides the QIO interface that the HP TCP/IP Services for

OpenVMS BGDRIVER support. The UCX Compatibility Services provide support for:

• Any application the UCX BGDRIVER supports.

• VMS 5.3 (or later) VAX C Run-Time Library (VAXCRTL) Socket Routines.

• OpenVMS VAX, OpenVMS Alpha and OpenVMS I64 DEC C Run-Time Library (DEC/CRTL) Socket

Routines.

If you developed an application for UCX, there is no need to modify it to make it work with TCPware. You can

take your image (compiled and linked against UCX) and run it as is.

See the HP TCP/IP Services for VMS Programming Manual for programming information. Then see Chapter 2,

UCX Compatibility Services, for programming information specific to TCPware's UCX compatibility.

TCPware Socket Library

Note! The TCPware Socket Library is intended for use on VAX systems running pre-Version 5.3 VMS, or if you are

using Open Network Computing (ONC) Remote Procedure Call (RPC).Services. If you are running VMS

Version 5.3 or later, use the VAX C or DEC C socket routines, discussed in the previous section.

The TCPware Socket Library is a collection of C subroutines that closely emulate the UNIX socket functions.

The Socket Library supports a subset of the UNIX socket functions, including stream and datagram sockets.

These subroutines let you migrate UNIX C programs using the UNIX socket functions to the TCPware

environment with versions of VMS earlier than 5.3.

The Socket Library routines use the TCPDRIVER and UDPDRIVER programming interfaces, although an

alternate set of socket routines is available that uses the INETDRIVER programming interface. This

INETDRIVER interface allows a mix of socket routines and INETDRIVER QIO calls. This alternate set of

socket routines is available in the TCPWARE_SOCKLIB.OLB socket library and is not part of the

Network Programming Overview

7

TCPWARE_SOCKLIB_SHR.EXE shareable run-time library (RTL).

The SOCKLIB RTL or OLB libraries support VAX C or DEC C for older versions of VMS. Some of the

routines are renamed to avoid conflict with other library routine names but perform the same functions. For

example, socket_close is analogous to the UNIX close function, and socket_read and socket_write

are analogous to the UNIX read and write functions.

The TCPware Socket Library uses socket descriptors that are addresses of internal data structures, not socket

numbers. The socket descriptor space is not compatible with the file descriptor space, so standard VAX C or

DEC C routines will not function with TCPware socket descriptors. Another implication of this is that the

TCPware select call uses a list of socket descriptors instead of a bit mask. Use the TCPware FD macros to

manipulate socket descriptor lists since these macros manage this difference transparently.

See Appendix A, TCPware Socket Library, for programming information.

System Queue Input/Output (QIO) Calls

Programmers can create applications that use the system Queue Input/Output calls (QIOs) for an interface.

These calls use standard OpenVMS system services and support any high-level programming language. QIOs

support all OpenVMS asynchronous features such as Asynchronous System Traps (ASTs) and event flags.

BGDRIVER, TCPDRIVER, UDPDRIVER, IPDRIVER, and INETDRIVER are TCPware's proprietary QIO

programming interfaces, as discussed in the following subsections.

BGDRIVER

TCPware provides BGDRIVER . The BGDRIVER is the preferred programming interface.

See Chapter 2, UCX Compatibility Services.

TCPDRIVER, UDPDRIVER, and IPDRIVER

These drivers are proprietary to Process Software and are described as follows:

IPDRIVER implements IP and

ICMP

It uses the network device drivers to send and receive

datagrams. The Address Resolution Protocol (ARP)

and Reverse ARP (RARP), which map internet

addresses and physical addresses, are also

implemented within this driver. Functions are provided

to open and close a port and to transmit and receive

datagrams. (See the IPDRIVER Services chapter for

programming information.)

IPDRIVER uses ports to demultiplex received

datagrams. When an IP datagram is received,

IPDRIVER validates the header and searches for a port

opened on the protocol number in the datagram's

internet header. IPDRIVER discards the datagram if no

port is open for that protocol or if that port has no

outstanding receive.

TCPDRIVER implements TCP It uses the IP device driver to send and receive TCP

segments. Functions are provided to open and close,

receive and send data over, and perform special control

functions on a connection. (See the TCPDRIVER

Services chapter in Part 3 for programming

information.)

Network Programming Overview

8

UDPDRIVER implements UDP It uses the IP device driver to send and receive UDP

datagrams. Functions are provided to open and close a

receive port, and to receive and send data. (See the

UDPDRIVER Services chapter for programming

information.)

INETDRIVER

TCPware provides INETDRIVER, the Stanford Research Institute (SRI) QIO interface. Some vendors of

TCP/IP products (such as Process Software's MultiNet) use the SRI QIO interface as a direct socket type

interface. The INET device driver maps UNIX socket calls to OpenVMS QIO requests. It supports stream

(TCP) and datagram (UDP) services.

INETDRIVER Services provide an asynchronous I/O implementation of the UNIX socket calls within the

OpenVMS $QIO and $QIOW system services. These system services allow Asynchronous System Trap (AST)

routines and event flags to be associated with I/O requests. This allows for efficient socket operations.

The INETDRIVER interfaces directly with the TCP and UDP protocols in the transport layers. It does not

replace the TCPDRIVER or UDPDRIVER services, but provides another way to communicate with them.

See Chapter 6, INETDRIVER Services, for programming information.

FTP Library Routines

The FTP-OpenVMS library routines provide a programming interface to the FTP protocol. Network

programmers use the FTP-OpenVMS library routines in applications to provide FTP capabilities.

See Chapter 7, FTP Library, for programming information.

TELNET Library Routines

The TELNET-OpenVMS library routines provide a programming interface to the TELNET protocol. Network

programmers use the TELNET-OpenVMS library routines in applications to provide TELNET capabilities.

See Chapter 9, TELNET Library, for programming information.

ONC RPC Services

TCPware provides Open Network Computing (ONC) Remote Procedure Call (RPC) Services. ONC RPC

Services are a set of software programming tools with which you can develop distributed applications. These

tools implement the RPC and XDR (External Data Representation) protocols.

A distributed application executes different parts of its programs on different hosts in a network. Computers on

the network share the processing workload, with each computer performing the tasks for which it is best

equipped. For example, a distributed database application might consist of a central database running on a

server and numerous client workstations. The workstations send requests to the server. The server carries out

the requests and sends the results back to the workstations. The workstations use the results in other modules of

the application.

Remote procedure calls (RPCs) allow programs to invoke procedures on remote hosts as if the procedures were

local. ONC RPC Services hide the networking details from the application. This facilitates distributed

processing because it relieves the application programmer from performing low-level network tasks such as

establishing connections, addressing sockets, and converting data from one machine's format to another.

The XDR protocol provides a means for the local and remote host to agree on a way of representing data. XDR

is a standard that resolves differences of data representation between different operating systems and hardware

architectures.

Network Programming Overview

9

ONC RPC Services consist of the following components:

• Shareable run-time libraries (RTLs)

• RPCGEN compiler

• Port Mapper

• RPCINFO command

The Port Mapper maps well-known RPC program numbers to UDP/TCP port numbers. The Port Mapper helps

ONC RPC client programs connect to ports the ONC RPC server uses. A Port Mapper runs on each host that

implements ONC RPC Services. The Port Mapper is part of TCPware's Network Control Process (NETCP).

Note! You must use the TCPware Socket Library if you are using ONC RPC Services.

Part VI in this guide is devoted to ONC RPC programming.

Network Programming with Sockets

This section provides a quick overview of socket programming. It includes information on the following:

• Using socket calls in network programming

• Socket system calls

• Messaging over stream (TCP) connections

• BSD socket data structures

Using Socket Calls in Network Programming

Figure 1-2 is an example of calls made by a client and server that use TCP to communicate. In this example, the

server starts and waits for new connections on a well-known port. It accepts each new connection, processes the

client's requests, and closes the connection.

In the example, the client creates a socket and uses connect to connect to the server. The client then uses

write to send requests to the server and read to receive replies from the server. The client calls the close

routine when it is finished using the connection.

The server uses a socket call to create a socket, then uses bind to specify the local well-known port for the

application. Next, the server calls listen (which prepares the socket for incoming connections) and enters a

loop. In the loop, the server calls the accept routine and waits for the next connection request to arrive. The

server uses read and write to interact with and close to end communication with the client. The server then

returns to accept and waits for the next connection request.

Servers typically use passive sockets to wait for incoming network connections. Applications (typically clients)

use active sockets to initiate a connection.

Socket System Calls

When creating a socket, you create either a stream socket or a datagram socket. Stream sockets (created by

specifying SOCK_STREAM) correspond to the TCP protocol. Datagram sockets (created by specifying

SOCK_DGRAM) correspond to the UDP protocol.

SOCK_RAW corresponds to the IP layer directly. Note that SOCK_RAW is not described in this chapter

because programming is not usually done at this level. Using TCP or UDP is far superior.

The IP layer only allows you to have 256 connections or users at the same time. TCP and UDP allow you to

have about 232 possible connections between any two hosts. A connection is uniquely identified by the source

internet address and port number, and the destination internet address and port number.

Network Programming Overview

10

Many operating systems provide the BSD socket call interface, including OpenVMS v5.3 and later. Most non-

socket implementations have comparable networking services. In OpenVMS, most implementations include a

BSD socket library interface as well as a QIO interface. The QIO interface can be almost a one-to-one

correspondence to the socket calls, and usually provides a greater range of functions than available through the

socket library. While the QIO interface can be a bit different from the BSD interface, it still provides the same

level of services.

Figure 1-2 Sequence of Socket Calls Between Client and Server

Network Programming Overview

11

Table 1-1 describes typically-used socket calls.

Table 1-1 Socket Calls

Call Description

accept Accepts an incoming connection. Accept actually blocks and waits for the

connection to come in. Typically in the case of a server, it sits in block mode

until someone actually does a connect. Valid only for stream TCP/IP

sockets.

bind Used primarily by servers to name their local endpoint of the connection.

Servers are contacted at well-known port numbers: they "bind" to that port

number.

In a bind operation, you specify the internet address as well as the port

number. Most servers specify the internet address as zero (or

INADDR_ANY). The servers do not want to bind to any particular internet

address, just to a particular port. If a host has multiple internet addresses, it

does not matter where the request comes from so long as it goes to the

specified port.

close Closes communication over a socket. Close is similar to closing a file.

Close makes sure that the data has been sent over to the peer and then does

the actual close operation.

For the Socket Library, close is called socket_close.

connect Names the remote endpoint and, in the case of TCP, establishes a connection.

When you specify connect, you also specify an internet address and port

number. This connects you actively to the remote peer, provided someone

there is willing to accept the connection. For example, when an FTP client

issues an open, it does a connect operation on the specified internet address

and port 21. This establishes the connection to the remote server.

getpeername

getsockname

Obtain the names of the communication endpoints. These calls return the

internet address and port number of either the local end of the connection or

the remote end of the connection.

The local end of the connection is the port number and internet address on

which you have done a bind operation. The remote endpoint is the system to

which you connected or that connected to you.

getsockopt

setsockopt

Obtain or set socket options. For example, you can set one option that

determines if KEEPALIVE operations are done on TCP connections.

listen Used by servers and prepares the socket for incoming connections. Listen

declares that the server is willing to accept connections on this socket. Any

connection going to that bound port is eligible to be processed by that

process.

Network Programming Overview

12

read

recv

recvfrom

Read, recv, and recvfrom are different forms of the same request. Use

these calls to read data. Recvfrom is primarily used by UDP and returns the

internet address and port number of the sender of the datagram. Typically,

you use this information to send back a reply in a subsequent sendto.

For the Socket Library, read is called socket_read and recv is called

socket_recv.

select Performs asynchronous I/Os. The select call allows you to service many

connections from within a particular process.

There is also a timeout parameter with the select call that limits the amount

of time you can wait before it comes back to you. In this way, select

allows you to wait indefinitely, wait until timeout, or poll on a specific socket

or set of sockets.

socket Comparable to opening or creating a file. Creates a socket to which you can

send I/O requests.

write

send

sendto

Write, send, and sendto are different forms of the same request. Use

these calls to send data out over the network. Sendto is used primarily by

UDP and allows you to specify the destination internet address and the port

number. When using UDP, the sendto request allows you to send requests to

any number of hosts.

For the TCPware Socket Library, write is called socket_write and send

is called socket_send.

BSD Socket Data Structures

The BSD sockets support a group of data structures and subroutines for the socket interface that typically are

used to communicate with the socket layer. These include the sockaddr_in structure, hostent structure, and

servent structure. The following include files are used:

Include Files Description

in.h defines the sockaddr_in structure. Almost all socket operations require use

of this file.

inet.h defines address conversion subroutines, such as inet_addr(),

inet_ntoa(), and so on.

netdb.h defines network database structures including the hostent and servent

structures.

socket.h defines the sockaddr structure, SOCK_STREAM, SOCK_DGRAM,

AF_INET, and other symbols used when calling the Socket Library

subroutines. All socket operations require use of this file.

Network Programming Overview

13

See Chapter 8, Socket Library, for details on the files and the following sections.

sockaddr_in Structure

One of the more important socket data structures is the sockaddr_in structure. Use the sockaddr_in

structure in calls to name a communication endpoint. The sockaddr_in structure communicates the internet

address in the sin_addr field. It also communicates the port number in the sin_port field.

The in.h include file defines the sockaddr_in structure as shown in Example 1-1. In this example:

1 sin_family is the address family (AF_INET for example)

2 sin_port is the port number (in network byte order)

3 sin_addr is the internet address (in network byte order)

4 sin_zero is the internet address where the remainder of the eight bytes are unused and should be set to zero

Specify both the port and address in network byte order. For example, when doing a bind operation or a connect

operation, specify the sockaddr_in structure with the information filled in. When using getsockname or

getpeername, you provide the address of the structure and the subroutine then would fill it in for you.

Example 1-1 Sockaddr_in Structure As Defined in the in.h File

struct in_addr {

 unsigned long addr;

};

struct sockaddr_in {

 short sin_family;

 unsigned short sin_port;

 struct in_addr sin_addr;

 char sin_zero[8];

};

hostent Structure

The gethostbyname and gethostbyaddr routines use the hostent structure for doing host by name or host

by internet address lookups. For example, if you want to do an

FTP>open hostname

the underlying socket interface does not support use of a host name. In this case, use the gethostbyname

routine to take that name and return the corresponding internet address (among other information).

The netdb.h include file defines the hostent structure as shown in Example 1-2.

Example 1-2 Hostent Structure as Defined in the netdb.h Include File

struct hostent {

char *h_name; /* official host name */

char **h_aliases; /* alias list */

int h_addrtype; /* host address type */

int h_length; /* address length */

char **h_addr_list; /* list of addresses */

#define h_addr h_addr_list[0]; /* first address */

};

Network Programming Overview

14

The hostent structure has:

• A host name field that points to the ASCII host name.

• A pointer to a list of alias names if the host has alias names.

• A pointer to a list of internet addresses. In a more complex environment, a host might have multiple internet

addresses.

• Other information, such as the address format and address family. For TCP/IP, the address is four bytes long

and the address family is AF_INET (decimal value of 2).

servent Structure

The servent structure is used when looking up services by name or port. Although you can hard-code the

name or port (such as port 21), you can use the following routines to obtain the service name and port:

getservbyname to obtain the service port when given its name

getservbyport to obtain the service name when given its port number

Use these routines to obtain port numbers and service names. Doing so makes changing port numbers easy; you

simply edit the services definition file, TCPWARE:SERVICES.

The netdb.h include file defines the servent structure as shown in Example 1-3.

Example 1-3 Servent Structure as Defined in netdb.h File

struct servent {

char *s_name; /* official service */

char **s_aliases; /* alias list */

int s_port; /* port number */

char *s_proto; /* protocol to use */

};

Multicasting

Multicasting, as specified in RFC 1112, Host Extensions for IP Multicasting, is the transmission of an IP

datagram to a multicast host group. A multicast host group is a set of zero or more hosts identified by a single

class D IP destination address. Using a multicast host group allows applications running on your host to receive

multicast IP datagrams destined for that host group.

TCPware implements the highest level of conformance specified in RFC 1112 – level 2 "full support for

multicasting."

The following TCPware programming interfaces support IP multicasting for network interfaces that support

multicasting (such as Ethernet, FDDI, and Token Ring):

• UDPDRIVER

• IPDRIVER

• BGDRIVER (SOCK_DGRAM sockets)

• INETDRIVER (SOCK_DGRAM sockets)

• Socket Library

Network Programming Overview

15

Sending IP Multicast Datagrams

To send a multicast datagram, specify an IP multicast address in the range 224.0.0.0 to 239.255.255.255 as the

destination address in a send request. This range covers the class D IP addresses that identify multicast host

groups. Note that 224.0.0.0 is unassigned and 224.0.0.1 is assigned to the permanent group of all IP hosts,

including gateways, used to address all multicast hosts on the directly connected network.

Each multicast transmission is sent from a single network interface, even if the host has more than one

multicast-capable interface. The system manager establishes the default interface to use for multicasting by

defining the appropriate routes. If no route is defined for the multicast address, TCPware uses the default

gateway's interface. If you do not specify a default gateway, TCPware uses the first available interface. An

application can issue a request to explicitly set the interface to use for subsequently transmitted multicast

datagrams.

When you send a multicast datagram, TCPware by default delivers a local copy of it if the multicast address is

joined by one or more receivers. An application can issue a request to disable the local loopback of multicast

datagrams.

TCPware sends IP multicast datagrams with a time-to-live (TTL) of 1 by default, which prevents them from

being forwarded beyond a single subnetwork. An application can issue a request to specify the TTL for

subsequent multicast datagrams to be set to any value from 0 to 255, in order to control the scope of the

multicasts.

Receiving IP Multicast Datagrams

Before an application can receive IP multicast datagrams, it must become a member of one or more IP multicast

groups. The system manager can explicitly have the host join multicast groups by issuing the NETCU ADD

MULTICAST command (and the NETCU REMOVE MULTICAST command to leave a group). Or, an

application can ask the host to join (or leave) a multicast group by issuing a request.

See Multicasting Commands in the NETCU Command Reference for the multicasting commands.

The memberships requested by an application do not necessarily determine which datagrams that application

receives. The IP layer accepts incoming multicast datagrams if anyone claimed a membership in the destination

group of the datagram. However, delivery of a multicast datagram to a particular application is based on the

destination port (for UDP) or protocol type, just as with unicast and broadcast datagrams. To receive multicast

datagrams sent to a particular port/protocol, you must bind to that local port, leaving the local address

unspecified.

Every membership is associated with a single interface, and it is possible to join the same group on more than

one interface. If you do not specify a local interface's address when joining a group, TCPware uses the default

multicast interface. At present, you can have a maximum of 32 memberships per socket. TCPware drops the

memberships an application adds when you close the socket or port or the application exits. However, more

than one socket or port can claim membership in a particular group, and the host remains a member of that

group until the last claim is dropped.

Writing Application Programs

This section includes information on the following:

• Writing a stream client

• Writing a stream server

• Writing a datagram client

• Writing a datagram server

• Writing servers

Network Programming Overview

16

Writing a Stream Client

When writing a stream client, use the following sequence, with socket library (and system QIO equivalent)

routines given:

1 Create a socket by calling the socket routine and requesting a SOCK_STREAM socket (SYS$ASSGN).

2 Open the connection to the server by calling the connect routine (IO$_SETMODE | IO$M_CTRL |

IO$M_STARTUP).

You need to specify a sockaddr_in structure with the destination internet address and destination port

number filled in where the:

Internet address is the address of the server and can be obtained by calling gethostbyname or inet_addr

(inet_addr converts an ASCII dotted internet address to binary representation).

Port number is the well-known port for the server and can be obtained by calling getservbyname.

3 Send and receive data as needed by calling the standard send/recv and read/write routines

(IO$_WRITEVBLK or IO$_READVBLK). When you use send/recv, you can specify flag options, some

of which allow you to:

Send urgent data, or

Peek at incoming data at the head of the queue to determine what to do before the data is actually read.

4 Close the connection by calling the close routine (IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN

and then SYS$DASSGN).

The programs in Stream Client Sample Programs Included with TCPware that demonstrate stream client

applications are included in the TCPWARE_ROOT:[TCPWARE.EXAMPLES] directory.

Table 1-2 Stream Client Sample Programs Included with TCPware

Program Description

DAYTIMED.C DAYTIME client that uses the TCPware Socket Library

DISCARD.C DISCARD client that uses the INETDRIVER

FINGER.C FINGER client that uses the TCPDRIVER

TCPSAMPLE.FOR DISCARD FORTRAN client that uses the TCPDRIVER

WHOIS.C WHOIS client that use the TCPware Socket Library

Writing a Stream Server

When writing a stream server, use the following sequence, with socket library (and system QIO equivalent)

routines given:

1 Create a socket by calling the socket routine and requesting a SOCK_STREAM socket (SYS$ASSGN).

2 Bind the socket to the well-known port for the service by calling the bind routine (IO$_SETMODE |

IO$M_CTRL | IO$M_STARTUP). Specify zero for the internet address. Use the getservbyname routine to

determine the required port.

3 Set the socket to accept incoming connections by calling the listen routine, which has two parameters: the

socket that you want to listen on, and a backlog parameter, a value that indicates how many connections you

can have at a given time (the range is 1 to 5).

Network Programming Overview

17

4 For example, if you have a single-threaded server that processes connections serially, the server listens,

accepts a connection, and processes that connection. Meanwhile other connections can come in on the well-

known port. In this case, the connection is established and placed in a queue waiting to be accepted.

However, you can do nothing with the connection until you perform the next step.

5 Wait for a connection (call accept), where:

• accept returns a new socket for the connection (you do the I/O on this socket).

• The original socket is still listening for more connections.

6 Receive and send data as needed to provide the service by calling read or write and send or recv

(IO$_READVBLK or IO$_WRITEVBLK).

7 Close the connection socket by calling the close routine (IO$_SETMODE | IO$M_CTRL |

IO$M_SHUTDOWN).

8 Go to step 4.

The programs in Table 1-3 that demonstrate stream server applications are included in the

TCPWARE_ROOT:[TCPWARE.EXAMPLES] directory.

Table 1-3 Stream Server Sample Programs Included with TCPware

Program Description

DISCARDD.C DISCARD server that uses the TCPDRIVER or Socket Library

FINGERD.C FINGER server that uses the TCPDRIVER

TCPSAMPLE.FOR DISCARD FORTRAN server that uses the TCPDRIVER

Writing a Datagram Client

Writing a datagram client consists of the same type of operations as writing a stream client. Use the following

sequence, with socket library (and system QIO equivalent) routines given:

1 Create a socket by calling the socket routine and requesting a SOCK_DGRAM socket (SYS$ASSGN).

2 (Optionally) issue a connect call if you are only going to exchange information with a particular remote

peer (IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP).

In this case, when you issue a connect call, the process reserves internal socket fields that identify the

internet address and port number to which the data is to go. This means you can send data using standard

write and send calls instead of having to use the sendto call to specify the destination. Note that:

• connect names the communication endpoint. There is no need to specify it with each send.

• No connection is opened with UDP.

3 Send a request datagram calling the sendto or send routines (use send only if connected).

(IO$_WRITEVBLK.)

If you did not issue a connect call, you need to issue a sendto call that specifies the buffer you want to

send and where to send the buffer.

4 Start a timer. For example, the program might give the server five seconds to respond. If there is no response

within that time, the program reissues the request.

The program could also indicate to the user that there is a problem if, for example, the server does not

respond after five attempts to reach the server.

Network Programming Overview

18

5 Receive a reply datagram using the call recvfrom (or recv if connected). Cancel the timer if the proper

reply was received; otherwise reissue the recvfrom or recv. (IO$_READVBLK.)

6 If the application needs to request more data, go to step 3.

7 Close the socket by calling the close routine (IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN and

then SYS$DASSGN).

The programs in Table 1-4 that demonstrate datagram client applications are included in the

TCPWARE_ROOT:[TCPWARE.EXAMPLES] directory.

Table 1-4 Datagram Client Sample Programs Included with TCPware

Program Description

UDPSAMPLE.FOR DISCARD FORTRAN client that uses the UDPDRIVER

Writing a Datagram Server

Writing a datagram server consists of the same type of operations as writing a stream server, with socket library

(and system QIO equivalent) routines given:

1 Create a socket by calling the socket routine and requesting a SOCK_DGRAM socket (SYS$ASSGN).

2 Bind the socket to the well-known port for the service by calling the bind routine (IO$_SETMODE |

IO$M_CTRL | IO$M_STARTUP). This call says the socket is willing to accept datagrams sent to this

particular port.

3 Wait for a request to arrive using the call recvfrom (IO$_READVBLK). In this call you specify the buffer,

the length of the buffer, and the sockaddr_in structure that will be filled in with the information about who

sent you that datagram.

4 Decode and service the request.

5 Send the reply using the call sendto (IO$_WRITEVBLK.).

6 Go to step 3.

The programs in Datagram Server Sample Programs Included with TCPware that demonstrate datagram server

applications are included in the TCPWARE_ROOT:[TCPWARE.EXAMPLES] directory.

Table 1-5 Datagram Server Sample Programs Included with TCPware

Program Description

BG_UDP_SERVER.C DISCARD server that uses the BGDRIVER

UDPDRIVER.C DISCARD server that uses the UDPDRIVER

UDPSAMPLE.FOR DISCARD FORTRAN server that uses the UDPDRIVER

UDP_SOCK_SERVER.C DISCARD server that uses the HP Socket Library

Writing Servers

Servers that need to service several connections at once are complex. They require use of multiplexing services

because they must not block waiting for any one connection. Use:

• BSD select operation (if using a socket library interface)

• ASTs or EFNs for SYS$QIO (if using a QIO interface)

Such servers also typically require a context block per connection. This block includes the socket or channel

number and other information about the state which that connection is in and any information processing that

Network Programming Overview

19

connection requires.

You can also use a master server (such as NETCP in TCPware or inetd in UNIX) if you are writing a server.

Initiating the server with the master server allows you to:

• Avoid a separate listening process for each service.

For example, you might have several different servers, for each of which you would need a unique detached

process. A master server avoids doing this because there is one process that listens for any of these ports.

Once a connection comes in on one of these ports, the server creates a process to service that connection. The

master server process does the listen and then the accept. When the accept has completed, it creates a

detached process and that detached process services that connection. In the meantime, the master server has

gone back to waiting for another connection to come in.

• Simplify support for multiple connections. This means you do not need to write multithreaded servers.

When you use the master server process, you add server information to its database as to:

– Whether the application uses TCP or UDP.

– The well known port number or port name to listen on.

– Information about the process that needs to be created (for example where the image is located, what

privileges it must run with, and so on).

The server is started automatically when a connection is established or a datagram is sent to the well-known

port. The server's input, output, and error files are assigned to the socket (or, in VMS, the device name). This

simplifies the server because it does not need to do socket, bind, listen, and accept operations since these

have been done by the master server. All the server does is service the one connection and events occurring on

it.

For details on using the TCPware master server, see Appendix A, TCPware Socket Library, of this guide, and

the ADD SERVICE command in the NETCU Command Reference.

UCX Compatibility Services

20

Chapter 2 UCX Compatibility Services

Introduction

This chapter describes the UCX Compatibility Services.

The UCX Compatibility Services provide the following functions:

• BGDRIVER, the front-end QIO interface to TCPware that provides support for the HP TCP/IP Services for

OpenVMS (formerly the VMS/ULTRIX Connection, or UCX) QIO functions.

• TCPware's master server supports BG devices (which are marked record-oriented). These extensions should

allow UCX servers activated by the UCX master server to run under TCPware.

See the ADD SERVICE command in the NETCU Command Reference for details on setting services in

TCPware.

• Support for the VMS 5.3 and later VAX C Run-Time Library (VAXCRTL) Socket Routines as described in

the VAX C Run-Time Library Reference Manual available from HP.

• Support for OpenVMS Alpha and OpenVMS I64 DEC C Runtime Library (DECCRTL) Socket Routines.

For documentation on the HP TCP/IP Services for OpenVMS, see Bookreader help in the Telecommunications

and Networking library, the HP TCP/IP Services for OpenVMS VAX collection, and the HP TCP/IP for

OpenVMS Services for OpenVMS System Services and C Socket Programming book. This includes sections on

writing Internet applications, using the OpenVMS System Services (including QIO calls) and DEC C Socket

Routines (including a reference), and on-line programming examples.

Also see the HP TCP/IP Services for VMS Programming Manual from HP for details on the BGDRIVER $QIO

interface.

Note! The UCX Compatibility Services are intended to be 100% compatible with HP's BGDRIVER.

If you discover that our BGDRIVER is not 100% compatible with the UCX BGDRIVER $QIO interface,

please send us a sample program demonstrating the incompatibility.

The following files are included as part of the UCX QIO compatibility support in the directory

TCPWARE_COMMON:[TCPWARE]:

BGDRIVER.EXE: device driver that emulates the QIO functions.

UCX$INETDEF.H: VAX C header file containing the UCX INET functions.

UCX$IPC.OLB: transfer vectors used to resolve the socket routine references to the

VAX C/DEC C Run-Time Library.

UCX Compatibility Services

21

UCX$IPC_SHR.EXE: Run-Time library used by VAXCRTL/DECCTRL to support the

VAX C/DEC C Socket Routines.

If you have an application that was compiled and linked against UCX, you should be able to run that image on

TCPware with no modifications (you do not need to re-link against TCPware).

Note! If you make changes to that application and want to compile and link against TCPware, follow the

instructions under the Sample Programs section. The resulting image should run on TCPware or UCX

systems.

Multicasting
UCX Compatibility Services includes the following setsockopt and getsockopt options at the

UCX$C_IPOPT level for multicasting support:

UCX$C_IP_ADD_MEMBERSHIP

and

UCX$C_IP_DROP_MEMBERSHIP

The setsockopt operation adds and drops a multicast

membership. The following structure is specified:

struct IPMREQDEF {

/* Multicast group address */

unsigned long int IMR$L_MULTIADDR;

/* Local interface address */

unsigned long int IMR$L_INTERFACE;

} ;

—IMR$L_MULTIADDR contains the multicast

internet address to be added or dropped and

—IMR$L_INTERFACE contains the local interface's

internet address on which the multicast address is

added or dropped.

If IMR$L_INTERFACE is specified as

INADDR_ANY (0), the default multicast interface is

used.

UCX$C_IP_MULTICAST_IF The setsockopt operation sets the interface for

subsequent multicast datagrams. The longword option

value specifies the local internet address of the

interface to be used. A getsockopt operation of this

option returns the currently set interface (or 0 if none

was set).

UCX$C_IP_MULTICAST_LOOP The setsockopt operation enables or disables the

local loopback of multicast datagrams. By default, this

option is enabled. Specify a byte value of 1 to enable, 0

to disable. A getsockopt operation of this option

returns the current multicast loopback setting.

UCX Compatibility Services

22

UCX$C_IP_MULTICAST_TTL The setsockopt operation sets the time-to-live (TTL)

value for multicast datagrams. By default, this value is

1. A getsockopt operation of this option returns the

current multicast TTL.

Logicals

TCPware defines the following logicals for UCX compatibility:

UCX$DEVICE

TCPIP$DEVICE

defined as BG:, which is the name of the UCX device drive.

UCX$INET_HOST

TCPIP$INET_HOST

defined to be the host name, which is the same setting as

TCPWARE_DOMAINNAME logical.

UCX$IPC_SHR

TCPIP$IPC_SHR

provides the linkage to the TCPware version of the UCX$IPC_SHR

Run-Time library.

Note! The VAX C/DEC C Socket Routines getnetbyname and getnetbyaddr are supported and read the

TCPWARE:NETWORKS. file.

IOCTL commands that set interface characteristics are not supported. Sensing of interfaces

(SIOCGIFCONF, SIOCGIFADDR, SIOCGIFBRDADDR, SIOCGIFDSTADDR, SIOCGIFFLAGS, and

SIOCGIFNETMASK) is supported.

Sample Programs

The following sample programs using UNIX-like sockets are included in the

TCPWARE_COMMON:[TCPWARE.EXAMPLES] directory:

BGDRIVER_TCP_CLIENT.C BGDRIVER_UDP_CLIENT.C

BGDRIVER_TCP_SERVER.C BGDRIVER_UDP_SERVER.C

The BGDRIVER_TCP_CLIENT.C and BGDRIVER_TCP_SERVER.C pair of programs provides a self-

declared ECHO server that sequentially accepts client connections and echoes back the client messages. The

BGDRIVER_UDP_CLIENT.C and BGDRIVER_UDP_SERVER.C pair of programs provide a self-declared

DISCARD server that can receive (and discard) datagrams from multiple clients. These programs are

functionally equivalent to the socket programs in Chapter 8, Socket Library.

UCX Compatibility Services

23

To build any one of these applications using DEC C, enter:

$ CC/DECC/PREFIX=ALL/DEFINE=TCPWARE filename

$ LINK filename

Ctrl/Z

To build any one of these applications using VAX C, enter:

$ CC/VAXC/DEFINE=TCPWARE filename

$ LINK filename, TCPWARE:UCX$IPC/LIB, SYS$INPUT/OPTIONS-

_$ SYS$SHARE:VAXCRTL/SHARE

Ctrl/Z

You can build these programs on both TCPware and UCX systems. The /DEFINE=TCPWARE uses code to point

to a TCPware include directory for building on a TCPware system.

Debugging and Tracing

TCPware provides a call tracing facility that can be used to debug and trace the use of the sockets API for many

applications. This facility works for both the TCPware socket library and the API that the newer versions of the

C compiler work with. This does NOT log QIO operations. To enable the tracing define the

TCPWARE_SOCKET_TRACE logical name. The value of the logical name can be used in the following ways:

• As a bit mask for types of operations to trace. Bit 0 (zero) signifies control operations, bit 1signifies read

operations and bit 2 signifies write operations. When these values are used the information is written to

SYS$OUTPUT:.

• As a partial or full file name. When used as a partial file name the default name specified to open the file is:

SYS$SCRATCH:TCPWARE_SOCKET_<process_name>.LOG. Control, read and write operations are

logged when logging is done to a file.

TCPDRIVER Services

24

Chapter 3 TCPDRIVER Services

Introduction

This chapter describes the Transmission Control Protocol (TCP) device driver (TCPDRIVER) services. It

describes the user interface of this implementation of TCP only. RFC 793 contains the full TCP specifications.

There are no implementation-specific restrictions for the Transmission Control Protocol (TCP). The material

presented here does not explain or describe the TCP protocol.

TCP is a connection-oriented, end-to-end reliable protocol. It provides reliable communication between pairs of

processes in computers attached to interconnected networks. TCP services are available through the OpenVMS

Queue I/O (SYS$QIO and SYS$QIOW) system services, which:

• Open and close a connection.

• Send and receive data over the connection.

• Perform status checks on the connection.

SYS$QIOW is the synchronous and SYS$QIO the asynchronous form of VMS system services. Use each form

depending on the requirements of your application.

See the appropriate OpenVMS documentation for more information on the OpenVMS I/O system services and

related services, such as the asynchronous system trap (AST) and event flag services.

Note! The QIO calls described in this chapter are used for direct access to the TCPDRIVER. If you are porting an

application that uses the BGDRIVER or INETDRIVER QIO interface, you may not need to make

modifications. Use TCPware's BGDRIVER (see Chapter 2) or INETDRIVER (see Chapter 6).

Sequence of Operations

The sequence of operations to open a connection are as follows:

1 Assign an I/O channel to TCP0: with the Assign I/O Channel (SYS$ASSIGN) system service. SYS$ASSIGN

creates a new device unit and assigns to it the channel.

2 Open the connection with the IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP function of one of the

Queue I/O (SYS$QIO or SYS$QIOW) system services.

3 Perform read requests with the IO$_READVBLK function and write requests using the IO$_WRITEVBLK

function as desired.

4 Close your end of the connection with the IO$_SETMODE | IO$M_CTRL | IOM$_SHUTDOWN function.

5 Perform additional read requests until the peer returns SS$_VCCLOSED status.

6 Deassign the I/O channel using the Deassign I/O Channel (SYS$DASSGN) system service.

TCPDRIVER Services

25

Other Operations

In addition to the sequence of operations described in the preceding section, TCPDRIVER includes other

operations that:

Place a connection into listen state and specify

the maximum number of incoming connections

that can be queued waiting to be accepted, then

wait for and accept an incoming connection

IO$_CREATE

Read data immediately IO$_READVBLK | IO$M_NOW

Read the received data without removing it from

the received data queue

IO$_READVBLK | IO$M_DATACHECK

Read only completely filled data buffers IO$READVBLK | IO$M_PACKED

Send data stored in a list of buffers IO$_WRITEVBLK | IO$M_EXTEND

Read the active connections status IO$_SENSEMODE

Read the connection characteristics for the

channel

IO$_SENSEMODE | IO$M_CTRL

Read the TCP counters IO$_SENSEMODE | IO$M_RD_COUNT

Set the connection characteristics IO$_SETMODE | IO$M_CTRL

Request delivery of an attention AST IO$_SETMODE | IO$M_ATTNAST

Abort a connection IO$_SETMODE | IO$M_CTRL |

IO$M_SHUTDOWN | IO$M_ABORT

Cancel any pending I/O requests SYS$CANCEL

TCPDRIVER System Service Call Format

The format for the TCPDRIVER SYS$QIO system service call is as follows:

status = SYS$QIO(efn, chan, func, iosb, astadr, astprm, p1, p2, p3, p4, p5, p6)

The SYS$QIO or SYS$QIOW system calls issue TCP functions. SYS$QIO is for asynchronous service

completion. It specifies that the service return to the caller immediately after queuing the I/O request.

SYS$QIOW is for synchronous service completion. It specifies that the service place the calling process in a

wait state and only return to the caller after completing the I/O operation. The OpenVMS IODEF module

provides definitions for the SYS$QIO function codes.

TCPDRIVER Services

26

Note! The vertical bar (|) used in some of the functions described in this chapter is the C bit-wise inclusive OR

operator.

TCPDRIVER System Service Call Arguments

You invoke TCPDRIVER system service calls with the standard OpenVMS QIO mechanism.

See the appropriate OpenVMS documentation (for example, the Introduction to VMS System Services volume)

for more information on the QIO mechanism.

The following sections describe each system call argument.

efn

OpenVMS usage: ef_number

type: longword (unsigned)

access: read only

mechanism: by value

Number of the event flag set by completion of the I/O operation. The argument is optional.

chan

OpenVMS usage: channel

type: word (unsigned)

access: read only

mechanism: by value

I/O channel assigned to the TCP device to which you are directing the request.

func

OpenVMS usage: function_code

type: word (unsigned)

access: read only

TCPDRIVER Services

27

mechanism: by value

Device-specific function code and the modifier if appropriate for each operation.

Note! TCPDRIVER System Service Call Function Codes describes each func.

iosb

OpenVMS usage: io_status_block

type: quadword (unsigned)

access: write only

mechanism: by reference

I/O status block that receives the final completion status of the I/O operation. Structured as in Figure 3-1. Table

3-1 describes the status block fields in detail.

Figure 3-1 I/O Status Block

Table 3-1 I/O Status Block Fields

Field Name Description

Function-Specific Varies for each function code.

Status Code The SS$ status code or special error status code. If the low bit (0) of the

OpenVMS error code is clear, the network has returned an error.

Transfer Byte Count Number of bytes of data transferred in the I/O operation.

TCPDRIVER Services

28

astadr

OpenVMS usage: ast_procedure

type: procedure entry mask

access: call without stack unwinding

mechanism: by reference

Address of the asynchronous system trap (AST) routine executed when the I/O is completed.

astprm

OpenVMS usage: user_arg

type: longword (unsigned)

access: read only

mechanism: by value

AST parameter to be passed to the AST routine.

p1 to p6

OpenVMS usage: varying_arg

type: longword (unsigned)

access: read only or write only

mechanism: by reference or by value

Function-specific parameters, as described for each function.

TCPDRIVER Services

29

TCPDRIVER System Service Call Function Codes

System service call function codes specify what action the QIO performs. This section describes the

TCPDRIVER function codes.

TCPDRIVER Services

30

IO$_CREATE
Provides for socket style listens and accepts.

Note! This function and socket style listens and accepts for TCPDRIVER are new to TCPware starting with version

5.3. Earlier releases do not support this function and return an SS$_ILLIOFUNC status if used.

Use the IO$_CREATE function to perform one of three operations:

ACCEPT Accept an incoming connection

ACCEPT-WAIT Wait for an incoming connection

LISTEN Place a connection into listen state and specify the maximum number of

incoming connections that can be queued waiting to be accepted

A typical flow for a program using this function might be as follows:

1 Assign a channel to the TCP: device (SYS$ASSIGN). This is the listening channel.

2 Issue an IO$_SETMODE | IO$M_CTRL function on the listening channel to specify the local port number

for the service.

3 Issue an IO$_CREATE function on the listening channel to specify a large backlog (greater than 128 is

recommended)—see theFormat for L.

4 Issue an IO$_CREATE function (with all parameters set to zero) on the listening channel to await an

incoming connection. (You could alternatively use an asynchronous QIO and AST routine). This function

blocks until a connection is available—see the Format for A.

5 Assign a channel to the TCP: device (SYS$ASSIGN) and issue an IO$_CREATE | IO$M_NOW function on

the listening channel with newchan being the newly assigned channel—see the Format for A.

6 The newly assigned channel (step 5) has the accepted connection and should be serviced (reads and writes).

7 Loop back to step 4 to continue accepting connections.

Ideally, steps 4 through 7 should be designed such that multiple connections can be serviced simultaneously.

Format for LISTEN

status =SYS$QIO(efn, chan, IO$_CREATE, iosb, astadr, astprm, 0, 0, 0, backlog, 0, 0)

Description for LISTEN

This function places the connection into a listen state. If you did not previously specify a local port number for

the channel (see theIO$_SETMODE | IO$M_CTRL function), a unique port number is automatically assigned.

The function completes execution immediately as it does not wait for an incoming connection.

Argument for LISTEN

p4=backlog

OpenVMS usage: unsigned word

type: word (unsigned)

TCPDRIVER Services

31

access: read only

mechanism: by value

Connection backlog, or maximum number of connections that can be queued. It is recommended that you

specify a large backlog (greater than 128) for most applications.

Status for LISTEN

SS$_DEVINACT Device not active

Contact system manager why TCPware (or TCPDRIVER) not started

SS$_FILALRACC Port is busy

Only ports that are in the closed state can be used

SS$_ILLIOFUNC Invalid parameters or modifiers were specified (returned in status, not in

iosb)

SS$_NORMAL Success

Connection put in listen state

Format for ACCEPT-WAIT

status =SYS$QIO(efn, chan, IO$_CREATE, iosb, astadr, astprm, 0, 0, 0, 0, 0, 0)

Description for ACCEPT-WAIT

This function waits for an incoming connection to be available on a listening connection. A listen function as

specified in the LISTEN operation above must have been previously issued. You can use the IO$M_NOW

modifier to probe if a connection is available; SS$_NODATA is returned if no connection is available.

Status for ACCEPT-WAIT

SS$_DEVINACT Device not in listen state or not active

Contact system manager why TCPware (or TCPDRIVER) not started

SS$_NODATA No connection is currently available to be accepted

Only returned if IO$_CREATE | IO$M_NOW was specified as the

function code

SS$_NORMAL Success

Connection put in listen state

TCPDRIVER Services

32

SS$_THIRDPARTY TCPDRIVER was shut down by a third party

Format for ACCEPT

status =SYS$QIO(efn, chan, IO$_CREATE | IO$M_NOW, iosb, astadr, astprm, 0, 0, newchan, 0, 0, 0)

Description for ACCEPT

This function accepts an incoming connection. A listen function as specified in the LISTEN operation above

must have been previously issued on the channel (chan). As this function does not block, a wait should

generally precede it for an incoming connection function, as specified in the ACCEPT-WAIT operation above.

Argument for ACCEPT

p3=newchan

OpenVMS usage: channel

type: word (unsigned)

access: read only

mechanism: by value

OpenVMS channel for a newly created TCP: device. This channel should be created by using SYS$ASSIGN to

assign a new channel to the TCP0: device before issuing this function. The accepted connection uses this

channel.

Status for ACCEPT

SS$_DEVACTIVE I/O channel specified in newchan is not inactive

Only inactive channels can be used

SS$_DEVINACT Connection is not in listen state or the device is not active

Contact system manager why TCPware (or TCPDRIVER) not started

SS$_IVDEVNAM I/O channel specified in newchan is not a TCP: device

SS$_NODATA No connection is available to accept

TCPDRIVER Services

33

IO$_READVBLK
Receives data, including urgent data, writing the received data to the specified user buffer.

The IO$M_DATACHECK modifier peeks at the next received data without removing it from the received data

queue.

The IO$M_NOW modifier executes the function immediately regardless of the amount of available data. If no

data is available, the function returns the SS$_NODATA status.

The IO$M_PACKED modifier requests that IO$_READVBLK return completely filled data buffers.

IO$_READVBLK completes reads with this modifier only after receiving the requested number of bytes, unless

the port closes or you specify IO$M_NOW.

Note! Use the IO$M_PACKED modifier with caution, as the read request only completes execution after receiving

the requested number of bytes, or if the connection is closed or reset by the peer.

Format

status =SYS$QIO(efn, chan, IO$_READVBLK, iosb, astadr, astprm, buffer, size, 0, 0, 0, 0)

Arguments

p1=buffer

OpenVMS usage: vector_byte_unsigned

type: byte (unsigned)

access: write only

mechanism: by reference

Address of the user's buffer that receives the data.

p2=size

OpenVMS usage: word_unsigned

type: word (unsigned)

access: read only

mechanism: by value

User's buffer size in bytes. Specifies the maximum amount of data written to the buffer. The value should not be

greater than 64000 bytes.

TCPDRIVER Services

34

Status

SS$_CANCEL Request canceled

SS$_DEVINACT Device not active

Contact system manager why TCPware (or TCPDRIVER) not started

SS$_NODATA No data available and IO$M_NOW was specified.

SS$_NORMAL Success

Requested data was received.

SS$_PATHLOST Route to peer lost

Network or route used in communicating with peer no longer working

Connection closed

SS$_THIRDPARTY Connection broken by third party

Usually indicates that TCPware was shut down

Connection closed

SS$_TIMEOUT Connection timed-out

Connection closed

SS$_VCBROKEN Connection broken (either locally or by source) and closed

SS$_VCCLOSED Peer closed end of the connection and no more data is available, or the

connection was never opened

The number of bytes received is returned in the high-order word of the first longword of the I/O status block.

This may be less than the number of bytes requested.

The second longword of the I/O status block contains flag bits as follows:

• If bit 1 (mask value of 2) is set, there is still more data to be read before the end of the urgent data marker.

This indicates that IO$_READVBLK has not read all of the urgent data.

• If bit 2 (mask value of 4) is set, the data was delivered with the urgent data marker in advance of the data.

There may still be more data to be read before the end of the urgent data depending on the state of bit 1. This

bit is always set if bit 1 is set.

All other bits in the second longword of the I/O status block are clear (0).

TCPDRIVER Services

35

IO$_SENSEMODE
Reads the active connections status and returns status information for all of the active and listening

TCPDRIVER connections.

Format

status=SYS$QIO(efn, chan, IO$_SENSEMODE, iosb, astadr, astprm, buffer, address, 0, 0, 0, 0)

Arguments

p1=buffer

OpenVMS usage: vector_byte_unsigned

type: byte (unsigned)

access: write only

mechanism: by reference

Optional address of the 8-byte device characteristics buffer. Data returned is: the device class (DC$_SCOM) in

the first byte, the device type (0) in the second byte, and the default buffer size, which is the maximum

datagram size, in the high-order word of the first longword. IO$_SENSEMODE returns the second longword as

0.

p2=address

OpenVMS usage: vector_word_unsigned

type: word (unsigned)

access: write only

mechanism: by descriptor

Address of the descriptor for the buffer to receive the status information on the active connections.

Figure 3-2 shows the 22 bytes of information returned for each connection.

Protocol type Word value is 2 for TCPDRIVER connections, 4 for INETDRIVER

stream sockets, and 5 for BGDRIVER stream sockets.

Unit number Word value is the TCPDRIVER, INETDRIVER, or BGDRIVER

device unit number for the connection.

TCPDRIVER Services

36

Receive queue Word value is the number of bytes received from the peer waiting to

be delivered to the user through the IO$_READVBLK function.

Send queue Word value is the number of bytes waiting to be transmitted to or to

be acknowledged by the peer.

Local internet address Longword value is the local internet address (or 0 if the connection

is not open and no local internet address was specified for the

connection).

Local port number Word value is the local port number.

Peer internet address Longword value is the peer's internet address (or 0 if the connection

is not open and no peer internet address was specified for the

connection).

Peer port number Word value is the peer's port number, or 0 if the connection is not

open and you did not specify a peer port number for the connection.

TCP state Word value is the Transmission Control Protocol connection state

mask. See theIO$_SETMODE | IO$M_CTRL description for the

mask value definitions.

TCPDRIVER Services

37

Figure 3-2 Connection Status Information

Status

SS$_BUFFEROVF Buffer too small for all connections

Truncated buffer returned

SS$_DEVINACT Device not active

Contact system manager why TCPware (or TCPDRIVER) not started

SS$_NORMAL Success

Status information returned

The byte count for the status information buffer is returned in the high-order word of the first longword of the

I/O status block. This may be less than the bytes requested. See Figure 3-3 for more information.

The size in bytes of each connection's record (22 bytes) is returned in the low order word of the second

longword of the I/O status block.

The total number of active connections is returned in the high-order word of the second longword of the I/O

status block. This can be greater than the number of reported connections if the buffer is full.

TCPDRIVER Services

38

Figure 3-3 I/O Status Block

TCPDRIVER Services

39

IO$_SENSEMODE | IO$M_CTRL
Reads the connection characteristics for the channel.

Format

status=SYS$QIO(efn, chan, IO$_SENSEMODE | IO$M_CTRL, iosb, astadr, astprm, buffer, address, 0, 0, 0,

0)

Arguments

p1=buffer

OpenVMS usage: vector_byte_unsigned

type: byte (unsigned)

access: write only

mechanism: by reference

Optional address of the 8-byte device characteristics buffer. Data returned is: device class (DC$_SCOM) in the

first byte, device type (0) in the second byte, and default buffer size (the maximum window size) in the high-

order word of the first longword. IO$_SENSEMODE | IO$M_CTRL returns the second longword as 0.

p2=address

OpenVMS usage: vector_word_unsigned

type: word (unsigned)

access: write only

mechanism: by descriptor

Address of the descriptor for the extended characteristics buffer to receive the characteristics. Information

returned in the buffer is formatted the same as the extended characteristics buffer used to set the connection

characteristics. See the IO$_SENSEMODE function for details.

If bit 12 (mask 4096) is set in the parameter identifier (PID), the PID is followed by a counted string. If bit 12 is

clear, the PID is followed by a longword value. While TCPware currently never returns a counted string for a

parameter, this may change in the future.

Table 3-2 shows the read connection characteristics.

TCPDRIVER Services

40

Table 3-2 P2 Read Connection Characteristics

PID Meaning

0 Local internet address. Internet address is returned as the longword value. Only

returned if the connection is open or a local internet address has been specified.

1 Local port number. Port number is returned in the low order word of the longword

value. Local port number is either the default port number or the last specified local port

number.

2 Peer internet address. Internet address is returned as the longword value. Only

returned if the peer's internet address has been specified or the connection is open.

3 Peer port number. Port number is returned in the low order word of the longword

value. Only returned if the peer's port number has been specified or the connection is

open.

4 Connection time-out value. Time-out value (in seconds) is returned as the longword

value.

5 Connection window size. Window size (in bytes) is returned as the longword value.

6 TCP state. State is returned as a longword bit mask value. Mask values and states are

shown in Table 3-3. Only one bit can be set at any time.

7 Passive open access control. Value indicating shared (non-zero) or exclusive (zero)

access to the same port number is returned as the longword value.

10 Socket options. For the values of this option, see the socket options entry in P2 Set

Connection Characteristics .

Note! The order in which IO$_SENSEMODE | IO$M_CTRL returns the parameters can change. It is

recommended that you search the buffer for the desired parameter.

Table 3-3 TCP State Mask Values

Mask

Value State

Mask

Value State

Mask

Value State

1 LISTEN 16 FIN-WAIT-1 256 LAST-ACK

2 SYN-SENT 32 FIN-WAIT-2 512 TIME-WAIT

4 SYN-RECEIVED 64 CLOSE-WAIT 1024 CLOSED

8 ESTABLISHED 128 CLOSING

Status

SS$_BUFFEROVF Buffer too small for all characteristics

Truncated characteristics buffer is returned

SS$_DEVINACT Device not active

Contact system manager why TCPware (or TCPDRIVER) not started

TCPDRIVER Services

41

SS$_NORMAL Success

Characteristics returned

The byte count for the characteristics buffer is returned in the high-order word of the first longword of the I/O

status block. This may be less than the bytes requested. The number of bytes in the receive queue is returned in

the low order word of the second longword in the I/O status block. The number of bytes in the read queue is

returned in the high-order word of the second longword in the I/O status block. Figure 3-4 shows the I/O Status

Block.

Figure 3-4 I/O Status Block

Note! You can use the SYS$GETDVI system service to obtain the local port number, peer port number, and peer

internet address. The DEVDEPEND field stores the local port number (low order word) and peer port

number (high-order word). The DEVDEPEND2 field stores the peer internet address.

TCPDRIVER Services

42

IO$_SENSEMODE | IO$M_RD_COUNT
Reads the TCP counters. You can add the IO$M_CLR_COUNT modifier to this function to zero the counters

after they are read. However, you must have the OPER privilege to use this modifier.

Format

status=SYS$QIO(efn, chan, IO$_SENSEMODE | IO$M_RD_COUNT, iosb, astadr, astprm, 0, address, 0, 0, 0,

0)

Argument

p2=address

OpenVMS usage: vector_longword_unsigned

type: longword (unsigned)

access: write only

mechanism: by descriptor

Address of the descriptor for the buffer to receive the counters. These counters relate only to the TCP level and

are for all connections opened since the counters were last zeroed.

The counters (longword values) in the order in which they are returned:

1 Number of seconds since last zeroed

2 Number of segments transmitted (excludes retransmissions)

3 Number of segments retransmitted (includes keep-alive check transmissions)

4 Number of segments transmitted with transmission errors

5 Number of segments received

6 Number of segments received in error (invalid TCP header or checksum)

7 Number of receive data buffers concatenated (data segments are concatenated whenever possible)

8 Number of delayed acknowledgments transmitted (included in segments transmitted count)

9 Number of window updates transmitted due to receive request completions (included in segments transmitted

count)

10 Number of out-of-sequence segments received

11 Number of transmit data buffers concatenated

12 Number of keep-alives transmitted (included in number of segments re-transmitted)

Status

SS$_BUFFEROVF Buffer too small for all counters

Truncated buffer is returned

TCPDRIVER Services

43

SS$_DEVINACT Device not active

Contact system manager why TCPware (or TCPDRIVER) not started

SS$_NORMAL Success

Counters returned

The byte count for the counters buffer is returned in the high-order word of the first longword of the I/O status

block. This may be less than the bytes requested.

TCPDRIVER Services

44

IO$_SETMODE | IO$M_ATTNAST
Requests the delivery of an attention AST whenever urgent data is available or the connection is broken.

This function enables an attention AST to be delivered only once. The function is subject to AST quotas. After

the function delivers the AST, you must issue another IO$_SETMODE | IO$M_ATTNAST to re-enable AST

delivery.

When a connection fully closes, all attention ASTs for the connection are disabled.

Note! If the existence of urgent data triggers the attention AST, and that data is not read before you re-enable the

AST, the AST triggers again immediately.

Format

status=SYS$QIO(efn, chan, IO$_SETMODE | IO$M_ATTNAST, iosb, astadr, astprm, address, param, mode,

0, 0, 0)

Arguments

p1=address

OpenVMS usage: ast_procedure

type: procedure entry mask

access: call without stack unwinding

mechanism: by reference

Address of an AST service routine or 0 to disable attention ASTs.

p2=param

OpenVMS usage: user_arg

type: longword (unsigned)

access: read only

mechanism: by value

AST parameter to be passed to the AST service routine.

TCPDRIVER Services

45

p3=mode

OpenVMS usage: access mode

type: longword (unsigned)

access: read only

mechanism: by value

Access mode at which to deliver the AST. The access mode is maximized with the requestor's access mode.

Status

SS$_DEVINACT Device not active

Contact system manager why TCPware (or TCPDRIVER) not started

SS$_EXQUOTA AST quota exceeded

SS$_NORMAL Success

Attention AST enabled or previous ASTs disabled

TCPDRIVER Services

46

IO$_SETMODE | IO$M_CTRL
Sets the connection characteristics.

You specify the connection characteristics in the extended characteristics buffer. The buffer consists of a series

of six-byte entries. The first word of each entry stores the parameter identifier (PID) followed by a longword

that stores one of the values associated with that parameter.

Format

status=SYS$QIO(efn, chan, IO$_SETMODE | IO$M_CTRL, iosb, astadr, astprm, 0, address, 0, 0, 0, 0)

Argument

p2=address

OpenVMS usage: vector_word_unsigned

type: word (unsigned)

access: read only

mechanism: by descriptor

Address of the descriptor for the extended characteristics buffer. Counted strings consist of a word with the size

of the character string followed by the character string.

Figure 3-5 shows the format of the descriptor for the extended characteristics buffer.

Figure 3-5 P2 Set Characteristics Buffer

Table 3-4 lists the connection characteristics you can set. These characteristics remain set, even after you close

the connection, until you change them with another IO$_SETMODE operation.

TCPDRIVER Services

47

Table 3-4 P2 Set Connection Characteristics

PID Meaning

0 Local internet address. Longword with the local host's internet or multicast address. If

used, must be a valid local internet or multicast address. Set this parameter only if the

port is not open. Specify in internet byte order, reversed from the normal VMS byte

order. For example, internet address 2.3.4.5 is stored as ^X05040302.

To determine if an internet address is local, issue an IO$_SETMODE | IO$M_CTRL

function specifying the address in this characteristic. If the address is not local, the

function returns an SS$_BADPARAM status.

1 Local port number. Low order word of the longword containing the port number. If

omitted, the function uses the unique port number generated when you assign the UDP

device unit. Set this parameter only if the port is not open. If you use 0, the function

generates a new, unique number. Specify in normal VMS byte order.

2 Peer internet address. Longword with the peer host's internet address. If you specify

both the peer's internet address and port number after opening the port (or when the port

is opened) the port is considered fully specified (or opened as fully specified) and all

further receive requests receive datagrams from that address and port only. Transmitted

requests that do not provide a source/destination buffer are sent to that address and port.

Specify in internet byte order, as the local internet address characteristic above. Using 0

functionally omits the address.

3 Peer port number. Low order word of the longword containing the port number. (See

PID 2 above.) Specify in normal VMS byte order. Using 0 functionally omits the port

number.

4 Connection time-out value. Longword specifying the connection time-out value in

seconds. You can also specify the connection time-out value as P6 in the

IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP and IO$_WRITEVBLK functions.

The value specified by P6 has precedence over the value specified by the extended

characteristics buffer. The default value is 5 minutes (300 seconds). The minimum is 20

seconds.

5 Connection window size. Longword specifying the connection's window size (in

bytes). Typical values for connection window sizes range from 4096 to 32768 and

specify how much data the TCP layer will buffer for the application. If omitted, the

default window size configured during network start up is used for the connection.

7 Passive open access control. Specifies whether others may (shared access) or may not

(exclusive access) use the same local port number in passive opens. To specify

exclusive access (the default), the longword value must be 0. To specify shared access

(used primarily by servers), the longword value must be non-zero. This parameter only

applies to passive opens.

9 Change ownership. Longword that allows the current owner of the device unit to

prepare to pass ownership to another process. Removes the owner’s process ID from the

connection. If the value field is non-zero, specifies the new owner UIC for the

connection and changes the connection protection so that only system and owner have

access (S:RWLP,O:RWLP). Changes the following fields for the connection: owner

process ID, owner UIC, and device protection. Primarily the NETCP master server but

also other programs use it.

TCPDRIVER Services

48

10 Set socket options. Low order word of the longword value field containing the mask

value of the socket options to set. Specify the following options, as defined in the

TCPWARE_INCLUDE:SOCKET.H header file (with values in hexadecimal):

SO_DEBUG, with a value of 0001, enables debugging (ignored)

SO_REUSEADDR, with a value of 0004, allows reuse of local address (controllable

through the passive open access control parameter)

SO_KEEPALIVE, with a value of 0008, keeps connections alive

SO_DONTROUTE, with a value of 0010, prevents routing (ignored)

SO_BROADCAST, with a value of 0020, enables use of broadcasts (ignored)

SO_USELOOPBACK, with a value of 0040, bypasses hardware when possible

(ignored)

SO_LINGER, with a value of 0080, lingers on a close

11 Clear socket options. Low order word of the longword value field containing the mask

of the socket options to clear. (See the options under PID 10 above.)

12 No delay. Determines whether TCPDRIVER delays sending data to coalesce data from

several small sends into a large packet for transmission over the network. The default is

for TCPDRIVER to delay. Most applications should not change this option since the

delay is very short and makes for better overall network performance. TCPDRIVER

uses the parameter value passed to disable the delay (if the value is non-zero) or enable

the delay (if the value is 0).

13 IP options. Counted string containing the IP options to be included in datagrams.

Note! The multicasting-related parameters (14 through 20) are supported but cannot be used with TCP (a

connection-oriented protocol). Therefore, the settings are meaningless.

Status

SS$_BADPARAM Bad parameter or value specified

PID returned in low order word of second longword

SS$_DEVACTIVE Connection open on unit; local port number, peer's internet address,

and peer's port number cannot be changed

SS$_DEVINACT Device not active

Contact system manager why TCPware (or TCPDRIVER) not

started

SS$_INSFMEM Insufficient memory to complete request

SS$_IVBUFLEN Extended characteristics buffer length invalid

SS$_NOPRIV Setting IP layer options (PIDs 13 through 20) requires privileges

Application must either be running under SYSTEM UIC or have

SYSPRV, BYPASS, or OPER privilege

TCPDRIVER Services

49

SS$_NORMAL Successful operation

Characteristics set

SS$_UNREACHABLE Default interface for multicast group address could not be found

Specify local interface's IP address when joining multicast group

TCPDRIVER Services

50

IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN
Closes your end of the connection. Lets the other end of the connection know that you completed sending data.

You cannot perform any IO$_WRITEVBLK functions after issuing IO$_SETMODE | IO$M_CTRL |

IO$M_SHUTDOWN. However, you can perform IO$_READVBLK functions on the connection until the other

end of the connection closes and you have read all the data.

Note! A connection does not close until it closes on both ends. In other words, your end of the connection does not

close until the peer has acknowledged the IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN.

The recommended procedure for closing a connection is to issue IO$_SETMODE | IO$M_CTRL |

IO$M_SHUTDOWN and then read until SS$_VCCLOSED status is returned. Use the IO$_SETMODE |

IO$M_CTRL | IO$M_SHUTDOWN | IO$M_ABORT function to abort a connection. This function returns all

requests for the connection with the SS$_VCBROKEN status. If the connection is open, it is reset.

Format

status=SYS$QIO(efn, chan, IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN, iosb, astadr, astprm, 0, 0,

0, 0, 0, 0)

Arguments

None.

Status

SS$_DEVINACT Device not active

Contact system manager why TCPware (or TCPDRIVER) not started

SS$_NORMAL Successful operation

Connection closed

SS$_PATHLOST Route to peer lost

Network or route used in communicating with peer no longer working

Connection closed

SS$_THIRDPARTY Connection broken by third party

Usually indicates that TCPware was shut down

Connection closed

SS$_TIMEOUT Connection timed-out

Connection closed

SS$_VCBROKEN Connection broken (either locally or by source) and closed

SS$_VCCLOSED Connection already closed or in process of being closed

TCPDRIVER Services

51

IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP
Opens an active connection. For an active open connection, specify the peer's internet address and port number.

If you omit the local port number, the function uses a unique port number assigned when the unit was created.

Use the IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP | ^X0800 function to open a passive connection.

You can omit the peer's internet address or port number. The function completes execution only after the

connection is fully established.

Format

status=SYS$QIO(efn, chan, IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP, iosb, astadr, astprm, 0,

address, 0, 0, 0, time)

Arguments

p2=address

OpenVMS usage: vector_word_unsigned

type: word (unsigned)

access: read only

mechanism: by descriptor

Address of the descriptor for the extended characteristics buffer. See theIO$_SENSEMODE | IO$M_CTRL

description for details on this buffer.

p6=time

OpenVMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

Optional connection time-out value in seconds. The default is the value specified in the extended characteristics

buffer (or 5 minutes, if none was specified). The minimum value is 20 seconds.

TCPDRIVER Services

52

Status

SS$_BADPARAM Bad parameter or value specified

SS$_CANCEL Request canceled

SS$_DEVACTIVE Connection open on unit

SS$_DUPUNIT Connection not unique

Check local port number, peer's internet address, and peer's port

number

SS$_IVBUFLEN Buffer length invalid

SS$_NORMAL Successful operation

Connection open

Use write and read requests to send or receive data

SS$_NOPRIV Insufficient privilege

Tried to open passive connection on port number below 1024 without

BYPASS or SYSPRIV privilege

SS$_PATHLOST Route to peer lost

Network or route used in communicating with peer no longer working

Connection closed

SS$_THIRDPARTY Connection broken by third party

Connection closed

SS$_TIMEOUT Connection timed-out and closed

Active open not completed within connection timeout

SS$_VCBROKEN Connection broken (either locally or by peer) and closed

Active open returns if peer refused connection

TCPDRIVER Services

53

IO$_WRITEVBLK
Sends data stored in the specified user buffer. Completes execution after queuing the data for transmission.

You can use the IO$M_OUTBAND modifier with IO$_WRITEVBLK to transmit urgent data.

Format

status=SYS$QIO(efn, chan, IO$_WRITEVBLK, iosb, astadr, astprm, buffer, size, 0, 0, 0, time)

Arguments

p1=buffer

OpenVMS usage: vector_byte_unsigned

type: byte (unsigned)

access: read only

mechanism: by reference

Address of the user's buffer. The user's buffer stores the data to be sent.

p2=size

OpenVMS usage: word_unsigned

type: word (unsigned)

access: read only

mechanism: by value

User's buffer size in bytes. Amount of data that the user is sending. If 0, the IO$_WRITEVBLK completes

execution after transmitting all previously written data to the peer. However, the peer has not necessarily

received this data yet. The value should not be greater than 64000 bytes.

p6=time

OpenVMS usage: longword_unsigned

type: longword (unsigned)

TCPDRIVER Services

54

access: read only

mechanism: by value

Optional new-connection timeout value (in seconds).

Status

SS$_BADPARAM Bad parameter or value specified

If P6 is not zero, value specified is not acceptable; if IO$M_EXTEND

modifier specified, P2 is not 24 (size of msghdr structure)

SS$_DEVINACT Device not active

Contact system manager why TCPware (or TCPDRIVER) not started

SS$_IVBUFLEN Extended characteristics buffer length invalid

SS$_NORMAL Successful operation

Data queued for sending to destination

SS$_PATHLOST Route to peer lost

Network or route used in communicating with peer no longer working

Connection closed

SS$_THIRDPARTY Connection broken by third party

Usually indicates that TCPware was shut down

Connection closed

SS$_TIMEOUT Connection timed-out and fully closed

Data could not be delivered to destination within connection time-out

SS$_VCBROKEN Connection broken (either locally or by source) and fully closed

SS$_VCCLOSED You issued close function to close end of connection, or connection

never opened

The number of bytes sent is returned in the high-order word of the first longword of the I/O status block.

TCPDRIVER Services

55

IO$_WRITEVBLK | IO$M_EXTEND
Sends data stored in a list of buffers.

Format

status=SYS$QIO(efn, chan, IO$_WRITEVBLK | IO$M_EXTEND, iosb, astadr, astprm, msghdr, size, 0, 0, 0,

0)

Arguments

p1=msghdr

OpenVMS usage: vector_longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

Address of the msghdr structure. Points to the address of the structure storing the array of additional structures.

Each of these array structures contains the address and size of one of the user buffers. The msghdr structure is

as follows:

struct msghdr {

 char *msg_name; /*optional address*/

 int msg_namelen; /*size of address*/

 struct iovec *msg_iov; /*scatter/gather array*/

 int msg_iovlen; /*elements in msg_iov*/

 char *msg_accrights; /*access rights*/

 int msg_accrightslen;

};

struct iovec {

 char *iov_base; /*address of buffer*/

 int iov_len; /*length of buffer*/

};

In the msghdr structure, this function uses only msg_iov and msg_iovlen. It ignores the values of the other

elements.

msg_iov stores the address of the array of iovec structures and msg_iovlen is the number of iovec elements

in the array. The iovec array stores the address and length of each buffer (in bytes) that holds the data to be sent.

p2=size

OpenVMS usage: longword_unsigned

type: longword (unsigned)

TCPDRIVER Services

56

access: read only

mechanism: by value

Size of the msghdr structure, which must be 24 bytes. The following is an example using the scatter-gather

write function. Figure 3-6 shows a diagram for the example.

struct msghdr buflst;

struct iovec bufiov[3];

char buffer1[100];

char buffer2[20];

char buffer3[200];

buflst.msg_iov = bufiov;

buflst.msg_iovlen = 3;

bufiov[0].iov_base = buffer1;

bufiov[0].iov_len = sizeof(buffer1)

bufiov[1].iov_base = buffer2;

bufiov[1].iov_len = sizeof(buffer2)

bufiov[2].iov_base = buffer3;

bufiov[2].iov_len = sizeof(buffer13)

istat = SYS$QIOW(0,chan,

 IO$_WRITEVBLK | IO$M_EXTEND,&iosb,0,0,buflst,sizeof(buflst),

 0,0,0);

TCPDRIVER Services

57

Figure 3-6 Scatter-Gather Write Array Structure

Status

See IO$_WRITEVBLK

TCPDRIVER Services

58

SYS$ASSIGN
Assigns a channel to a device.

Format

status = SYS$ASSIGN(devnam, chan, [acmode], [mbxnam])

Arguments

devnam

OpenVMS usage: device_name

type: character_coded text string

access: read only

mechanism: by descriptor-fixed length string descriptor

Address of a character string descriptor pointing to the device name string (TCP0:).

chan

OpenVMS usage: channel

type: word (unsigned)

access: write only

mechanism: by reference

Address of a word into which SYS$ASSIGN writes the channel number.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)

access: read only

mechanism: by value

TCPDRIVER Services

59

Optional access mode associated with the channel. The most privileged access mode used is that of the caller.

mbxnam

OpenVMS usage: device_name

type: character-coded text string

access: read only

mechanism: by descriptor-fixed length string descriptor

Optional logical mailbox associated with the device. (Not supported by TCPDRIVER.)

Status

See HP's VMS System Services Reference Manual for a complete list of status messages.

TCPDRIVER Services

60

SYS$CANCEL
Cancels any I/O that is pending on a socket. The I/O will be completed with an iosb status of SS$_CANCEL.

Outstanding I/O operations are automatically cancelled at image exit.

Format

status = SYS$CANCEL(chan)

Argument

chan

OpenVMS usage: channel

type: word (unsigned)

access: read only

mechanism: by value

Number of the channel to be canceled.

Status

See HP’s VMS System Services Reference Manual for a complete list of status messages.

TCPDRIVER Services

61

SYS$DASSGN
Releases a channel.

When you deassign a channel, any outstanding I/O is completed with an iosb status of SS$_CANCEL. If a

connection is open on the channel, it is aborted.

I/O channels are automatically deassigned at image exit.

Format

status = SYS$DASSGN(chan)

Argument

chan

OpenVMS usage: channel

type: word (unsigned)

access: read only

mechanism: by value

Number of the channel to be deassigned.

Status

See HP's VMS System Services Reference Manual for a complete list of status messages.

TCPDRIVER Services

62

Sample Programs

C Programs

The following sample programs are included in the TCPWARE_COMMON:[TCPWARE.EXAMPLES]

directory:

• TCPDRIVER_CLIENT.C

• TCPDRIVER_SERVER.C

• FINGER.C

The first two pair of programs shows the use of stream sockets with SYS$QIO system service calls to the

TCPDRIVER. They are functionally the same as the TCP_SOCKET_CLIENT.C and

TCP_SOCKET_SERVER.C socket library programs.

The client sequence of operations is as follows:

1 Assigns an I/O channel to TCP0, using SYS$ASSIGN.

2 Opens a connection, using (IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP).

3 Exchanges data, using IO$_WRITEVBLK and IO$_READVBLK.

4 Closes the connection, using (IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN).

5 Performs additional reads until the peer returns an SS$_VCCLOSED status.

6 Deassigns the channel, using SYS$DASSGN.

7 The server sequence of operations is as follows:

Assigns an I/O channel to TCP0, using SYS$ASSIGN.

Causes a passive open of the connection, using (IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP |

0x0800). You can alternately use TCPDRIVER's IO$_CREATE function that listens and accepts connections

with UNIX-like functionality (use the

/DEFINE=USE_CREATE command in the CC line of the build process).

Exchanges data, using IO$_WRITEVBLK and IO$_READVBLK.

Closes the connection, using (IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN).

Deassigns the channel, using SYS$DASSGN.

The FINGER.C file for the FINGER protocol also contains sample source code using TCPDRIVER services.

FINGER

Link the files to the TCPware Socket Library as follows for Alpha, VAX and I64 systems for DEC C:

$ LINK FINGER SYS$INPUT/OPTIONS SYS$SHARE:TCPWARE_SOCKLIB_SHR/SHARE

$ Ctrl/Z

To build on a VAX with VAX C:

$ CC FINGER.C

$ LINK FINGER,SYS$INPUT/OPTIONS

 TCPWARE:UCX$IPC.OLB/LIBRARY

 SYS$SHARE:VAXCRTL/SHARE

$ Ctrl/Z

$ FINGER :== $<device:[directory]>FINGER

To build on an Alpha, VAX or I64 system with DEC C:

TCPDRIVER Services

63

$ CC/PREFIX=ALL FINGER.C

$ LINK FINGER

$ FINGER :== $<device:[directory]>FINGER

Then type:

$ FINGER username@host

or

$ FINGER @host

FINGERD

To build on a VAX with VAX C:

$ CC FINGERD.C

$ LINK FINGERD,SYS$INPUT/OPTIONS

 TCPWARE:UCX$IPC.OLB/LIBRARY

 SYS$SHARE:VAXCRTL.EXE/SHARE

To build on an Alpha,VAX or I64 system with DEC C:

$ CC/PREFIX=ALL FINGERD.C

$ LINK FINGERD,SYS$INPUT/OPTIONS

 SYS$SHARE:TCPWARE_SOCKLIB_SHR/SHARE

Use the NETCU ADD SERVICE and (optionally) the ADD ACCESS commands to "start" the server. The

ADD ACCESS commands can be used to restrict access to the FINGER server to specific hosts or networks.

For example:

$ NETCU ADD SERVICE FINGER TCP <path>FINGERD -

/PRIV=(NOSAME,NETMBX,TMPMBX,WORLD,SYSPRV) /ACCESS=<n>

(and other qualifiers as you may want)

Add these commands to the TCPWARE:SERVERS.COM file so that the server starts whenever TCPware

starts.

FORTRAN Program

The TCPWARE_COMMON:[TCPWARE.EXAMPLES] directory also includes a TCPSAMPLE.FOR

FORTRAN language file that transmits or receives data. This program links to the TCPware Socket Library as

follows:

ALPHA and I64

$ FORTRAN/NOALIGN TCPWARE_COMMON:[TCPWARE.EXAMPLES]TCPSAMPLE

$ LINK TCPSAMPLE, SYS$INPUT/OPTIONS

 SYS$SHARE:TCPWARE_SOCKLIB_SHR/SHARE

Ctrl/Z

VAX

$ FORTRAN TCPWARE_COMMON:[TCPWARE.EXAMPLES]TCPSAMPLE

$ LINK TCPSAMPLE, SYS$INPUT/OPTIONS

 SYS$SHARE:TCPWARE_SOCKLIB_SHR/SHARE

Ctrl/Z

UDPDRIVER Services

64

Chapter 4 UDPDRIVER Services

Introduction

This chapter describes the User Datagram Protocol (UDP) device driver (UDPDRIVER) services. It describes

the user interface of TCPware for the OpenVMS UDP implementation only. RFC 768 contains the protocol

specification for UDP.

UDP allows an application on one machine to send a datagram to an application on another machine. The

datagram includes a protocol port number that identifies the receiving application from among other

applications executing on the remote machine.

The UDP protocol is transaction-oriented so it does not guarantee reliable delivery of data. If your applications

require ordered and reliable delivery of data, you should use TCP.

UDP services are available through the OpenVMS Queue I/O (SYS$QIO and SYS$QIOW) system services.

These system services:

• Open and close a port.

• Send and receive data over the port.

• Perform status checks on the port.

SYS$QIOW is the synchronous and SYS$QIO the asynchronous form of VMS system services. Use each form

depending on your application's requirements.

See the appropriate OpenVMS documentation for details on the OpenVMS I/O system services and related

services such as asynchronous system traps (ASTs) and event flags.

Note! The QIO calls described in this chapter are used for direct access to the UDPDRIVER. If you are porting an

application that uses the BGDRIVER or INETDRIVER QIO interface, there may be no need to make

modifications. Use TCPware's BGDRIVER (see Chapter 2) or INETDRIVER (see Chapter 7).

Sequence of Operations

Perform the following sequence of operations to open a port:

1 Assign an I/O channel to the UDP0: device using the SYS$ASSIGN system service. SYS$ASSIGN creates a

new device unit and assigns to it the channel for the port.

2 Open the port with the IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP function of the SYS$QIO or

SYS$QIOW system services.

3 Perform read requests with the IO$_READVBLK function and write requests with the IO$_WRITEVBLK

function as desired.

4 Close the port with the IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN function.

5 Deassign the I/O channel with the SYS$DASSGN system service.

UDPDRIVER Services

65

Other Operations

In addition to the sequence of operations described in the preceding section, UDPDRIVER includes other

operations that:

Read a datagram immediately with IO$_READVBLK | IO$M_NOW

Read the next received message

without removing it from the received

message queue with

IO$_READVBLK | IO$M_DATACHECK

Suppress checksum generation at the

UDP level with

IO$_WRITEVBLK | IO$M_NOFORMAT

Request a list of buffers to be sent as a

single datagram with each request with

IO$_WRITEVBLK | IO$M_EXTEND

Read the open ports status with IO$_SENSEMODE

Read the port characteristics with IO$_SENSEMODE | IO$M_CTRL

Read the UDP counters with IO$_SENSEMODE | IO$M_RD_COUNT

Clear these UDP counters after they

have been read with

IO$_SENSEMODE | IO$M_RD_COUNT |

IO$M_CLR_COUNT

You must have OPER privilege to clear the counters.

Cancel any pending I/O requests with SYS$CANCEL

User Datagram Protocol Implementation Notes

There are no implementation specific restrictions for the User Datagram Protocol (UDP). The material

presented here does not explain or describe the UDP protocol.

UDPDRIVER System Service Call Format

The format for the UDPDRIVER SYS$QIO system service call is as follows:

status= SYS$QIO[W](efn, chan, func, iosb, astadr, astprm, p1, p2, p3, p4, p5, p6)

SYS$QIO and SYS$QIOW are used to issue UDP functions.

SYS$QIO is for asynchronous service completion, specifying that the service return to the caller immediately

after queuing the I/O request.

SYS$QIOW is for synchronous service completion, specifying that the service place the calling process in a

wait state and only return to the caller after completing the I/O operation.

The OpenVMS IODEF module provides definitions for the SYS$QIO function codes.

UDPDRIVER Services

66

Note! The vertical bar (|) used in some of the functions described in this chapter is the C bit-wise inclusive OR

operator.

UDPDRIVER System Service Call Arguments

You invoke UDPDRIVER system service calls with the standard OpenVMS QIO mechanism.

See the appropriate OpenVMS documentation (for example, the Introduction to VMS System Services volume)

for details on the QIO mechanism.

The following sections describe each system call argument.

efn

OpenVMS usage: ef_number

type: longword (unsigned)

access: read only

mechanism: by value

Number of the event flag set by completion of the I/O operation. The argument is optional.

chan

OpenVMS usage: channel

type: word (unsigned)

access: read only

mechanism: by value

Channel assigned to the UDP device to which you are directing the request.

func

OpenVMS usage: function_code

type: longword (unsigned)

access: read only

UDPDRIVER Services

67

mechanism: by value

Device-specific function code and the modifier, if appropriate, for each operation.

Note! UDPDRIVER System Service Call Function Codes describes each func.

iosb

OpenVMS usage: io_status_block

type: quadword (unsigned)

access: write only

mechanism: by reference

I/O status block that receives the final completion status of the I/O operation, structured as in Figure 4-1.

Figure 4-1 I/O Status

Table 4-1 describes the status block fields in more detail.

Table 4-1 I/O Status Block Fields

Field Name Description

Transfer Byte Count Number of bytes of data transferred in the I/O operation.

Status Code SS$ status code or special error status code. If the low bit (0) of the

OpenVMS error code is clear, the network has returned an error.

Function-Specific Varies for each function code.

UDPDRIVER Services

68

astadr

OpenVMS usage: ast_procedure

type: procedure entry mask

access: call without stack unwinding

mechanism: by reference

Address of the asynchronous system trap (AST) routine executed when the I/O is completed.

astprm

OpenVMS usage: user_arg

type: longword (unsigned)

access: read only

mechanism: by value

AST parameter to be passed to the AST routine.

p1 to p6

OpenVMS usage: varying_arg

type: longword (unsigned)

access: read only or write only

mechanism: by reference or by value

Function-specific parameters, as described for each function.

UDPDRIVER System Service Call Function Codes

System service call function codes specify what action the QIO performs. This section describes the following

function codes:

IO$_READVBLK IO$_WRITEVBLK | IO$M_EXTEND

UDPDRIVER Services

69

IO$_WRITEVBLK IO$_SENSEMODE | IO$M_RD_COUNT

IO$_SENSEMODE IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP

IO$_SETMODE | IO$M_CTRL IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN

IO$_SENSEMODE | IO$M_CTRL

UDPDRIVER Services

70

IO$_READVBLK
Receives a datagram. The received datagram is written to the specified user buffer.

Use the IO$M_NOW modifier to execute the function immediately regardless of the amount of available data.

If no data is available, the function returns SS$_NODATA status.

Use the IO$M_DATACHECK modifier with a read request to peek at the next received message without

removing it from the received message queue.

Unless you set a local internet address (see P2 Set Port Characteristics), datagrams sent to any local interface

address, any local broadcast address (TCPware supports both the standard -1 and nonstandard 0 broadcast

address forms), or any joined multicast host group address are eligible to be received.

Note! UDPDRIVER holds a maximum of five unsolicited datagrams. It is good programming practice to have a

read request pending for incoming datagrams.

Format

status=SYS$QIO(efn, chan, IO$_READVBLK,iosb, astadr, astprm, buffer, size, udp_address, 0, 0,

receive_timeout)

Arguments

p1=buffer

OpenVMS usage: vector_byte_unsigned

type: byte (unsigned)

access: write only

mechanism: by reference

Address of the user's buffer that receives the data.

p2=size

OpenVMS usage: word_unsigned

type: word (unsigned)

access: read only

mechanism: by value

UDPDRIVER Services

71

Length (in bytes) of the buffer to which the address argument points. This is the amount of data the user is

willing to receive. The value must be at least 20 bytes.

p3=udp_address

OpenVMS usage: vector_longword_unsigned

type: longword (unsigned)

access: write only

mechanism: by reference

Address of an optional 4-longword buffer. Receives the source and destination IP addresses and UDP port

numbers from the received datagrams. Figure 4-2 shows the buffer format.

Figure 4-2 Read Function P3 Buffer Format

Note! IO$_READVBLK returns the source and destination internet addresses in internet byte order, which is

reversed from the normal VMS byte order. For example, internet address 2.3.4.5 is stored as ^X05040302.

p6=receive_timeout

OpenVMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

UDPDRIVER Services

72

Contains the receive time-out time (in seconds). If this value is non-zero, the SS$_TIMEOUT status is returned

if a datagram isn't received within this time.

Status

SS$_ABORT Request aborted due to closed connection

SS$_BUFFEROVF User's buffer too small for entire datagram

Truncated datagram is returned

Remainder of datagram is lost

SS$_CANCEL Request cancelled

SS$_DEVINACT Device is not active or port not opened

SS$_NODATA No datagram available and IO$M_NOW was specified

SS$_NORMAL Success

Datagram received

SS$_THIRDPARTY Port closed by third party

Usually indicates that TCPware was shut down.

SS$_TIMEOUT Receive time out time specified and no datagram received within

allowed time

The number of bytes received are returned in the high-order word of the first longword of the I/O status block.

This may be less than the bytes requested.

UDPDRIVER Services

73

IO$_SENSEMODE
Reads the active ports status and returns status information for all of the open UDPDRIVER ports.

Format

status=SYS$QIO(efn, chan, IO$_SENSEMODE, iosb, astadr, astprm, buffer, address, 0, 0, 0, 0)

Arguments

p1=buffer

OpenVMS usage: vector_byte_unsigned

type: byte (unsigned)

access: write only

mechanism: by reference

Optional address of the 8-byte device characteristics buffer. The data returned is: the device class (DS$_SCOM)

in the first byte, the device type (0) in the second byte, and the default buffer size, which is the maximum

datagram size, in the high-order word of the first longword. IO$_SENSEMODE returns the second longword as

0.

p2=address

OpenVMS usage: vector_word_unsigned

type: word (unsigned)

access: write only

mechanism: by descriptor

Address of the descriptor for the buffer to receive the status information on the open ports. The buffer receives

22 bytes of information for each open UDP port. Figure 4-3 shows the 22 bytes of status information returned.

UDPDRIVER Services

74

Figure 4-3 P2 Status Information

Protocol type Word value is 3 for UDPDRIVER ports, 4 for INETDRIVER

datagram sockets, and 5 for BGDRIVER datagram sockets.

Unit number Word value is the UDPDRIVER, INETDRIVER or BGDRIVER

device unit number for the port.

Receive queue Word value is the number of bytes received on the port waiting to be

delivered to the user (via the read function).

Send queue Word value is the number of bytes waiting to be transmitted for the

port.

Local internet address Longword value is the local internet address specified for the

opened port. 0 means that none was specified.

Local port number Word value is the local port number for the opened port.

Peer internet address Longword value is the peer's internet address for a fully specified

opened port. 0 means the port is not fully specified.

Peer port number Word value is the peer's port number for a fully specified opened

port. 0 means the port is not fully specified.

Status

SS$_BUFFEROVF Buffer too small for all connections

Truncated buffer returned

UDPDRIVER Services

75

SS$_DEVINACT Device not active

Contact your system manager to determine why TCPware (or

UPDRIVER) was not started

SS$_NORMAL Success

Status information returned

The byte count for the status information buffer is returned in the high-order word of the first longword of the

I/O status block. This may be less than the bytes requested. See Figure 4-4 for more information.

The size in bytes of each connection's record (22 bytes) is returned in the low order word of the second

longword of the I/O status block.

The total number of active connections is returned in the high-order word of the second longword of the I/O

status block. This can be greater than the number of reported connections if the buffer is full.

Figure 4-4 I/O Status Block

UDPDRIVER Services

76

IO$_SENSEMODE | IO$M_CTRL
Reads the port characteristics for the channel.

Format

status=SYS$QIO(efn, chan, IO$_SENSEMODE | IO$M_CTRL,iosb, astadr, astprm,buffer, address, 0, 0, 0,

0)

Arguments

p1=buffer

OpenVMS usage: vector_byte_unsigned

type: byte (unsigned)

access: write only

mechanism: by reference

Optional address of the 8-byte device characteristics buffer. The data returned is: the device class

(DC$_SCOM) in the first byte, the device type (0) in the second byte, and the default buffer size, which is the

maximum datagram size, in the high-order word of the first longword. IO$_SENSEMODE returns the second

longword as 0.

p2=address

OpenVMS usage: vector_word_unsigned

type: word (unsigned)

access: write only

mechanism: by descriptor

Address of the descriptor for the extended characteristics buffer to receive the characteristics. The information

returned in the buffer is formatted the same as the extended characteristics buffer used to set the connection

characteristics. See the IO$_SETMODE function description for more information.

If bit 12 (mask 4096) is set in the parameter identifier (PID), the PID is followed by a counted string. If bit 12 is

clear, the PID is followed by a longword value. While TCPware currently never returns a counted string for a

parameter, this may change in the future.

Table 4-2 lists the port characteristics that the function returns.

UDPDRIVER Services

77

Table 4-2 P2 Port Characteristics

PID Meaning

0 Local internet or multicast address. Internet or multicast address is returned as the

longword value. Last specified value or 0 is returned.

1 Local port number. Port number is returned in the low order word of the longword

value. Local port number is either the default port number or the last specified local

port number.

2 Peer internet address. Internet address is returned as the longword value. Last

specified value or 0 is returned.

3 Peer port number. Port number is returned in the low order word of the longword

value. Last specified value or 0 is returned.

5 Port datagram size. Maximum datagram size (in bytes) is returned as the longword

value.

6 Port state. Longword value is 0 if the port is not open and 1 if the port is open.

7 Shared access control. Longword value is 0 if the port is set for exclusive access and

1 if the port is set for shared access.

10 Socket options. For the values of this option, see the socket options entry in P2 Set

Port Characteristics .

14 IP TTL. Longword. Low byte contains the time-to-live (TTL).

15 IP TOS. Longword. Low byte of the longword contains the type of service (TOS).

18 Multicast interface. Longword. IP address of the local interface to use in sending

multicast datagrams. If 0, the default interface is used.

19 Multicast TTL. Longword. Low byte contains the time-to-live (TTL) to be used in

multicast datagrams to be transmitted.

20 Multicast loopback. Longword. Low byte is 0 to disable and 1 to enable local

loopback of multicast datagrams.

Note! The order in which IO$_SENSEMODE | IO$M_CTRL returns the parameters can change. It is

recommended that you search the buffer for the desired parameter.

Status

SS$_BUFFEROVF Buffer too small for all connections

Truncated characteristics buffer returned

SS$_DEVINACT Device not active

Contact your system manager to determine why TCPware (or

UPDRIVER) was not started

SS$_NORMAL Success

Characteristics returned

UDPDRIVER Services

78

The byte count for the characteristics buffer is returned in the high-order word of the first longword of the I/O

status block. This may be less than the bytes requested.

The number of bytes in the receive queue is returned in the low order word of the second longword in the I/O

status block.

Note! You can use the SYS$GETDVI system service to obtain the local port number, peer port number, and peer

internet address. The DEVDEPEND field stores the local port number (low order word) and peer port

number (high-order word). The DEVDEPEND2 field stores the peer internet address.

UDPDRIVER Services

79

IO$_SENSEMODE | IO$M_RD_COUNT
Reads the UDP counters. You can add the IO$M_CLR_COUNT modifier to this function to zero the counters

after they are read. However, you must have the OPER privilege to use this modifier.

Format

status=SYS$QIO(efn, chan,IO$_SENSEMODE | IO$M_RD_COUNT, iosb, astadr, astprm, 0, address, 0, 0,

0, 0)

Argument

p2=address

OpenVMS usage: vector_longword_unsigned

type: longword (unsigned)

access: write only

mechanism: by descriptor

Address of the descriptor for the buffer that receives the counters. These counters relate only to the UDP level

and are for all ports since the counters were last zeroed. The counters in the order they are returned:

1 Number of seconds since last zeroed

2 Number of datagrams transmitted

3 Number of datagrams transmitted with transmission errors

4 Number of datagrams received

5 Number of datagrams received in error (invalid UDP header or checksum)

6 Number of datagrams that were discarded because they could not be delivered to a receiver

All counters are longword values. All counters stop at their maximum value instead of overflowing.

Status

SS$_BUFFEROVF Buffer too small for all connection
Truncated buffer returned

SS$_DEVINACT Device not active
Contact your system manager to determine why TCPware (or
UPDRIVER) was not started

SS$_NORMAL Success, Counters returned

UDPDRIVER Services

80

IO$_SETMODE | IO$M_CTRL
Sets the port characteristics in the extended characteristics buffer.

The buffer consists of a series of six-byte or counted string entries. The first word of each entry contains the

parameter identifier (PID) of a characteristic, followed by either a longword that contains the value of that

characteristic, or a counted string. Counted strings consist of a word with the size of the character string,

followed by the character string.

Format

status=SYS$QIO(efn, chan, IO$_SETMODE | IO$M_CTRL,iosb, astadr, astprm, 0, address, 0, 0, 0, 0)

Argument

p2=address

OpenVMS usage: vector_word_unsigned

type: word (unsigned)

access: read only

mechanism: by descriptor

The address argumentis the address of the extended characteristics buffer's descriptor. Figure 4-5 shows the

format of the extended characteristics buffer and its descriptor.

Figure 4-5 P2 Set Characteristics Buffer

UDPDRIVER Services

81

Table 4-3 lists the port characteristics you can set. The characteristics remain set, even after you close the port,

until you change them with another IO$_SETMODE operation.

Table 4-3 P2 Set Port Characteristics

PID Meaning

0 Local internet address. Longword with the local host's internet or multicast address. If

used, must be a valid local internet or multicast address. Set this parameter only if the

port is not open. Specify in internet byte order, reversed from the normal VMS byte

order. For example, internet address 2.3.4.5 is stored as ^X05040302.

To determine if an internet address is local, issue an IO$_SETMODE | IO$M_CTRL

function specifying the address in this characteristic. If the address is not local, the

function returns an SS$_BADPARAM status.

1 Local port number. Low order word of the longword containing the port number. If

omitted, the function uses the unique port number generated when you assign the UDP

device unit. Set this parameter only if the port is not open. If you use 0, the function

generates a new, unique number. Specify in normal VMS byte order.

2 Peer internet address. Longword with the peer host's internet address. If you specify

both the peer's internet address and port number after opening the port (or when the port

is opened) the port is considered fully specified (or opened as fully specified) and all

further receive requests receive datagrams from that address and port only. Transmitted

requests that do not provide a source/destination buffer are sent to that address and port.

Specify in internet byte order, as the local internet address characteristic above. Using 0

functionally omits the address.

3 Peer port number. Low order word of the longword containing the port number. (See

PID 2 above.) Specify in normal VMS byte order. Using 0 functionally omits the port

number.

7 Shared access control. Longword that specifies whether others can (shared access) or

cannot (exclusive access) use the same local port number. For shared access (used

primarily by servers), the value must be non-zero. You can open any number of ports on

the local port number. Received datagrams are placed in a common queue so that the

first receive on any of these opened ports returns the next datagram. For exclusive

access (the default), the longword value must be 0.

9 Change ownership. Longword that allows the current owner of the device unit to

prepare to pass ownership to another process. Removes the owner's process ID from the

connection. If the value field is non-zero, specifies the new owner UIC for the

connection and changes the connection protection so that only system and owner have

access (S:RWLP,O:RWLP). Changes the following fields for the connection: owner

process ID, owner UIC, and device protection. Primarily the NETCP master server but

also other programs use it.

UDPDRIVER Services

82

10 Set socket options. Low order word of the longword value field containing the mask

value of the socket options to set. Specify the following options, as defined in the

TCPWARE_INCLUDE:SOCKET.H header file (the values are in hexadecimal):

SO_DEBUG, with a value of 0001, enables debugging (ignored)

SO_REUSEADDR, with a value of 0004, allows reuse of local address (controllable

through the passive open access control parameter

SO_KEEPALIVE, with a value of 0008, keeps connections alive

SO_DONTROUTE, with a value of 0010, prevents routing (ignored)

SO_BROADCAST, with a value of 0020, enables use of broadcasts (ignored)

SO_USELOOPBACK, with a value of 0040, bypasses hardware when possible

(ignored)

11 Clear socket options. Low order word of the longword value field containing the mask

of the socket options to clear. (See the options under PID 10 above.)

13 IP options. Counted string containing the IP options to be included in datagrams.

14 IP TTL. Low byte of the longword containing the time-to-live (TTL) for datagrams.

15 IP TOS. Low byte of the longword containing the type of service (TOS) for datagrams.

16 Join multicast group. Counted string of eight bytes of which the first longword

contains the multicast group IP address to join, and the last longword contains the IP

address of the local interface on which to join the group. If 0, the default interface is

used.

17 Leave multicast group. Counted string of eight bytes of which the first longword

contains the multicast group IP address to leave, and the last longword contains the IP

address of the local interface from which to leave the group. If 0, the default interface is

used.

18 Multicast interface. Longword with the IP address of the local interface to use in

sending multicast datagrams. If 0, the default interface is used.

19 Multicast TTL. Longword of which the low byte contains the time-to-live (TTL) for

multicast datagrams transmitted.

20 Multicast loopback. Longword of which the low byte is 0 to disable, or 1 to enable

local loopback of multicast datagrams.

UDPDRIVER Services

83

Status

SS$_BADPARAM Bad parameter or value specified

PID returned in low order word of second longword

SS$_DEVACTIVE Port is open, and you made a request to change a parameter that

cannot be changed when the port is open

SS$_DEVINACT Device not active

Contact system manager why TCPware (or TCPDRIVER) not

started

SS$_DUPUNIT Multicast group address already joined

SS$_INSFMEM Insufficient memory to complete request

SS$_IVBUFLEN Extended characteristics buffer length invalid

SS$_NOPRIV Setting IP layer options (PIDs 13 through 20) requires privileges

Application must either be running under SYSTEM UIC or have

SYSPRV, BYPASS, or OPER privilege

SS$_NORMAL Success

Characteristics set

SS$_TOOMUCHDATA Too many multicast group addresses specified

SS$_UNREACHABLE Default interface for multicast group address could not be found

Specify local interface's IP address when joining multicast group

UDPDRIVER Services

84

IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN
Closes a previously opened port.

After you issue this modifier any received datagrams are discarded.

Format

status=SYS$QIO(efn, chan, IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN, iosb, astadr, astprm,

0, 0, 0, 0, 0, 0)

Arguments

None.

Status

SS$_DEVINACT Device not active

Contact system manager why TCPware (or TCPDRIVER) not started

SS$_NORMAL Success

Port is now (or was) closed

Port can no longer receive datagrams; however, datagrams can still be

sent

UDPDRIVER Services

85

IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP
Opens a new receive port. When opening a new receive port, you have a choice of either fully or partially

specifying the port characteristics.

To open a fully specified port, you must specify both the peer's internet address and port number. UDPDRIVER

then delivers only datagrams received from that address and port and destined for the local port number.

To open a partially specified port, do not specify the peer's internet address and port number. UDPDRIVER

then delivers all datagrams destined for the local port number, except those to be delivered to fully specified

ports for the same local port number. You can convert a partially specified port into a fully specified port by

issuing a IO$_SETMODE | IO$M_CTRL function and specifying both the peer's internet address and port

number.

Format

status=SYS$QIO(efn, chan, IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP, iosb, astadr, astprm, 0,

address, 0, 0, 0, 0)

Argument

p2=address

OpenVMS usage: vector_word_unsigned

type: word (unsigned)

access: read only

mechanism: by descriptor

Address of the descriptor for the extended characteristics buffer. See the previous IO$_SENSEMODE |

IO$M_CTRL function description for details on the extended characteristics buffer.

Note! You only need to open ports if you are to receive datagrams. You can send datagrams whether or not you

open the port.

UDPDRIVER Services

86

Status

SS$_BADPARAM Bad parameter or value specified

PID returned in low order word of second longword

SS$_DEVACTIVE Port is already open

SS$_DEVINACT Device not active

Contact system manager why TCPware (or TCPDRIVER) not started

SS$_DUPUNIT Specified port number is already in use by another user, and that user

or you did not request shared access

SS$_NOPRIV Insufficient privilege

Program tried to open local port below 1024, but program does not

have BYPASS or SYSPRV privilege

SS$_NORMAL Success

Port is open and ready for receives

SS$_THIRDPARTY Port closed by third party

Usually indicates that TCPware was shut down.

UDPDRIVER Services

87

IO$_WRITEVBLK
Sends a datagram stored in a single user buffer.

The IO$M_NOFORMAT modifier suppresses checksum generation at the UDP level.

Format

status=SYS$QIO(efn, chan,IO$_WRITEVBLK, iosb, astadr, astprm,buffer, size, address, 0, 0, 0)

Arguments

p1=buffer

OpenVMS usage: vector_byte_unsigned

type: byte (unsigned)

access: read only

mechanism: by reference

Address of the buffer that contains the data to be sent.

p2=size

OpenVMS usage: word_unsigned

type: word (unsigned)

access: read only

mechanism: by value

User's buffer size in bytes (the byte count), which is the amount of data that the user is sending. The value

should not be greater than 64000 bytes.

p3=address

OpenVMS usage: longword_unsigned

type: longword (unsigned)

access: read only

UDPDRIVER Services

88

mechanism: by value

Address of the optional 4-longword source/destination buffer. The source and destination internet address and

port number specified in this buffer are used to transmit the datagram.

Figure 4-6 shows the buffer format.

Figure 4-6 Write Function Address Buffer Format

You can use any destination port. You can specify the source internet address, which must be a valid local

address, or specify it as 0. When you specify the address as 0, UDPDRIVER supplies the appropriate local

internet address. You must specify internet addresses in internet byte order, which is reversed from the normal

VMS byte order. For example, internet address 2.3.4.5 is stored as ^X05040302.

If you do not specify the address buffer or if fields in this buffer are 0, UDPDRIVER uses the port's

characteristic values set using the IO$_SETMODE | IO$M_CTRL or IO$_SETMODE | IO$M_CTRL |

IO$M_STARTUP functions for the unspecified fields.

To broadcast a datagram, you must either specify the source address and a destination address of

255.255.255.255, or specify a local network's broadcast address. The local network's broadcast address is an

address with all bits set (or cleared) for the host number portion of the internet address.

Status

SS$_DEVINACT Device not active

Contact system manager why TCPware (or TCPDRIVER) not

started

SS$_IVBUFLEN User's buffer too large

SS$_NORMAL Success

Datagram was transmitted

SS$_OPINCOMPL Datagram not transmitted because no destination internet address or

port number was specified by source/destination buffer or port's

characteristics

UDPDRIVER Services

89

SS$_THIRDPARTY TCPware shut down

SS$_UNREACHABLE No route to specified destination internet address

The number of bytes sent are returned in the high-order word of the first longword of the I/O status block.

UDPDRIVER Services

90

IO$_WRITEVBLK | IO$M_EXTEND
Sends a datagram stored in an array of buffers.

The IO$M_NOFORMAT modifier suppresses checksum generation at the UDP level.

Format

status=SYS$QIO(efn, chan, IO$_WRITEVBLK | IO$M_EXTEND,iosb, astadr, astprm,msghdr, size, 0, 0,

0, 0)

Arguments

p1=msghdr

OpenVMS usage: vector_longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

Address of the msghdr structure. Points to the address of the structure storing the array of additional structures.

Each of these array structures contains the address and size of one of the user buffers.

p2=size

OpenVMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

Size of the msghdr structure. The size must be 24 bytes.

For details on the msghdr structure and an example of using the scatter-gather write function, see Chapter 3,

TCPDRIVER Services.

UDPDRIVER Services

91

Status

SS$_DEVINACT Device not active

Contact system manager why TCPware (or TCPDRIVER) not

started

SS$_IVBUFLEN User's buffer too large

SS$_NORMAL Success

Datagram was transmitted

SS$_OPINCOMPL Datagram not transmitted because no destination internet address or

port number was specified by source/destination buffer or port's

characteristics

SS$_THIRDPARTY TCPware shut down

SS$_UNREACHABLE No route to specified destination internet address

The number of bytes sent are returned in the high-order word of the first longword of the I/O status block.

UDPDRIVER Services

92

SYS$ASSIGN
Assigns a channel to a device.

Format

status = SYS$ASSIGN(devnam, chan, [acmode], [mbxnam])

Arguments

devnam

OpenVMS usage: device_name

type: character_coded text string

access: read only

mechanism: by descriptor-fixed length string descriptor

Address of a character string descriptor pointing to the device name string (UDP0:).

chan

OpenVMS usage: channel

type: word (unsigned)

access: write only

mechanism: by reference

Address of a word into which SYS$ASSIGN writes the channel number.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)

access: read only

mechanism: by value

UDPDRIVER Services

93

Optional access mode associated with the channel. The most privileged access mode used is that of the caller.

mbxnam

OpenVMS usage: device_name

type: character-coded text string

access: read only

mechanism: by descriptor-fixed length string descriptor

Optional logical mailbox associated with the device.

Status

See Computer's VMS System Services Reference Manual for a complete list of status messages.

UDPDRIVER Services

94

SYS$CANCEL
Cancels any I/O that is pending on a channel. The I/O will be completed with an iosb status of SS$_CANCEL.

Outstanding I/O operations are automatically cancelled at image exit.

Format

status = SYS$CANCEL(chan)

Argument

chan

OpenVMS usage: channel

type: word (unsigned)

access: read only

mechanism: by value

Number of the channel to be canceled.

Status

See HP’s VMS System Services Reference Manual for a complete list of status messages.

UDPDRIVER Services

95

SYS$DASSGN
Releases a channel.

When you deassign a channel, any outstanding I/O is completed with an iosb status of SS$_CANCEL.

I/O channels are automatically deassigned at image exit.

Format

status = SYS$DASSGN(chan)

Argument

chan

OpenVMS usage: channel

type: word (unsigned)

access: read only

mechanism: by value

Number of the channel to be deassigned.

Status

See HP’s VMS System Services Reference Manual for a complete list of status messages.

UDPDRIVER Services

96

Sample Programs

C Programs

The following sample programs, which show the use of SYS$QIO system service calls to the UDPDRIVER to

set up a DISCARD client and server, are included in the TCPWARE_COMMON:[TCPWARE.EXAMPLES]

directory:

• UDPDRIVER_CLIENT.C

• UDPDRIVER_SERVER.C

The client sequence of operations is as follows:

1 Assigns an I/O channel to UDP0, using SYS$ASSIGN.

2 Sends data using $QIO with IO$_WRITEVBLK.

3 Deassigns the channel, using SYS$DASSGN.

The server sequence of operations is as follows:

1 Assigns an I/O channel to UDP0, using SYS$ASSIGN.

2 Opens a receive port, using $QIO(IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP).

3 Exchanges data, using $QIO(IO$_WRITEVBLK) and $QIO(IO$_READVBLK).

4 Closes the port, using $QIO(IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN).

5 Deassigns the channel, using SYS$DASSGN.

To build any one of these applications using DEC C, enter:

$ CC/DECC/PREFIX=ALL filename

$ LINK filename

Ctrl/Z

To build any one of these applications using VAX C, enter:

$ CC/VAXC filename

$ LINK filename, TCPWARE:UCX$IPC/LIB, SYS$INPUT/OPTIONS-

_$ SYS$SHARE:VAXCRTL/SHARE

Ctrl/Z

FORTRAN Program

The TCPWARE_COMMON:[TCPWARE.EXAMPLES] directory also includes a UDPSAMPLES.FOR

FORTRAN language file that transmits or receives data. This program links to the TCPware Socket Library as

follows:

VAX

$ FORTRAN TCPWARE_ROOT:[TCPWARE.EXAMPLES]UDPSAMPLE

$ LINK UDPSAMPLE, SYS$INPUT/OPTIONS

 SYS$SHARE:TCPWARE_SOCKLIB_SHR/SHARE

Ctrl/Z

UDPDRIVER Services

97

Alpha and I64

$ FORTRAN/NOALIGN TCPWARE_ROOT:[TCPWARE.EXAMPLES]UDPSAMPLE

$ LINK UDPSAMPLE, SYS$INPUT/OPTIONS

 SYS$SHARE:TCPWARE_SOCKLIB_SHR/SHARE

Ctrl/Z

IPDRIVER Services

98

Chapter 5 IPDRIVER Services

Introduction

This chapter describes the IP device driver (IPDRIVER) services. It describes both the user and external

interfaces of this IP implementation:

• The user interface exists above the IP layer, de-multiplexing received datagrams, as described below.

• The external interface provides a method by which you can support four types of network interfaces. The

program you create is responsible for sending and receiving raw IP datagrams over the network interface.

IP does not include end-to-end data reliability, flow control, sequencing, or other services usually found in host-

to-host protocols. Since TCP does include these services, you should use TCP unless the applications programs

intend to implement or do not require these services.

IP services are available through the OpenVMS Queue I/O (SYS$QIO and SYS$QIOW) system services.

Functions are provided to open and close a port, and to transmit and receive datagrams.

SYS$QIOW is the synchronous and SYS$QIO the asynchronous form of VMS system services. Use each form

depending on your application’s requirements.

The IPDRIVER uses ports to demultiplex received datagrams. When an IP datagram is received, IPDRIVER

validates the header and searches for a port opened on the protocol number indicated within the datagram’s

internet header. If no port is opened for that protocol or that port has no outstanding receive, IPDRIVER

discards the datagram.

See Figure 5-1 for an illustration of the user interface and external interface working with IPDRIVER. The IP

specifications are in RFC 791.

The external interface is intended primarily for sites that use proprietary network hardware. This interface lets

you write programs that support the use of IPDRIVER with various network controllers. This chapter refers to

these programs as Network Interface Programs.

Basically, the Network Interface Programs perform two functions:

• Delivery of received datagrams to IPDRIVER for processing.

• Receiving of datagrams from IPDRIVER for transmission.

These programs do not handle IP activities such as routing, fragmentation and reassembly, or datagram

validation. IPDRIVER performs these activities.

IPDRIVER Services

99

Figure 5-1 IPDRIVER User and External Interfaces

Sequence of Operations

Perform the following sequence of operations to open a port:

1 Assign an I/O channel to IPA0: with the SYS$ASSIGN system service. SYS$ASSIGN creates a new device

unit and assigns to it the channel for the port.

2 Open the port with the IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP function of the SYS$QIO or

SYS$QIOW system service.

3 Perform read requests with the IO$_READVBLK function and write requests with the IO$_WRITEVBLK

function to receive and transmit datagrams as desired.

4 Close the port with the IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN function.

5 Deassign the I/O channel with the SYS$DASSGN system service.

See the appropriate OpenVMS documentation for information on the OpenVMS I/O system services

(SYS$ASSIGN, SYS$CANCEL, SYS$DASSGN, SYS$QIO, and SYS$QIOW) and on related system

services, such as asynchronous system trap (AST) and event flag services.

Other Operations

In addition to the sequence of operations described above, IPDRIVER includes other operations that:

IPDRIVER Services

100

Read the network device information, read

the ARP table, or read the routing table with

IO$_SENSEMODE | IO$M_CTRL

Read the IP counters with IO$_SENSEMODE | IO$M_RD_COUNT

Internet Protocol Implementation Notes

The material presented here does not explain or describe the Internet Protocol (IP).

TCPware for OpenVMS implements Version 4 of the IP, and the following restrictions apply:

• The type of service field is ignored.

• All options are ignored (options may be present in incoming datagrams). Options are copied to fragmented

datagrams as required by the Internet Protocol specification.

• The TCPware host may send the following Internet Control Message Protocol (ICMP) messages:

Destination unreachable When the datagram cannot be forwarded or the destination

port is not active

Echo In response to a echo request

Parameter problem When you enable forwarding and the datagram contains a

parameter error

Redirect When you enable forwarding and the forwarded datagram

exits by the same interface on which it was received (see the

NETCU ENABLE FORWARDING command)

Timestamp reply In response to a timestamp request

IPDRIVER System Service Call Format

The format for the IPDRIVER SYS$QIO system service call is as follows:

status = SYS$QIO[W](efn, chan, func, iosb, astadr, astprm, p1,p2,p3,p4,p5,p6)

SYS$QIO or SYS$QIOW issues IP functions.

SYS$QIO is for asynchronous service completion, specifying that the service return to the caller immediately

after queuing the I/O request.

SYS$QIOW is for synchronous service completion, specifying that the service place the calling process in a

wait state and only return to the caller after completing the I/O operation.

The OpenVMS IODEF module provides definitions for the SYS$QIO function codes.

Note! The vertical bar (|) used in some of the functions described in this chapter is the C bitwise inclusive OR

operator.

IPDRIVER Services

101

IPDRIVER System Service Call Arguments

You invoke IPDRIVER system service calls with the standard OpenVMS QIO mechanism.

See the appropriate OpenVMS documentation (for example, the Introduction to VMS System Services volume)

for details on the QIO mechanism.

The following sections describe each system call argument.

efn

OpenVMS usage: ef_number

type: longword (unsigned)

access: read only

mechanism by value

Number of the event flag set by completion of the I/O operation. The argument is optional.

chan

OpenVMS usage: channel

type: word (unsigned)

access: read only

mechanism: by value

I/O channel assigned to the IP device to which you are directing the request.

func

OpenVMS usage: function_code

type: longword (unsigned)

access: read only

mechanism: by value

IPDRIVER Services

102

Device-specific function code and the modifier, if appropriate, for each operation.

Note! The IPDRIVER User Interface System Service Call Function Codes and IPDRIVER External Interface

sections describe each func in detail.

iosb

OpenVMS usage: function_code

type: longword (unsigned)

access: read only

mechanism: by value

I/O status block that receives the final completion status of the I/O operation, structured as in Figure 5-2.

Figure 5-2 I/O Status Block

Table 5-1 describes the status block fields in more detail.

Table 5-1 I/O Status Block Fields

Field Name Description

Function-Specific Varies for each function code.

Status Code SS$ status code or special error status code. If the low bit (0) of the

OpenVMS error code is clear, the network returned an error.

Transfer Byte Count Number of bytes of data transferred in the I/O operation.

astadr

OpenVMS usage: ast_procedure

type: procedure entry mask

IPDRIVER Services

103

access: call without stack

unwinding

mechanism: by reference

Address of the asynchronous system trap (AST) routine executed when the I/O is completed.

astprm

OpenVMS usage: user_arg

type: longword (unsigned)

access: read only

mechanism: by value

AST parameter to be passed to the AST routine.

p1 to p6

OpenVMS usage: varying_arg

type: longword (unsigned)

access: read only or write only

mechanism: by reference or by value

Function-specific parameters, as described for each function.

IPDRIVER User Interface System Service Call Function Codes

System service call function codes specify what action the QIO performs. This section describes the following

function codes for the User Interface:

IO$_READVBLK IO$_SETMODE | IO$M_CTRL

IPDRIVER Services

104

IO$_SENSEMODE |

IO$M_RD_COUNT

IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP

IO$_SENSEMODE IO$_SETMODE | IO$M_CTRL |

IO$M_SHUTDOWN

IO$_SENSEMODE | IO$M_CTRL IO$_WRITEVBLK

IPDRIVER Services

105

IO$_READVBLK
Receives a datagram. The data received is written to the specified user buffer.

Note! IPDRIVER delivers ICMP messages received for the active protocol. It is up to the application to check the

"protocol" field in the received datagram to determine if the received datagram is an ICMP message.

IPDRIVER can deliver the following ICMP messages: destination unreachable, time exceeded, parameter

problem, source quench, and redirect.

Note! A copy of a broadcast or multicast datagram is looped back by default. This means that your application

receives its own broadcast and multicast datagrams.

Format

status = SYS$QIO(efn, chan,IO$_READVBLK,iosb, astadr, astprm, buffer, size,0, 0, 0, 0)

Arguments

p1=buffer

OpenVMS usage: vector_byte_unsigned

type: byte (unsigned)

access: write only

mechanism: by reference

Address of the user’s buffer that receives the datagram. This buffer must be large enough to store the internet

header as well as the expected data. The maximum size of an internet header is 60 bytes.

p2=size

OpenVMS usage: word_unsigned

type: word (unsigned)

access: read only

mechanism: by value

User’s buffer size in bytes (the byte count). This is the amount of data the user is willing to receive (including

the internet header). The value should not be greater than 65000 bytes.

The internet header contains the following fields:

IPDRIVER Services

106

Destination internet

address (i.e., the local

internet address)

Longword at an offset of 16 bytes into the header. Stored in internet

byte order.

Identification Word at an offset of 4 bytes into the header. Stored in internet byte

order.

Options Variable length buffer (internet header size - 20) at an offset of 20

bytes into the header.

Source internet address Longword at an offset of 12 bytes into the header. Stored in internet

byte order.

Time to Live Byte at an offset of 8 bytes into the header.

Type of Service Byte at an offset of 1 byte into the header.

See RFC 791 for details on the internet header.

Status

SS$ABORT Request aborted due to closed connection

SS$_BUFFEROVF User’s buffer was too small for entire datagram

Truncated datagram is returned

Remainder of datagram is lost

SS$_CANCEL Request cancelled

SS$_DEVINACT Device not active or port was not opened

SS$_NODATA No datagram is available and IO$M_NOW was

specified

SS$_NORMAL Success

Datagram received

The number of bytes of the entire datagram (including the internet header) is returned in the high-order word of

the first longword of the I/O status block. The size (in bytes) of the internet header is returned in the low-order

word of the second longword. The size (in bytes) of the data within the datagram is returned in the high-order

word of the second longword.

IPDRIVER Services

107

IO$_SENSEMODE | IO$M_CTRL
Performs the following functions:

• Reads extended characteristics

• Reads network device information

• Reads the ARP table

• Reads the routing table

Format

status = SYS$QIO(efn, chan, IO$_SENSEMODE | IO$M_CTRL,iosb, astadr, astprm, buffer, address,

function, line-id, 0, 0)

Arguments

p1=buffer

OpenVMS usage: vector_byte_unsigned

type: byte (unsigned)

access: write only

mechanism: by reference

Optional address of the 8-byte device characteristics buffer. The data returned is the device class (DC$_SCOM)

in the first byte, the device type (0) in the second byte, and the default buffer size (0) in the high-order word of

the first longword. The second longword is returned as 0.

p2=address

OpenVMS usage: vector_word_unsigned

type: word (unsigned)

access: write only

mechanism: by descriptor

Address of the descriptor for the buffer to receive the information. The format of the buffer depends on the

information requested. Each buffer format is described separately in the section that follows.

If bit 12 (mask 4096) is set in the parameter identifier (PID), the PID is followed by a counted string. If bit 12 is

clear, the PID is followed by a longword value. While TCPware currently never returns a counted string for a

parameter, this may change in the future.

IPDRIVER Services

108

p3=function

OpenVMS usage: longword-unsigned

type: longword (unsigned)

access: read only

mechanism: by value

Code that designates the function. The function codes are shown in Table 5-2.

Table 5-2 P3 Function Codes

Code Function

0 Read extended characteristics

1 Read network device information

2 Read routing table

3 Read ARP table

8 Read routing table (includes CIDR-related mask information)

9 Returns a record for each interface in the following format:

Line Id

Bytes Transmitted

Bytes Received

All values are longwords.

p3 function code 8 is a superset of function code 2. Both read the routing table, although the output is different.

For details, see the Reading the R section.

p4=line-id

OpenVMS usage: longword-unsigned

type: longword (unsigned)

access: read only

IPDRIVER Services

109

mechanism: by value

Specify this argument only if you are reading a network device’s ARP table function.

Reading Extended Characteristics

Use IO$_SENSEMODE | IO$M_CTRL with function=0 to read the extended characteristics. The information

returned consists of one or more records, each record containing a word parameter identifier (PID) value

followed by either a longword or a counted string. A counted string consists of a word length followed by the

specified number of bytes. The parameters that can be returned are listed in Table 5-3.

Table 5-3 Extended Characteristics

PID Meaning

14 IP TTL. Longword. Low byte of the longword contains the time-to-live (TTL).

15 IP TOS. Longword. Low byte of the longword contains the type of service (TOS).

18 Multicast interface. Longword. IP address of the local interface to use in sending

multicast datagrams. If o, the default interface is used.

19 Multicast TTL. Longword. Low byte contains the time-to-live (TTL) to be used in

sending multicast datagrams.

20 Multicast loopback. Longword. Low byte is 0 to disable and 1 to enable local

loopback of multicast datagrams.

Reading Network Device Information

Use IO$_SENSEMODE | IO$M_CTRL with p3=1 to read network device information. The information

returned in the buffer (specified by p2=address) can consist of multiple records. Each record consists of nine

longwords, and one record is returned for each device.

The SHOW NETWORKS command in NETCU uses this function.

When you read network device information, the data in each record is returned in the order presented below. All

are longword values.

1 Line id (see the description of the line-id argument)

2 Line’s local internet address

3 Line’s internet address network mask

4 Line’s maximum transmission unit (MTU) in the low-order word, and the line flags in the high-order word

5 Number of packets transmitted (includes ARP packets for Ethernet lines)

6 Number of transmit errors

7 Number of packets received (includes ARP and trailer packets for Ethernet lines)

IPDRIVER Services

110

8 Number of receive errors

9 Number of received packets discarded due to insufficient buffer space

Reading the Routing Table

Use IO$_SENSEMODE | IO$M_CTRL with p3=2 or p3=8 to read the routing table. The information returned

in the buffer (specified by p2=address) can consist of multiple records. Each record consists of five longwords,

and one record is returned for each table entry.

The SHOW ROUTES command in NETCU uses this function.

The p3=8 function returns full routing information and is a superset of p3=2, which was retained for backwards

compatibility with existing programs. p3=2 and p3=8 return the same table of routing entries, in the following

order, except that p3=2 does not return items 7 and 8 (address mask and Path MTU):

1 Destination internet address. Destination host or network to which the datagram is

bound. Returned as a longword value.

2 Gateway internet address. Internet address to which the datagram for this route is

transmitted. Returned as a longword value.

3 Flags. Routing table entry’s flag bits. Returned as a word

value:

Mask 1, name GATEWAY, if set, the route is to a gateway

(the datagram is sent to the gateway internet address). If clear,

the route is a direct route.

Mask 2, name HOST, if set, the route is for a host. If clear,

the route is for a network.

Mask 4, name DYNAMIC, if set, the route was created by a

received ICMP redirect message.

Mask 8, name AUTOMATIC, if set, this route was added

by TCPWARE_RAPD process and will be modified or

remoted by that process as appropriate.

Mask 16, name LOCKED, if set, the route cannot be

changed by an ICMP redirect message.

Mask 32, name INTERFACE, if set, the route is for a

network interface.

Mask 64, name DELETED, if set, the route is marked

for deletion (it is deleted when the reference count

reaches 0).

Mask 128, name POSSDOWN, if set, the route is

marked as possibly down.

4 Reference count. Number of connections currently using the route.

Returned as a word value.

5 Use count. Number of times the route has been used for outgoing

traffic. Returned as a longword value.

IPDRIVER Services

111

6 Line ID. Line identification for the network device used to

transmit the datagram to the destination. See the

description of the line-id argument later in this section

for the line ID codes. Table 5-4 shows the line

identification values

7 Address mask. Address mask for the destination address. Returned as a

longword value.

8 Path MTU. Path maximum transmission unit. Returned as a

longword value.

Table 5-4 Line ID Values

Line ID Line ID Value

LPB-0 ^X00000001

PRO-n ^X00nn0003

HYP-n ^X00nn0004

X25-n ^X00nn0006

UNA-n ^X00nn0102

DSV-n ^X00nn0105

SLIP-n ^X00nn0141

QNA-n ^X00nn0202

DSB-n ^X00nn0205

DECNET-n ^X00nn0241

BNA-n ^X00nn0302

DST-n ^X00nn0305

PPP-n ^X00nn0341

IPDRIVER Services

112

SVA-n ^X00nn0402

MNA-n ^X00nn0502

ISA-n ^X00nn0602

KFE-n ^X00nn0702

MXE-n ^X00nn0802

ERA-n ^X00nn0902

EWA-n ^X00nn0A02

CLIP-n ^X00nn2002

ELA-n ^X00nn2102

MFA-n ^X00nn4102

FZA-n ^X00nn4202

FAA-n ^X00nn4302

FEA-n ^X00nn4402

FQA-n ^X00nn4502

TRA-n ^X00nn6102

TRE-n ^X00nn6202

Note! The I/O status block (iosb) returns routing table entry size information for the p3=8 function to assist in

diagnosing buffer overflow situations. See the Status section for details.

Reading the ARP Table Function

Use IO$_SENSEMODE | IO$M_CTRL with function=3 to read a network device’s ARP table function. The

information returned in the buffer (specified by p2=address) depends on the line id specified in line-id. The

SHOW ARP command in NETCU uses this function.

The line-id argument is the line id and is a longword value. The least significant byte of the line id is the major

device type code. The next byte is the device type subcode. The next byte is the controller unit number. The

most significant byte is ignored.

The information returned in the buffer can consist of multiple records. Each record consists of 12 bytes, and one

IPDRIVER Services

113

record is returned for each ARP table entry.

When reading a table function, the data in each record is returned in the following order:

1 Internet address. Returned as a longword value.

2 Physical address. Returned as a 6 byte value.

3 Flags. Returned as a word value. The ARP table entry’s flag bits are

shown in Table 5-5.

Table 5-5 ARP Table Entry Flag Bits

Mask Name Description

1 PERMANENT If set, the entry can only be removed by a NETCU REMOVE ARP

command and if RARP is enabled, the local host responds if a

RARP request is received for this address. If clear, the entry can be

removed if not used within a short period.

2 PUBLISH If set, the local host responds to ARP requests for the internet

address (this bit is usually only set for the local hosts’s entry). If

clear, the local host does not respond to received ARP requests for

this address.

4 LOCKED If set, the physical address cannot be changed by received ARP

requests/replies.

4096 LASTUSED If set, last reference to entry was a use rather than an update.

8192 CONFNEED If set, confirmation needed on next use.

16384 CONFPEND If set, confirmation pending.

32768 RESOLVED If set, the physical address is valid.

Status

SS$_BADPARAM Code specified in function argument invalid

SS$_BUFFEROVF Buffer too small for all information

Truncated buffer returned.

IPDRIVER Services

114

SS$_DEVINACT Device not active

Contact your system manager to determine why TCPware was not

started

SS$_NORMAL Success

Requested information returned

SS$NOSUCHDEV Line identification specified in arp argument does not exist

The byte count for the information or counters buffer is returned in the high-order word of the first longword of

the I/O status block. This can be less than the bytes requested.

• For the p3=2 routing table function, in the second longword of the I/O status block, bit 0 is always set, bit 1 is

set if the forwarding capability is enabled, and bit 2 is set if ARP replies for non-local internet addresses are

enabled.

• For the p3=8 routing table function, the IOSB contains the following:

Status Code SS$_NORMAL or SS$_BUFFEROVF

Transfer Byte Count Number of bytes of returned information

Entry Size Number of bytes in each entry

Number of Entries Number of entries in the routing table

If the status is SS$_BUFFEROVF, you can determine the number of routing entries actually returned by

calculating (Transfer Byte Count) DIV (Entry Size) and comparing that with the Number of Entries value. Be

sure to check the Entry Size in the IO status block. Later versions of TCPware may return more information for

each entry, which will return a larger Entry Size. Any additional information to be returned in the future will be

added to the end of the returned entry.

IPDRIVER Services

115

IO$_SENSEMODE | IO$M_RD_COUNT
Reads the IP counters.

The IO$M_CLR_COUNT modifier with this function zeros the counters after they are read. Using

IO$M_CLR_COUNT requires the OPER privilege.

Format

status = SYS$QIO(efn, chan,IO$_SENSEMODE | IO$M_RD_COUNT, iosb, astadr, astprm, buffer,

address, 0, 0, 0, 0)

Arguments

p1=buffer

OpenVMS usage: vector_byte_unsigned

type: byte (unsigned)

access: write only

mechanism: by reference

Optional address of the 8-byte device characteristics buffer. The data returned is the device class (DC$_SCOM)

in the first byte, the device type (0) in the second byte, and the default buffer size (0) in the high-order word of

the first longword. The second longword is returned as 0.

p2=address

OpenVMS usage: vector_longword_unsigned

type: longword (unsigned)

access: write only

mechanism: by descriptor

Address of the descriptor for the buffer to receive the information. The information returned in the buffer is a

record that consists of eleven longwords. The data in the record is returned in the order below. Each value is a

longword.

1 Number of seconds since last zeroed

2 Number of IP datagrams transmitted

3 Number of IP datagrams fragmented

4 Number of IP datagrams forwarded (if gateway capability is enabled)

IPDRIVER Services

116

5 Number of ICMP messages transmitted

6 Number of IP datagrams and fragments received

7 Number of IP fragments received

8 Number of ICMP messages received

9 Number of datagrams delivered to receivers

10 Number of IGMP messages transmitted

11 Number of IGMP messages received

Status

SS$_BUFFEROVF Buffer too small for all characteristics

Truncated characteristics buffer returned

SS$_NOPRIV Insufficient privilege

OPER privilege required to zero counters

The byte count for the counters buffer is returned in the high-order word of the first longword of the I/O status

block. This is the actual number of bytes received, which may be less than what was requested.

IPDRIVER Services

117

IO$_SETMODE | IO$M_CTRL
Sets the port characteristics.

Format

status = SYS$QIO(efn, chan,IO$_SETMODE | IO$M_CTRL, iosb, astadr, astprm, 0, address, 0, 0, 0, 0)

Argument

p2=address

OpenVMS usage: vector_word_unsigned

type: word (unsigned)

access: read only

mechanism: by descriptor

IO$_SETMODE | IO$M_CTRL sets the port characteristics in the extended characteristics buffer. The buffer

consists of a series of six-byte or counted string entries. The first word of each entry contains the parameter

identifier (PID) of a characteristic, followed by either a longword that contains the value for that characteristic

or a counted string. Counted strings consist of a word with the size of the character string followed by the

character string.

The address argument is the address of the descriptor for the extended characteristics buffer. Figure 5-3 shows

the format of the descriptor for the extended characteristics buffer and the extended characteristics buffer.

Figure 5-3 P2 Set Characteristics Buffer

IPDRIVER Services

118

Table 5-6 lists the port characteristics you can set.

Table 5-6 P2 Set Port Characteristics

PID Meaning

13 IP options. Counted string. Internet Protocol options to be included in datagrams to be

transmitted.

14 IP TTL. Longword. Low byte of the longword contains the time-to-live (TTL) to be

used in datagrams to be transmitted.

15 IP TOS. Longword. Low byte of the longword contains the type of service (TOS) to

be used in datagrams to be transmitted.

16 Join multicast group. Counted string of eight bytes. First longword contains the

multicast group IP address to join. Last longword contains the IP address of the local

interface on which to join the group (if 0, the default interface is used).

17 Leave multicast group. (See the previous PID.)

18 Multicast Interface. Longword. IP address of the local interface to use in sending

multicast datagrams. If 0, the default interface is used.

19 Multicast TTL. Longword. Low byte contains the time-to-live (TTL) to be used in

multicast datagrams to be transmitted.

20 Multicast loopback. Longword. Low byte is 0 to disable and 1 to enable local

loopback of multicast datagrams.

Note! The above parameters remain set even after you close the port until you change them with another

IO$_SETMODE operation

Status.

SS$_BADPARAM Specified bad parameter or parameter value

Returns PID in low order word of second longword

SS$_DEVACTIVE Port is open, and you made request to change parameter that cannot

be changed when port is open

SS$_DEVINACT Device is not active

Contact your system manager to determine why TCPware (or

IPDRIVER) was not started

SS$_DUPINIT Multicast group address already joined

IPDRIVER Services

119

SS$_INSFMEM Insufficient memory to complete request

SS$_IVBUFLEN Extended characteristics buffer length invalid

SS$_NOPRIV Setting IP layer options (PIDs 13 through 20) requires privileges

Application must either be running under SYSTEM UIC or have

SYSPRV, BYPASS, or OPER privilege

SS$_NORMAL Success

Characteristics set

SS$_TOOMUCHDATA Too many multicast group addresses specified

SS$_UNREACHABLE No default interface for multicast group address could not be found

Specify local interface’s IP address when joining multicast group

IPDRIVER Services

120

IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN
Closes a port.

Closing a port aborts all pending receives for the port, prevents further receives and transmissions on the port,

and lets another user use the protocol number.

Format

status = SYS$QIO(efn, chan,IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN,iosb, astadr, astprm,

0, 0, 0, 0, 0, 0)

Arguments

None.

Status

SS$_DEVINACT Device not active

Contact your system manager to determine why TCPware (or

IPDRIVER) was not started

SS$_NORMAL Success

Port now (or was) closed

Port can no longer receive any datagrams; however, datagrams can still

be sent

SS$_NOPRIV Insufficient privileges

BYPASS or SYSPRV privilege required to open port

IPDRIVER Services

121

IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP
Opens a port. Opening a port lets you receive internet datagrams.

Requires BYPASS or SYSPRV privileges.

Format

status = SYS$QIO(efn, chan,IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP, iosb, astadr, astprm, 0,

0, protocol, num, 0, 0)

Arguments

p3=protocol

Internet protocol number in the low byte. Datagrams are transmitted using this protocol number, and you can

only receive datagrams with it.

See the latest Assigned Numbers RFC for a list of the currently assigned protocol numbers.

p4=num

OpenVMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

Number of unsolicited receives to be queued for delivery. A value of 0 to 5 is valid. 0 results in all unsolicited

receives being discarded.

Status

SS$_DEVACTIVE Port already open

SS$_DEVINACT Device not active

Contact your system manager to determine why TCPware was not

started

SS$_DUPUNIT Specified port number already in use by another port

SS$_NOPRIV Insufficient privileges

You need BYPASS or SYSPRV privilege to open port

IPDRIVER Services

122

SS$NORMAL Success

Port open and write and read functions can be used to transmit or receive

datagrams

IPDRIVER Services

123

IO$_WRITEVBLK
Sends data. This builds and transmits the datagram using the protocol number for the port.

The IO$M_NOFORMAT modifier prevents fragmentation. This sets the "don’t fragment" bit in the IP

datagram.

The IO$M_FORCEPATH modifier prevents routing on the datagram. This limits the datagram to be sent to a

locally connected address.

The IO$M_LPBEXT modifier inhibits a copy of a broadcast or multicast datagram from being looped back.

Format

status = SYS$QIO(efn, chan,IO$_WRITEVBLK,iosb, astadr, astprm, buffer, size, address, dest, source, 0)

Arguments

p1=buffer

OpenVMS usage: vector_byte_unsigned

type: byte (unsigned)

access: read only

mechanism: by reference

User’s buffer address. This is the buffer that contains the data to be sent. The buffer does not include the

internet header.

p2=size

OpenVMS Usage: word_unsigned

type: word (unsigned)

access: read only

mechanism: by value

User’s buffer size in bytes (the byte count). This is the amount of data that the user has to send. The value

should not be greater than 65000 bytes.

If the resulting datagram is larger than the maximum transmission unit (MTU) for the network, the datagram is

fragmented, unless you specified IO$M_NOFORMAT. In that case, IO$_WRITEVBLK returns an error.

IPDRIVER Services

124

p3=address

OpenVMS usage: vector_word_unsigned

type: word (unsigned)

access: read only

mechanism: by descriptor

Address of the descriptor for the optional transmit characteristics buffer.

The transmit characteristics buffer consists of a series of 6-byte and counted string entries. The first word of

each entry contains the parameter identifier (PID) followed either by a longword or by a counted string.

The PID determines whether a longword value or counted string follows. The longword contains one of the

values that can be associated with that parameter. The counted string consists of a word byte count field

followed by the specified number of bytes of data.

Figure 5-4 shows the format of the descriptor for the extended characteristics buffer and the extended

characteristics buffer.

Table 5-7 lists the characteristics you can specify.

Figure 5-4 P3 Transmit Characteristics Buffer

IPDRIVER Services

125

Table 5-7 P3 Transmit Characteristics

PID Meaning

1 Type of service. Low-order byte of the longword value. Contains the type of service.

If omitted, the previously specified value or the default of 0 is used.

2 Time to live. Low-order byte of the longword value field. Contains the time to live. If

not specified, the previously specified value of the default is used. The default time to

live is specified by the IPDEFAULTTTL parameter for non-multicast datagrams and is

1 for multicast datagrams.

3 Identification. Low-order word of the longword value field. Contains the

identification number. IPDRIVER automatically increments this value for each

transmission (the initial value starts at 0).

4 Options. Counted string. Contains the internet options buffer. This buffer is used as is

and is not validated. The maximum size of this counted string is 40 bytes. Note that if

the options are not a multiple of 4 bytes, IPDRIVER adds the required padding (using

the End of Option List option).

5 Protocol. Lowest-order byte of the longword value field. Contains the IP protocol

number to be used in sending the datagram. Can be used to override the protocol under

which this unit was opened.

See the specifications for the Internet Protocol (RFC 791) for details on each of the internet header items

described above.

p4=dest

OpenVMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

Destination internet address. Internet addresses are specified in internet byte order (which is reversed from the

normal VAX byte order). For example, internet address 2.3.4.5 is stored as ^X05040302. If the destination

internet address is the loopback internet address, IPDRIVER loops-back the datagram.

IPDRIVER Services

126

p5=source

OpenVMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

Optional source internet address. Must be a valid local internet address (if specified). Internet addresses are

specified in internet byte order (which is reversed from the normal VAX byte order). For example, internet

address 2.3.4.5 is stored as ^X05040302.

Status

SS$_BADPARAM Bad parameter or parameter value specified

PID returned in low order word of second longword

If parameter ID is 0, source internet address is not valid (it is not

local address)

SS$_DEVINACT Device not active

Contact your system manager to determine why TCPware (or

IPDRIVER) was not started

SS$_INSFMEM Insufficient memory available to fragment datagram

SS$_INVSECLASS Basic Security Option label incompatible with outgoing IPSO

settings

SS$_IVBUFLEN User’s buffer too large

SS$_NORMAL Success

Datagram transmitted

Failure of translation is not considered an error because datagram

would most likely be retransmitted by higher level software at a later

time

Also allows some time for ARP reply to be received

SS$_OPINCOMPL Datagram not transmitted because no destination internet address or

port number was specified by source/destination bugger or port’s

characteristics

SS$_THIRDPARTY TCPware shut down

IPDRIVER Services

127

SS$_UNREACHABLE No route to the destination internet address exists

Add route for destination or check internet address

The number of data bytes transmitted are returned in the high-order word of the first longword of the I/O status

block.

IPDRIVER Services

128

SYS$ASSIGN
Assigns a channel to a device.

Format

status = SYS$ASSIGN (devnam, chan, [acmode], [mbxnam])

Arguments

devnam

OpenVMS usage: device_name

type: character_coded text string

access: read only

mechanism: by descriptor-fixed length string descriptor

Address of a character string descriptor pointing to the device name string (IPA0:).

chan

OpenVMS usage: channel

type: word (unsigned)

access: write only

mechanism: by reference

Address of a word into which SYS$ASSIGN writes the channel number.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)

access: read only

mechanism: by value

IPDRIVER Services

129

Optional access mode associated with the channel. The most privileged access mode used is that of the caller.

mbxnam

OpenVMS usage: device_name

type: character-coded text string

access: read only

mechanism: by descriptor-fixed length string descriptor

Optional logical mailbox associated with the device. (Not supported by IPDRIVER)

Status

See HP’sVMS System Services Reference Manual for a complete list of status messages.

IPDRIVER Services

130

SYS$CANCEL
Cancels any I/O that is pending on a channel.

The I/O will be completed with an iosb status of SS$_CANCEL.

Outstanding I/O operations are automatically canceled at image exit.

Format

status = SYS$CANCEL (chan)

Argument

chan

OpenVMS usage: channel

type: word (unsigned)

access: read only

mechanism: by value

Number of the channel to be canceled.

Status

See HP’s VMS System Services Reference Manual for a complete list of status messages.

IPDRIVER Services

131

SYS$DASSGN
Releases a channel.

When you deassign a channel, any outstanding I/O is completed with an iosb status of SS$_CANCEL.

I/O channels are automatically deassigned at image exit.

Format

status = SYS$DASSGN (chan)

Argument

chan

OpenVMS usage: channel

type: word (unsigned)

access: read only

mechanism: by value

Number of the channel to be deassigned.

Status

See HP VMS System Services Reference Manual for a complete list of status messages.

IPDRIVER External Interface

This section describes the IPDRIVER External Interface.

This interface allows you to write Network Interface Programs that support the use of IPDRIVER with various

network controllers.

IPDRIVER Services

132

I/O Functions for the External Interface

The Network Interface Program uses four functions to communicate with IPDRIVER. Table 5-8 lists these

functions.

Table 5-8 I/O Functions for the External Interface

Function Purpose

IO$_INITIALIZE Initializes the IPDRIVER External Interface for the

network device. (Informs IPDRIVER that the External

Interface is on-line.)

IO$_READVBLK Receives datagrams from IPDRIVER for transmission over

the network.

IO$_SETMODE | IO$M_CTRL

| IO$M_SHUTDOWN

Shuts down the IPDRIVER External interface.

IO$_WRITEVBLK Delivers datagrams that are received from the network to

IPDRIVER. IPDRIVER processes and delivers them to

higher-level applications (such as TCP and UDP).

Sequence of Operations for the Network Interface Program

This section provides the typical sequence of operations for the Network Interface Program. These operations

apply only to the IPDRIVER External Interface. Any operations needed to set up and use the network device

depend on the specific requirements of that device.

The Network Interface Program:

1 Uses the Assign I/O Channel (SYS$ASSIGN) system service to assign an I/O channel to IPA0:.

SYS$ASSIGN creates a new unit for the channel.

2 Issues the IO$_INITIALIZE function on the assigned channel to initialize the network line.

3 Issues the IO$_READVBLK function to read IP datagrams from IPDRIVER, then sends the datagrams over

the network device.

4 Issues the IO$_WRITEVBLK function for each datagram received from the network device.

5 Issues the IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN function to shut down the network device.

6 Uses the Deassign I/O Channel (SYS$DASSGN) system service to deassign the channel.

Your Network Interface programs must provide their own means of starting up and shutting down. You cannot

use the NETCU START/IP and STOP/IP commands to start up or shut down these network lines.

IPDRIVER External Interface System Service Call Codes

The following pages describe each SYS$QIO[W] function code for the external interface. System service call

function codes specify what action the QIO performs. See the format specified in the IPDRIVER System

Service Call Format section before referencing each function.

You can use OpenVMS system services SYS$ASSIGN, SYS$DASSGN, and SYS$CANCEL for the External

IPDRIVER Services

133

Interface in the same way as described for the User Interface in the IPDRIVER User Interface System Service

Call Function Co section.

This section describes the following function codes for the External Interface:

IO$_INITIALIZE IO$_SETMODE IO$_READVBLK IO$_WRITEVBLK

IPDRIVER Services

134

IO$_INITIALIZE (External)
Informs IPDRIVER that the External Interface is on-line. IPDRIVER adds the External Interface to a list of

existing network interfaces and creates a route for it.

Note! Once a Network Interface program issues an IO$_INITIALIZE on a channel, that channel becomes the

External Interface. After that, the functions documented in the IPDRIVER User Interface System Service Call

Function Co section for the User Interface (such as those used to open and close ports) are no longer valid:

you must use only those functions documented in this part of the chapter, theIPDRIVER External Interface

section.

Format

status = SYS$QIO(efn, chan,IO$_INITIALIZE,iosb, astadr, astprm, buffer, size, 0, 0, 0, 0)

Arguments

p1=buffer

OpenVMS usage: vector_byte_unsigned

type: byte (unsigned)

access: read only

mechanism: by reference

Address of the line information buffer. Figure 5-5 illustrates this buffer.

Figure 5-5 Line Information Buffer for IO$_INITIALIZE

In the figure:

address

mask

is the address mask for the network. The bits set in the mask are the bits that specify

the host number (the one’s complement of the network mask).

IPDRIVER Services

135

flags is the line’s flag bits. Typically, this value is 0, but the following bits can be set as

needed:

internet

address

is the internet address of the host on the network or, for unnumbered interfaces, the

internet address used as the source address when sending datagrams over the

interface if a source address was not explicitly specified.

lineid is the line identification. Its value should be 00nnxx41 (hex), where:

nn is the unit number of the line.

xx is a unique value for the specific network line. SLIP lines are 01. IP-over-DECnet

lines are 02. PPP lines are 03. For Network Interface Programs, nn should start at 80

(hex) and a

mtu is the maximum transmission unit for the network. It is the size of the largest IP

datagram that can be transmitted over the network.

Bit Mask Meaning

0 1 Unnumbered interface. If this bit is set, the interface does not have a local

address and the internet address specified is only used when originating

datagrams over the interface when no source address was explicitly specified.

p2=size

OpenVMS usage: word_unsigned

type: word (unsigned)

access: read only

mechanism: by value

Size of the line information buffer, in bytes.

IPDRIVER Services

136

Status

SS$_NORMAL Initialization successful

SS$_BADPARAM lineid parameter does not contain valid value, or already in use

Lowest order byte must be 41 (hex) for External Interface

SS$_DEVACTIVE Device already active

SS$_DEVREQERR You are trying to start up new interface while IPDRIVER is in process

of shutting down

SS$INSFMEM Insufficient system memory

Necessary control block cannot be allocated

SS$_IVADDR Address already in use

SS$_NOPRIV Insufficient privileges

You need OPER privilege to start network interface

IPDRIVER Services

137

IO$_READVBLK (External)
Requests IPDRIVER to return the next IP datagram to the Network Interface program. The Network Interface

program should then send the datagram over the network.

The Network Interface program is responsible for adding the network header to the datagram.

IPDRIVER provides "unsolicited" read support. This means that datagrams are held in a queue until the

Network Interface Program issues an IO$_READVBLK function. IPDRIVER queues up to 100 datagrams.

Format

status = SYS$QIO(efn, chan, IO$_READVBLK,iosb, astadr, astprm, buffer, size, 0, 0, 0, 0)

Arguments

p1=buffer

OpenVMS usage: vector_byte_unsigned

type: byte (unsigned)

access: write only

mechanism: by reference

Address of the buffer that receives the next IP datagram.

p2=size

OpenVMS usage: word_unsigned

type: word (unsigned)

access: read only

mechanism: by value

Size, in bytes, of the buffer. This buffer must be at least as large as the MTU of the interface and not greater

than 65000 bytes. Otherwise, IPDRIVER might return a SS$_DATAOVERUN status code.

Status

SS$_NORMAL Read successful

In I/O status block, high order word of first longword contains size of

IP datagram in bytes

IPDRIVER Services

138

SS$_ABORT Requests aborted

External Interface is down

SS$_DATAOVERUN Receive buffer in Network Interface Program too small for IP

datagram

Truncated datagram returned to user-specified buffer

In I/O status block high order word of first longword contains

truncated size of IP datagram in bytes

SS$DEVINACT Device not active

Use IO$_INITIALIZE function first

The high-order word of the first longword contains the size of the IP datagram read.

The second longword of the I/O status block contains the internet address of the next destination. The next

destination can be the final destination or a gateway. This longword is valid only for the SS$_NORMAL and

SS$_DATAOVERUN status codes.

IPDRIVER Services

139

IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN (External)
Shuts down the External Interface for the channel.

Causes IPDRIVER to remove the network interface from the list of available interfaces. It also removes any

routes for the network interface.

Format

status = SYS$QIO(efn, chan,IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN,iosb, astadr, astprm,

0, 0, 0, 0, 0, 0)

Arguments

None.

Status

SS$_Normal Success

IPDRIVER Services

140

IO$_WRITEVBLK (External)
Used after the Network Interface program receives a datagram from the network. Delivers the datagram to

IPDRIVER for processing.

Format

status = SYS$QIO(efn, chan,IO$_WRITEVBLK,iosb, astadr, astprm, buffer, size, 0, flags, 0, 0)

Arguments

p1=buffer

OpenVMS usage: vector_byte_unsigned

type: word (unsigned)

access: read only

mechanism: by value

Address of the buffer containing the full IP datagram.

p2=size

OpenVMS usage: word_unsigned

type: word (unsigned)

access: read only

mechanism: by value

Size of the IP datagram in bytes. The value should not be greater than 65000 bytes.

Note! The buffer specified by these parameters must not include the network header.

p4=flags

OpenVMS usage: mask_longword

type: longword (unsigned)

access: read only

IPDRIVER Services

141

mechanism: by value

Flag bits providing information about the received datagram as follows:

Bit Mask Meaning

0 1 Datagram was sent to a broadcast/multicast address. This information is used to

prevent sending ICMP datagrams to broadcast/multicast addresses. All other

bits must be 0.

Status

SS$_NORMAL Write successful

SS$_ABORT Request aborted

External Interface shut down

SS$_DEVINACT Device not active

Use IO$_INITIALIZE function first

INETDRIVER Services

142

Chapter 6 INETDRIVER Services

Introduction

This chapter describes the internet device driver (INETDRIVER) services.

The INETDRIVER services provide an asynchronous I/O implementation of the UNIX socket calls within the

OpenVMS Queue I/O Request (SYS$QIO and SYS$QIOW) system services. These system services allow for

efficient socket operations in that Asynchronous System Trap (AST) routines can be associated with I/O

requests.

The INETDRIVER services provide the Stanford Research Institute (SRI) QIO interface. The interface is an

international de facto standard that provides a one-to-one mapping between the UNIX socket functions and the

OpenVMS SYS$QIO system services.

INETDRIVER interfaces directly with the TCP, UDP, and IP (for raw functions) protocols in the transport

layers. It does not replace the TCPDRIVER or UDPDRIVER services, but provides another way to

communicate with them.

For details, see the TCPDRIVER Services and UDPDRIVER Services chapters.

INETDRIVER supports QIOs to:

• Create a stream, datagram, or raw socket

• Bind a socket to a local port or address

• Set a socket to listen mode

• Accept a connection

• Create a connection

• Send and receive data

• Perform other socket and control functions

Note! The TCPware for OpenVMS INETDRIVER supports stream, datagram, and raw sockets, but only for the

AF_INET address family.

Sequence of Operations

The INETDRIVER sequences of operations are divided into client operations and server operations. Each have

distinct steps, as outlined in the following sections.

Client Operations

The INETDRIVER client operations for a stream socket connection are as follows:

1 Assign an INET channel to the INET0: device using the SYS$ASSIGN system service. This creates a new

INET device unit and assigns a channel to it.

INETDRIVER Services

143

2 Create a stream socket using the SYS$QIO[W] system service with the IO$_SOCKET function.

3 If you want to assign a particular address to an unnamed socket, use the SYS$QIO[W] IO$_BIND function.

This is optional and not necessary under most circumstances.

4 Connect to a peer on the server using the SYS$QIO[W] IO$_CONNECT function. Specify the server's

internet address any "well-known" port number.

5 Exchange data with the peer using the SYS$QIO[W] IO$_SEND and SYS$QIO[W] IO$_RECEIVE

functions.

6 After the data exchange is complete, deassign the channel using the SYS$DASSGN system service.

Figure 6-1 shows the client operation steps.

Figure 6-1 Client Operation Steps

Server Operations

The INETDRIVER server operations for a simple, single-thread stream socket connection are as follows:

1 Assign an INET listen channel to the INET0: device using the SYS$ASSIGN system service. This creates a

new INET device unit and assigns a channel to it.

2 Create a stream socket using the SYS$QIO[W] IO$_SOCKET function.

3 Bind the socket to the server's "well-known" port number using the SYS$QIO[W] IO$_BIND function.

4 Enable listens and set up the listen queue length using the SYS$QIO[W] IO$_LISTEN function.

5 Assign an INET accept channel to the INET0: device using the SYS$ASSIGN system service again.

6 Accept incoming connect requests using the SYS$QIO[W] IO$_ACCEPT function on the accept channel,

specifying the listen channel as a parameter. Then wait for the client to connect.

7 Exchange data with the client on the accept channel using the SYS$QIO[W] IO$_SEND and SYS$QIO[W]

IO$_RECEIVE functions.

8 After the data exchange is complete, deassign the accept channel using the SYS$DASSGN system service.

This closes the connection.

Repeat steps 5 through 8 to process additional server connections. Figure 6-2 shows the server operations steps.

INETDRIVER Services

144

Figure 6-2 Server Operation Steps

Multicasting
INETDRIVER Services includes the following setsockopt and getsockopt definitions at the IPPROTO_IP

level for multicasting support:

#define IP_MULTICAST_IF 2

#define IP_MULTICAST_TTL 3

#define IP_MULTICAST_LOOP 4

#define IP_ADD_MEMBERSHIP 5

#define IP_DROP_MEMBERSHIP 6

The IP_ADD_MEMBERSHIP and IP_DROP_MEMBERSHIP requests use the following structure:

struct ip_mreq {

 struct in_addr imr_multiaddr; /* Multicast address of group */

 struct in_addr imr_intrface; /* local IP address of interface */

};

Other Operations

In addition to the routines associated with the sequence of operations above, INETDRIVER also includes other

operations that:

• Set socket options (IO$_SETSOCKOPT)

• Get socket options (IO$_GETSOCKOPT)

• Shut down sockets (IO$_SHUTDOWN)

• Get socket names (IO$_GETSOCKNAME)

• Change the INET device characteristics (IO$_SETCHAR)

• Get the address of the remote end for a socket (IO$_GETPEERNAME)

INETDRIVER Services

145

• Change socket characteristics (IO$_IOCTL)

• Deliver an AST to the process if out-of-band data arrives (IO$_SETMODE | IO$_ATTNAST)

INETDRIVER Socket Library

The Socket Library routines described in the Socket Library chapter make use of the TCPDRIVER and

UDPDRIVER programming interface. An alternate set of socket routines is available that makes use of the

INETDRIVER programming interface and allows a mix of socket routines and INETDRIVER QIO calls. This

alternate set of socket routines is presently only available in the TCPWARE:SOCKLIB.OLB socket library (the

routines are not part of the TCPWARE_SOCKLIB_SHR.EXE shareable run-time library). The following

routines are available:

inet_socket inet_socket_recv inet_sendto inet_socket_ioctl

inet_bind inet_recv inet_shutdown inet_getsockname

inet_connect inet_recvfrom inet_socket_close inet_getpeername

inet_listen inet_socket_write inet_setsockopt inet_socket_perror

inet_accept inet_socket_send inet_getsockopt inet_tcpware_server

inet_socket_read inet_send

The socket number (descriptor) used by these routines is the VMS I/O channel of the INETDRIVER device

being used. This allows for the mixing of these routines and direct QIOs to the driver.

INETDRIVER System Service Call Format

The format for the INETDRIVER SYS$QIO system service call is as follows:

status= SYS$QIO[W](efn, chan, func, iosb, astadr, astprm, p1, p2, p3, p4, p5, p6)

The TCPWARE_INCLUDE:INETIODEF.H file provides definitions for the QIO function codes.

Note! The E-prefix status codes (such as ECONNRESET) listed under the STATUS headings are returned in the I/O

status block (iosb) and are not the UNIX errno values. As described in I/O Status Block Fields under the

iosb argument, the values returned for these codes are the UNIX errno values multiplied by 8 and logically

ORed with 0x8000.

The TCPware Socket Library Runtime Library (RTL) contains the message pointer to the

SYS$MESSAGE:TCPWARE_MSG.EXE file. The RTL also contains definitions for the status values. These
are the UNIX errno names prefixed by TCPWARE$_ (for example, TCPWARE$_ECONNRESET).

Note! The vertical bar (|) used in some of the functions described in this chapter is the C bitwise inclusive OR

operator.

INETDRIVER Services

146

INETDRIVER System Service Call Arguments

You invoke UDPDRIVER system service calls with the standard OpenVMS QIO mechanism.

See the appropriate OpenVMS documentation (for example, the Introduction to VMS System Services volume)

for details on the QIO mechanism.

The following sections describe each system call argument.

efn

OpenVMS usage: ef_number

type: longword (unsigned)

access: read only

mechanism: by value

(Optional) Number of the event flag to be set when the I/O operation completes.

chan

OpenVMS usage: channel

type: word (unsigned)

access: read only

mechanism: by value

I/O channel assigned to the INET device to which the request is directed.

func

OpenVMS usage: function_code

type: word (unsigned)

access: read only

mechanism: by value

INETDRIVER Services

147

Device-specific function codes and modifiers for each operation.

Note! Error! Reference source not found. describes each function code in detail.

iosb

OpenVMS usage: io_status_block

type: quadword (unsigned)

access: write only

mechanism: by reference

I/O status block that receives the final completion status of the I/O operation, structured as in Figure 6-3.

Figure 6-3 I/O Status Block

Table 6-1 describes the status block fields in more detail.-

Table 6-1 I/O Status Block Fields

Field Name Description

Transfer

Byte Count

Number of bytes of data transferred in the I/O operation.

Status Code SS$ status code or special error status code. If the low bit (0) of the OpenVMS

error code is clear, the network has returned an error.

If the most significant bit of this word is set (mask of 0x8000), the status code is

the UNIX errno code multiplied by 8 and logically ORed with 0x8000.

Function-

Specific

Varies for each device and function code.

INETDRIVER Services

148

astadr

OpenVMS usage: ast_procedure

type: procedure entry mask

access: call without stack

unwinding

mechanism: by reference

Asynchronous system trap (AST) routine to be executed when the I/O is completed.

astprm

OpenVMS usage: user_arg

type: longword (unsigned)

access: read only

mechanism: by value

AST parameter to be passed to the AST routine.

p1 to p6

OpenVMS usage: varying_arg

type: longword (unsigned)

access: read only or write only

mechanism: by reference or by value

Function-specific parameters, as described for each function.

INETDRIVER System Service Call Function Codes

System service call function codes specify what action the QIO performs.

INETDRIVER Services

149

IO$_ACCEPT
Waits for a connection to a listening socket and associates a OpenVMS channel to the socket for that new

connection. The connection's socket has the same properties as the listening socket.

If no pending connections exist on the queue and the socket is not marked as nonblocking, IO$_ACCEPT

blocks the caller until a connection is made to the listening socket. If the socket is marked as nonblocking and

no pending connections exist on the queue, IO$_ACCEPT returns an EWOULDBLOCK error.

Multiple IO$_ACCEPT requests are supported on a single channel.

See IO$_ACCEPT_WAIT for an alternative to IO$_ACCEPT.

Format

status = SYS$QIO (efn, new-inet-chan, IO$_ACCEPT, iosb, astadr, astprm, address, addrlen, inet-chan,

0, 0, 0)

Arguments

chan=new-inet-chan

OpenVMS usage: channel

type: word (unsigned)

access: read only

mechanism: by value

OpenVMS channel to a newly-created INET: device. This channel should be created by using SYS$ASSIGN to

assign a new channel to INET0: prior to issuing the IO$_ACCEPT function. The accepted connection uses this

channel.

p1=address

OpenVMS usage: special_structure

type: structure defined below

access: write only

mechanism: by reference

Optional pointer to a structure that receives the peer's address for the connection following completion of the

IO$_ACCEPT function. The structure is defined as follows:

INETDRIVER Services

150

struct {

 unsigned long Length;

 struct sockaddr_in Address;

}

p2=addrlen

OpenVMS usage: word_unsigned

type: word (unsigned)

access: read only

mechanism: by value

Length (in bytes) of the buffer to which the address argument points. The value must be at least 20 bytes.

p3=inet-chan

OpenVMS usage: channel

type: word (unsigned)

access: read only

mechanism: by value

OpenVMS channel for the INET: device on which the IO$_LISTEN was performed. After accepting the

connection, this device remains available to accept additional connections.

Status

EALREADY Operation is already in progress or the socket is in use (e.g. an

IO$_ACCEPT is active on the channel).

ECONNABORTED Listening channel was shut down or aborted.

EINVAL Operation is not valid (for a nonstream socket), or an invalid inet-chan

or addrlen argument was specified.

ENETDOWN Network was shut down.

ENOTSOCK No socket exists on the listening channel.

INETDRIVER Services

151

EOPNOTSUPP Socket is not of type SOCK_STREAM.

EWOULDBLOCK Connection is marked as nonblocking and no connection is waiting to

be accepted.

SS$_IVCHAN Invalid listening channel number was specified.

SS$_THIRDPARTY Network is being shut down.

INETDRIVER Services

152

IO$_ACCEPT_WAIT
Waits for an incoming connection on a listening socket without accepting the connection. When the

IO$_ACCEPT_WAIT is complete, a connection is available for accepting; IO$_ACCEPT is then used to accept

it.

Multiple IO$_ACCEPT_WAIT requests are supported on a single channel.

IO$_ACCEPT_WAIT is useful to avoid holding an additional INET channel while waiting to service a

connection.

Format

status=SYS$QIO(efn,inet-chan, IO$_ACCEPT_WAIT, iosb, astadr, astprm, 0, 0, 0, 0, 0, 0)

Argument

chan=inet-chan

OpenVMS usage: channel

type: word (unsigned)

access: read only

mechanism: by value

OpenVMS channel to the INET: device on which the IO$_LISTEN was performed.

Status

ECONNABORTED Listening channel was shut down or aborted.

EINVAL Operation is not valid (for a nonstream socket), or an invalid inet-chan

or addrlen argument was specified.

ENETDOWN Network was shut down.

ENOTSOCK No socket exists on the listening channel.

EOPNOTSUPP Socket is not of type SOCK_STREAM.

EWOULDBLOCK Connection is marked as nonblocking and no connection can be

accepted.

SS$_THIRDPARTY Network is being shut down.

INETDRIVER Services

153

IO$_BIND
Assigns an address to an unbound socket. When a socket is created with IO$_SOCKET, it has no assigned

address. IO$_BIND requests that the address be assigned to the socket.

Normally used by servers to bind to their "well-known" port number before issuing the IO$_LISTEN function.

Clients typically do not use this function, since IO$_CONNECT normally will assign an unused port number.

Note! To bind to port numbers 1 through 1023, a process must be running under a privileged UIC, or with the

SYSPRV or BYPASS privilege.

Format

status=SYS$QIO(efn, inet-chan, IO$_BIND, iosb, astadr, astprm, name, namelen,0, 0, 0, 0)

Arguments

chan=inet-chan

OpenVMS usage: channel

type: word (unsigned)

access: read only

mechanism: by value

OpenVMS channel to the INET: device on which the IO$_SOCKET was performed.

p1=name

OpenVMS usage: socket_address

type: structure sockaddr_in

access: read only

mechanism: by reference

Address to which the socket should be bound.

p2=namelen

OpenVMS usage: socket_address_length

INETDRIVER Services

154

type: longword (unsigned)

access: read only

mechanism: by value

Length of the name argument (in bytes).

Status

EACCES Specified address is not available from the local machine.

EADDRNOTAVAIL Requested address is protected; the user has no permission to have

access to it.

EADDRINUSE Specified address is already in use.

EINVAL Operation is not valid (for a nonstream socket).

ENETDOWN Network was shut down.

SS$_THIRDPARTY Network is being shut down.

INETDRIVER Services

155

IO$_CONNECT
For stream sockets, attempts a connection to a peer socket. For datagram sockets, permanently specifies the peer

to which the datagrams are to be sent or from which they are to be received.

Format

status=SYS$QIO(efn, inet-chan, IO$_CONNECT,iosb, astadr, astprm,name, namelen,0, 0, 0, 0)

Arguments

chan=inet-chan

OpenVMS usage: channel

type: word (unsigned)

access: read only

mechanism: by value

Channel to the socket.

p1=name

OpenVMS usage: socket_address

type: structure sockaddr_in

access: read only

mechanism: by reference

Address of the peer to which the socket should be bound.

p2=namelen

OpenVMS usage: socket_address_length

type: longword (unsigned)

access: read only

INETDRIVER Services

156

mechanism: by value

Length of the name argument (in bytes).

Status

EADDRNOTAVAIL Requested address is protected; the user has no permission to have

access to it.

EADDRINUSE Specified address is already in use.

EALREADY Operation is already in progress.

ECONNABORTED Operation was aborted.

ECONNREFUSED Connection was refused by the peer.

EHOSTUNREACH Host was unreachable.

EINVAL Socket has already been used for a connection, or the namelen

argument is invalid.

EISCONN Socket is already connected.

ENETDOWN Network has been shut down.

ENETUNREACH Destination network is unreachable.

EOPNOTSUPP Operation is not supported (e.g., a connect on a listening socket).

ETIMEDOUT Connection timed out.

EWOULDBLOCK Socket is marked as nonblocking; connection attempt is in progress.

SS$_THIRDPARTY Network is being shut down.

INETDRIVER Services

157

IO$_GETPEERNAME
Returns the address of the peer connected to the specified socket.

Format

status=SYS$QIO(efn,inet-chan, IO$_GETPEERNAME, iosb, astadr, astprm, address, addrlen,0, 0, 0, 0)

Arguments

chan=inet-chan

OpenVMS usage: channel

type: word (unsigned)

access: read only

mechanism: by value

Channel to the socket.

p1=address

OpenVMS usage: socket_address

type: structure sockaddr_in

access: write only

mechanism: by reference

Receives the peer's address.

p2=addrlen

OpenVMS usage: socket_address_length

type: longword (unsigned)

access: modify

mechanism: by reference

INETDRIVER Services

158

On entry, contains the byte length of the space pointed to by address. On return, it contains the byte length of

the data returned.

Status

EINVAL Invalid addrlen was specified.

ENETDOWN Network has been shut down.

ENOTCONN Socket is not connected.

SS$_THIRDPARTY Network is being shut down.

INETDRIVER Services

159

IO$_GETSOCKNAME
Returns the local address of a socket.

Format

status=SYS$QIO(efn,inet-chan, IO$_GETSOCKNAME,iosb, astadr, astprm, address, addrlen,0, 0, 0, 0)

Arguments

chan=inet-chan

OpenVMS usage: channel

type: word (unsigned)

access: read only

mechanism: by value

Channel to the socket.

p1=address

OpenVMS usage: socket_address

type: structure sockaddr_in

access: write only

mechanism: by reference

Receives the local or multicast address.

p2=addrlen

OpenVMS usage: socket_address_length

type: longword (unsigned)

access: modify

mechanism: by reference

INETDRIVER Services

160

On entry, contains the byte length of the space pointed to by address. On return, it contains the byte length of

the data returned.

Status

EINVAL addrlen argument is invalid.

ENETDOWN Network was shut down.

SS$_THIRDPARTY Network is being shut down.

INETDRIVER Services

161

IO$_GETSOCKOPT
Retrieves the value of options associated with a socket.

The TCPWARE_INCLUDE:SOCKET.H file contains definitions for the socket-level options. The

IPPROTO_IP level options defined in the TCPWARE_INCLUDE:IN.H file are not compatible with

INETDRIVER.

Format

status=SYS$QIO(efn,inet-chan, IO$_GETSOCKOPT,iosb, astadr, astprm, level, optname, optval, optlen, 0,

0)

Arguments

chan=inet-chan

OpenVMS usage: channel

type: word (unsigned)

access: read only

mechanism: by value

Channel to the socket.

p1=level

OpenVMS usage: option_level

type: longword (unsigned)

access: read only

mechanism: by value

SOL_SOCKET to change socket options, or IPPROTO_IP to change IP options (which requires system UIC,

SYSPRV, or BYPASS privilege).

p2=optname

OpenVMS usage: option_name

type: longword (unsigned)

INETDRIVER Services

162

access: read only

mechanism: by value

TCPware ignores this option where indicated. However, you should include it if you created other routines that

set this option to that you do not get an error message.

See Optnam and Optnam for the allowable values.

p3=optval

OpenVMS usage: (dependent on optname)

type: byte buffer

access: write only

mechanism: by reference

Pointer to a buffer that is to receive the current value of the option. The format of this buffer is dependent on the

option requested. Options other than SO_LINGER return a longword value. For those options that are enabled

or disabled, 0 is returned if disabled, 1 is returned if enabled.

SO_LINGER uses the following structure for the linger value:

structlinger {

 intl_onoff ;/* option on/off */

 intl_linger ;/* linger time */

};

p4=optlen

OpenVMS usage: option_length

type: longword (unsigned)

access: modify

mechanism: by reference

On entry, contains the byte length of the space pointed to by optval. On return, contains the byte length of the

option returned.

INETDRIVER Services

163

Status

EINVAL level specified is invalid.

ENOPROTOOPT Option is unknown.

ENETDOWN Network was shut down.

SS$_THIRDPARTY Network is being shut down.

INETDRIVER Services

164

IO$_IOCTL
Manipulates socket characteristics. The TCPWARE_INCLUDE:IOCTL.H file contains definitions for the

IO$_IOCTL request codes.

Note! This function does not support operations to set network interface information.

Format

status=SYS$QIO(efn,inet-chan, IO$_IOCTL, iosb, astadr, astprm, request, argp, 0, 0, 0, 0)

Arguments

chan=inet-chan

OpenVMS usage: channel

type: word (unsigned)

access: read only

mechanism: by value

Channel to the socket.

p1=request

OpenVMS usage: ioctl_request

type: longword (unsigned)

access: read only

mechanism: by value

IO$_IOCTL function to perform. The IO$_IOCTL functions are listed in Table 6-2.

p2=argp

OpenVMS usage: arbitrary

type: byte buffer

access: read, write, or modify, depending on request

INETDRIVER Services

165

mechanism: by reference

Pointer to a buffer whose format and function depends on the request specified.

Table 6-2 Request Argument Values

Value Description

FIONBIO Sets/clears nonblocking mode

FIONREAD Returns bytes available for reading

SIOCADDRT Adds a routing entry

SIOCATMARK Returns whether the read point is at the out-of-band (TCP urgent)

mark

SIOCDARP Deletes an address resolution (ARP) entry

SIOCDELRT Deletes a routing entry

SIOCGARP Gets an address resolution (ARP) entry

SIOCGIFCONF Returns list of network interfaces

SIOCGIFADDR Returns the internet address for an interface

SIOCGIFBRDADDR Returns the broadcast address for an interface

SIOCGIFDSTADDR Returns the destination address for a point-to-point interface

SIOCGIFFLAGS Returns the flags for an interface

SIOCGIFMETRIC Returns the metric for an interface

SIOCGIFMTU Returns the minimum transmission unit for an interface

SIOCGIFNETMASK Returns the network mask for an interface

SIOCSARP Adds an address resolution (ARP) entry

Status

ENOPROTOOPT request specified is invalid.

ENETDOWN Network was shut down.

SS$_THIRDPARTY Network is being shut down.

INETDRIVER Services

166

IO$_LISTEN
Places the stream in a listen state and specifies the maximum number of incoming connections that can be

queued waiting to be accepted. This backlog must be specified before accepting a connection on a socket.

Applies to sockets of type SOCK_STREAM only.

Format

status=SYS$QIO(efn,inet-chan, IO$_LISTEN, iosb, astadr, astprm,backlog, 0, 0, 0, 0, 0)

Arguments

chan=inet-chan

OpenVMS usage: channel

type: word (unsigned)

access: read only

mechanism: by value

Channel to the socket.

p1=backlog

OpenVMS usage: connection_backlog

type: longword (unsigned)

access: read only

mechanism: by value

Maximum length of the queue of pending connections. If a connection request arrives when the queue is full,

the request is ignored. The backlog queue is limited by the TCPware BACKLOG_LIMIT parameter. If the

specified value is greater than BACKLOG_LIMIT, BACKLOG_LIMIT is used.

See the ADD SERVICE command description in Chapter 2, NETCU Commands, in the NETCU Command

Reference for details on setting the BACKLOG_LIMIT parameter.

INETDRIVER Services

167

Status

EISCONN Socket is already connected.

EOPNOTSUPP Operation is not supported (such as when the connection on a listening

socket).

ENETDOWN Network was shut down.

SS$_THIRDPARTY Network is being shut down.

INETDRIVER Services

168

IO$_RECEIVE
Receives data from a socket.

The length of the data received is returned in the second word of the I/O Status Block (iosb). A count of 0

indicates an end-of-file condition, or the connection was closed.

For SOCK_DGRAM and SOCK_RAW messages, if the message is too long to fit in the supplied buffer, excess

bytes are discarded. For SOCK_STREAM data, no bytes are discarded, even though the amount of data

processed on a request may be different than the amount sent.

If no data is available for the socket, the IO$_RECEIVE function waits for data to arrive, unless the socket is in

nonblocking mode.

Format

status=SYS$QIO(efn,inet-chan, IO$_RECEIVE,iosb, astadr, astprm, buffer, size, flags, from, fromlen, 0)

Arguments

chan=inet-chan

OpenVMS usage: channel

type: word (unsigned)

access: read only

mechanism: by value

Channel to the socket.

p1=buffer

OpenVMS usage: arbitrary

type: write buffer

access: write only

mechanism: by reference

Address of the user's buffer.

INETDRIVER Services

169

p2=size

OpenVMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

Byte size of the user's buffer. The value should not be greater than 64000 bytes. The actual number of bytes

read is returned in the iosb.

p3=flags

OpenVMS usage: mask_longword

type: longword (unsigned)

access: read only

mechanism: by value

Control information that affects the IO$_RECEIVE function and is formed by logically OR-ing one or more of

the following values:

#define MSG_OOB 0x1/*send out-of-band data*/

#define MSG_PEEK 0x2*peek at incoming message*/

#define MSG_NONBLOCKING 0x10/*override blocking state*/

#define MSG_TIME 0x100/*limit receive wait time*/

The MSG_OOB flag causes IO$_RECEIVE to read any out-of-band data arriving on the socket.

The MSG_PEEK flag causes IO$_RECEIVE to read the data present in the socket without removing the data.

This allows the caller to view the data, but leave it in the socket for future IO$_RECEIVE functions.

The MSG_NONBLOCKING flag causes IO$_RECEIVE to be a nonblocking request. An EWOULDBLOCK

status would be returned if the request cannot be completed immediately.

The MSG_TIME flag (for datagram sockets only) causes IO$_RECEIVE to complete within SO_RCVTIMEO

seconds with the ETIMEDOUT status (if no message is received). Use the IO$_SETSOCKET function to set

SO_RCVTIMEO.

p4=from

OpenVMS usage: special_structure

INETDRIVER Services

170

type: structure defined below

access: write only

mechanism: by reference

For SOCK_DGRAM and SOCK_RAW sockets, the optional from argument is a pointer to a structure that

contains the address of the socket that sent the packet following completion of the IO$_RECEIVE function. The

structure is defined as follows:

struct {

 unsigned short Length;

 struct sockaddr_inAddress;

} ;

Note! The from argument is ignored for SOCK_STREAM sockets.

p5=fromlen

OpenVMS usage: word_unsigned

type: word (unsigned)

access: read only

mechanism: by value

For SOCK_DGRAM sockets, byte length (at least 18 bytes) of the buffer pointed to by the from argument.

Note! The fromlen argument is ignored for SOCK_STREAM sockets.

Status

ECONNRESET Connection was reset by the peer.

EHOSTUNREACH Host was unreachable.

EINVAL from argument is invalid, or no out-of-band data was available.

ENETDOWN Network was shut down.

ENOTCONN Socket is not connected.

INETDRIVER Services

171

EOPNOTSUPP Out-of-band request exists on a nonstream socket.

ETIMEDOUT Connection timed out.

EWOULDBLOCK Request would block.

SS$_CANCEL Request was cancelled.

SS$_THIRDPARTY Network is being shut down.

INETDRIVER Services

172

IO$_SEND
Sends stream data (for stream sockets), messages (for datagram sockets), or raw data to a socket.

IO$_SEND blocks if no buffer space is available at the socket to hold the data to be transmitted, unless the

socket was placed in nonblocking mode. For datagram sockets, if the message is too long to pass through the

underlying protocol in a single unit, an EMSGSIZE status is returned and the message is not transmitted.

Format

status=SYS$QIO(efn,inet-chan, IO$_SEND, iosb, astadr, astprm, buffer, size, flags, to, tolen, 0)

Arguments

chan=inet-chan

OpenVMS usage: channel

type: word (unsigned)

access: read only

mechanism: by value

Channel to the socket.

p1=buffer

OpenVMS usage: arbitrary

type: write buffer

access: read only

mechanism: by reference

Address of the user's buffer.

p2=size

OpenVMS usage: longword_unsigned

type: longword (unsigned)

INETDRIVER Services

173

access: read only

mechanism: by value

Byte size of the user's buffer. The actual number of bytes sent is returned in the iosb. The value should not be

greater than 64000 bytes.

p3=flags

OpenVMS usage: mask_longword

type: longword (unsigned)

access: read only

mechanism: by value

Control information that affects the IO$_SEND function and is formed by logically ORing one or more of the

following values:

#define MSG_OOB 0x1/*send out-of-band data*/

#define MSG_NONBLOCKING 0x10/*override blocking state*/

The MSG_OOB flag causes IO$_SEND to send out-of-band data on sockets that support this operation (e.g.,

SOCK_STREAM sockets).

The MSG_NONBLOCKING flag causes IO$_SEND to be a nonblocking request. An EWOULDBLOCK status

would be returned if the request cannot be completed immediately.

Note! For stream sockets, some of the data may have been sent: the amount is returned in the second word of the

iosb.

p4=to

OpenVMS usage: socket_address

type: struct socket address

access: read only

mechanism: by reference

INETDRIVER Services

174

For datagram sockets, the optional to argument is a pointer to the address to which the packet should be

transmitted.

p5=tolen

OpenVMS usage: socket_address_length

type: longword (unsigned)

access: read only

mechanism: by value

For datagram sockets, the optional tolen argument contains the byte length of the address pointed to by the to

argument.

Note! The to and tolen arguments are ignored for SOCK_STREAM sockets.

Status

ECONNRESET Connection was reset by the peer.

EDESTADDRREQ Destination address was not specified.

EHOSTUNREACH Host was unreachable.

EINVAL to argument is invalid, or no out-of-band data was available.

EISCONN Socket is already connected.

EMSGSIZE Datagram was too large.

ENETDOWN Network was shut down.

ENETUNREACH Destination network is unreachable.

ENOTCONN Socket is not connected.

EOPNOTSUPP Out-of-band request exists on a nonstream socket.

EPIPE Connection was broken.

INETDRIVER Services

175

ETIMEDOUT Connection timed out.

EWOULDBLOCK Request would block.

SS$_THIRDPARTY Network is being shut down.

INETDRIVER Services

176

IO$_SETCHAR
Sets special device characteristics for the INET device rather than for the socket attached to it. These operations

are normally used by the TCPware master server (NETCP) process only.

Note! IO$_SETCHAR requires LOG_IO privileges.

Format

status=SYS$QIO(efn,inet-chan, IO$_SETCHAR, iosb, astadr, astprm, flags, 0, 0, 0, 0, 0)

Arguments

chan=inet-chan

OpenVMS usage: channel

type: word (unsigned)

access: read only

mechanism: by value

Channel to the socket.

p1=flags

OpenVMS usage: mask_longword

type: longword (unsigned)

access: read only

mechanism: by reference

Address of a longword bit mask of one or more of the values that appear in Table 6-3. If IO$_SETCHAR is not

called, all options are set to OFF.

Table 6-3 Flags Argument Values

Bit Description

0 If set, makes the device permanent.

If clear, makes the device temporary (default).

INETDRIVER Services

177

1 If set, makes the device shareable.

If clear, makes the device nonshareable (default).

2 If set, allow the device to be handed off. (The device is not deleted when the last channel

is deassigned, but is deleted the next time the last channel is deassigned.)

Status

SS$_NOPRIV Argument requires LOG_IO privileges.

INETDRIVER Services

178

IO$_SETMODE | IO$M_ATTNAST
Enables an AST to be delivered to the process when out-of-band (TCP urgent) data is received on the socket.

This function is similar to the UNIX 4.3BSD SIGURG signal being delivered.

This is a once-only AST. After the AST is delivered, you must explicitly re-enable it using this function if you

want the AST to be delivered when future out-of-band data is received.

Format

status=SYS$QIO(efn,inet-chan, IO$_SETMODE | IO$M_ATTNAST,iosb, astadr, astprm, routine,

parameter, acmode, 0, 0, 0)

Arguments

chan=inet-chan

OpenVMS usage: channel

type: word (unsigned)

access: read only

mechanism: by value

Channel to the socket.

p1=routine

OpenVMS usage: ast_procedure

type: procedure entry mask

access: call without stack unwinding

mechanism: by reference

Address of the AST routine to call when out-of-band data arrives on the socket. To cancel AST delivery,

specify routine as 0.

p2=parameter

OpenVMS usage: user_arg

type: longword (unsigned)

INETDRIVER Services

179

access: read only

mechanism: by value

Argument to call the AST routine.

p3=acmode

OpenVMS usage: access_mode

type: longword (unsigned)

access: read only

mechanism: by value

Access mode for the AST.

INETDRIVER Services

180

IO$_SETSOCKOPT
Manipulates options associated with a socket.

The TCPWARE_INCLUDE:SOCKET.H file contains definitions for the socket-level options. The

IPPROTO_IP level options defined in the TCPWARE_INCLUDE:IN.H file are not compatible with

INETDRIVER.

Format

status=SYS$QIO(efn, inet-chan, IO$_SETSOCKOPT,iosb, astadr, astprm, level, optname, optval, optlen, 0,

0)

Arguments

chan=inet-chan

OpenVMS usage: channel

type: word (unsigned)

access: read only

mechanism: by value

Channel to the socket.

p1=level

OpenVMS usage: option_level

type: longword (unsigned)

access: read only

mechanism: by value

SOL_SOCKET to change socket options, IPPROTO_TCP to change TCP options, or IPPROTO_IP to change IP

options (which requires a SYSTEM UIC, or the SYSPRV or BYPASS privilege).

p2=optname

OpenVMS usage: option_name

type: longword (unsigned)

INETDRIVER Services

181

access: read only

mechanism: by value

Option to be manipulated. See Table 6-4 to Table 6-6.

p3=optval

OpenVMS usage: (dependent on optname)

type: byte buffer

access: read only

mechanism: by reference

Pointer to a buffer that contains the value to which the option is to be set. The format of this buffer is dependent

on the option requested.

p4=optlen

OpenVMS usage: option_length

type: longword (unsigned)

access: read only

mechanism: by reference

Byte length of the optval buffer

Table 6-4 Optname Argument Values for SOL_SOCKET Level

SOL_SOCKET Option Description

SO_BROADCAST Enables or disables broadcasting on the socket (ignored)

SO_DEBUG Enables debugging in the protocol modules (ignored)

SO_DONTROUTE Prevents routing applied to outgoing messages (ignored)

SO_ERROR Returns current socket error (if any)

SO_KEEPALIVE Keeps connections alive

INETDRIVER Services

182

SO_LINGER Delay (in seconds) before closing a socket (ignored)

SO_OOBINLINE Leaves received out-of-band data in line

SO_REUSEADDR Allows local address reuse

SO_RCVBUF Size of the internal receive buffer

SO_RCVLOWAT (Ignored)

SO_RCVTIMEO Receive timeout time (ignored for stream sockets)

SO_SNDBUF Size of the internal send buffer

SO_SNDLOWAT (Ignored)

SO_SNDTIMEO Send timeout time (ignored for datagram sockets)

SO_TYPE Type of socket (stream or datagram)

SO_USELOOPBACK Bypasses hardware when possible (ignored)

Table 6-5 Optname Argument Values for IPPROTO_TCP Level

IPPROTO_TCP Option Description

TCP_KEEPALIVE Determines how long an idle socket should remain open

Table 6-6 Optname Argument Values for IPPROTO_IP Level

IPPROTO_IP Option Description

IP_OPTIONS (1) Gets or sets IP options to be sent in subsequent datagrams

IP_MULTICAST_IF (2) Gets or sets the interface used for sending multicast

datagrams

IP_MULTICAST_TTL (3) Gets or sets the IP time-to-live (TTL) to sent in subsequent

datagrams

IP_MULTICAST_LOOP (4) Gets or sets whether sent multicast datagrams should be

looped back locally

IP_ADD_MEMBERSHIP (5) Adds a multicast group membership for an interface

IP_DROP_MEMBERSHIP (6) Drops a multicast group membership from an interface

Status

EADDRNOTAVAIL Address not available for use.

EADDRINUSE Address already in use.

EINVAL level specified is invalid.

INETDRIVER Services

183

ENETDOWN Network was shut down.

ENOBUFS Insufficient memory for requests.

ENOPROTOOPT Option is unknown.

ETOOMANYREFS Too many multicast memberships requested.

SS$_THIRDPARTY Network is being shut down.

INETDRIVER Services

184

IO$_SHUTDOWN
Causes all or part of a full-duplex connection on a socket to be shut down. Can be used to signal an end-of-file

to the peer without closing the socket itself, which would also prevent further data from being received.

Format

status=SYS$QIO(efn, inet-chan, IO$_SHUTDOWN, iosb, astadr, astprm, how, 0, 0, 0, 0, 0)

Arguments

chan=inet-chan

OpenVMS usage: channel

type: word (unsigned)

access: read only

mechanism: by value

Channel to the socket.

p1=how

OpenVMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

Part of the full-duplex connection to shut down, as shown in Table 6-7.

Table 6-7 How Argument Values

Value Description

0 Further receive operations are not allowed

1 Further send operations are not allowed

2 Further receive and send operations are not allowed

INETDRIVER Services

185

Status

EINVAL how specified is invalid.

ENETDOWN Network was shut down.

SS$_THIRDPARTY Network is being shut down.

INETDRIVER Services

186

IO$_SOCKET
Creates the desired socket type. The three currently supported types are stream sockets (SOCK_STREAM),

datagram sockets (SOCK_DGRAM), and raw sockets (SOCK_RAW).

Note! Before issuing the IO$_SOCKET function, an INET channel must first be assigned to the INET0: device,

using SYS$ASSIGN.

Format

status=SYS$QIO(efn, inet-chan, IO$_SOCKET, iosb, astadr, astprm, AF_INET(2), type, protocol, 0, 0, 0)

Arguments

chan=inet-chan

OpenVMS usage: channel

type: word (unsigned)

access: read only

mechanism: by value

Channel to the socket.

p1=addressfam=AF_INET (2)

OpenVMS usage: address_family

type: longword (unsigned)

access: read only

mechanism: by value

Must be AF_INET (2).

p2=type

OpenVMS usage: socket_type

type: longword (unsigned)

INETDRIVER Services

187

access: read only

mechanism: by value

Semantics of communication using the created socket. The three currently supported types are:

SOCK_STREAM (for a TCP socket), SOCK_DGRAM (for a UDP socket), and SOCK_RAW (for a raw

socket).

p3=protocol

OpenVMS usage: protocol_number

type: longword (unsigned)

access: read only

mechanism: by value

For TCP and UDP sockets, the protocol argument value must be 0. For raw sockets, a non-zero protocol can be

specified.

Status

ENETDOWN Network was shut down.

EPROTONOSUPPORT Requested addressfam, type, or protocol is not supported.

SS$_THIRDPARTY Network is being shut down.

INETDRIVER Services

188

SYS$ASSIGN
Assigns a channel to a device.

Format

status = SYS$ASSIGN(devnam, inet-chan, [acmode], [mbxnam])

Arguments

devnam

OpenVMS usage: device_name

type: character coded text string

access: read only

mechanism: by descriptor – fixed length string descriptor

Address of a character string descriptor pointing to the device name string.

inet-chan

OpenVMS usage: channel

type: word (unsigned)

access: write only

mechanism: by reference

Address of a word into which SYS$ASSIGN writes the channel number.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)

access: read only

mechanism: by value

INETDRIVER Services

189

Optional access mode associated with the channel. The most privileged access mode used is that of the caller.

mbxnam

OpenVMS usage: device_name

type: character coded text string

access: read only

mechanism: by descriptor

fixed length string descriptor

Optional logical mailbox associated with the device. (Not supported by INETDRIVER.)

Status

See HP’s VMS System Services Reference Manual for a complete list of status messages.

INETDRIVER Services

190

SYS$CANCEL
Cancels any I/O that is pending on a socket.

The I/O will be completed with an iosb status of SS$CANCEL.

Outstanding I/O operations are automatically cancelled at image exit.

Format

status = SYS$CANCEL(inet-chan)

Argument

inet-chan

OpenVMS usage: channel

type: word (unsigned)

access: read only

mechanism: by value

Number of the channel to be cancelled.

Status

See HP’s VMS System Services Reference Manual for a complete list of status messages.

INETDRIVER Services

191

SYS$DASSGN
Closes a socket.

When you deassign a channel, any outstanding I/O is completed with an iosb status of SS$CANCEL.

I/O channels are automatically deassigned at image exit.

Format

status = SYS$DASSGN(inet-chan)

Argument

inet-chan

OpenVMS usage: channel

type: word (unsigned)

access: read only

mechanism: by value

Number of the channel to be deassigned.

Status

See HP’s VMS System Services Reference Manual for a complete list of status messages.

INETDRIVER Services

192

Sample Programs

The following pair of sample programs, which show the use of stream sockets with SYS$QIO system service

calls to the INETDRIVER, are included in the TCPWARE_COMMON:[TCPWARE.EXAMPLES] directory:

• INETDRIVER_CLIENT.C

• INETDRIVER_SERVER.C

They are functionally the same as the TCP_SOCKET_CLIENT.C and TCP_SOCKET_SERVER.C sample

programs.

The client calling sequence is as follows:

1 Assign a channel for the connection ($ASSIGN)

2 Create a stream socket (IO$_SOCKET)

3 Connect to the server (IO$_CONNECT)

4 Exchange data (IO$_SEND, IO$_RECEIVE)

5 Close the connection ($DASSGN)

The server calling sequence is as follows:

1 Assign a channel to listen on ($ASSIGN)

2 Create a stream socket to listen on (IO$_SOCKET)

3 Bind the socket to an address (IO$_BIND)

4 Listen for incoming connections (IO$_LISTEN)

5 Assign a channel to accept on ($ASSIGN)

6 Accept the incoming connection (IO$_ACCEPT)

7 Exchange data (IO$_SEND, IO$_RECEIVE)

8 Close the connection ($DASSGN)

To build any one of these applications using DEC C, enter:

$ CC/DECC/PREFIX=ALL filename

$ LINK filename

Ctrl/Z

To build any one of these applications using VAX C, enter:

$ CC/VAXC filename

$ LINK filename, TCPWARE:UCX$IPC/LIB, SYS$INPUT/OPTIONS-

_$ SYS$SHARE:VAXCRTL/SHARE

Ctrl/Z

FTP Library

193

Chapter 7 FTP Library

Introduction

This chapter is for application programmers. It describes the FTP-OpenVMS library routines.

The FTP-OpenVMS library routines provide a programming interface to the FTP protocol. Use the FTP-

OpenVMS library routines in your own applications to provide FTP capabilities.

The following routines are included in the library:

FTP_ACCOUNT Specifies the user account on the remote host

FTP_ALLOCATE_CCB Allocates a connection control block (CCB)

FTP_APPEND_FILE Appends a file to a remote file

FTP_AUTH Requests protected authentication.

FTP_CCC Requests that the command channel be clear text.

FTP_CHECK_FEATURES Sends the FEAT command to the FTP server and builds a

bit mask of supported FTP optional features.

FTP_CLOSE_CONNECTION Closes the connection to the remote FTP server

FTP_CREATE_DIRECTORY Creates a directory on the remote host

FTP_DEALLOCATE_CCB Deallocates a CCB

FTP_DELETE_DIRECTORY Deletes a directory on the remote host

FTP_DELETE_FILE Deletes a file on the remote host

FTP_GET_CCB Gets information from a CCB field

FTP_GET_FILE Copies a file from the remote host

FTP Library

194

FTP_GET_LIST Gets file listing on the remote host

FTP_GET_NAME_LIST Gets a filename listing on the remote host

FTP_LOGIN_USER Authorizes the user on the remote host

FTP_OPEN_CONNECTION Opens an FTP connection

FTP_PASSWORD Specifies the user password on the remote host

FTP_PBSZ Specifies the protection buffer size.

FTP_PRINT_DIRECTORY Returns the current directory on the remote host

FTP_PROT Specifies the protection level to use for transfers

FTP_PUT_FILE Copies a file to the remote host

FTP_QUOTE Sends an FTP command to the remote host

FTP_RENAME_FILE Renames a file on the remote host

FTP_SET_DIRECTORY Sets the remote directory

FTP_SET_DEBUG Sets the debugging mode

FTP_SET_PASV Sets passive mode transfers

FTP_SET_STRU Specifies the file structure

FTP_SET_TYPE Specifies the data representation type

FTP_USER Specifies the user on the remote host

These routines allow you to establish and maintain FTP connections with remote hosts that support the FTP

protocol.

The FTP-OpenVMS library routines follow the standard OpenVMS conventions for modular library routines.

See the OpenVMS documentation on calling modular libraries for more information.

Because FTP-OpenVMS library routines use asynchronous system traps (ASTs), application programs must not

run with ASTs disabled for long periods of time. Also, you should not call FTP-OpenVMS library routines at

the AST level.

The FTP-OpenVMS library routines are in the TCPWARE_FTPLIB_SHR.EXE shareable library. The symbolic

definitions for the various CCB fields and other parameters are in the TCPWARE_INCLUDE:FTPDEF.H

FTP Library

195

header file. While this file is written for C language, it is very easy to convert to other OpenVMS languages.

Building an FTP Client

The FTP Client sample program is provided in

TCPWARE_COMMON:[TCPWARE.EXAMPLES]FTPSAMPLE.C.

To build using DEC C, enter:

$ CC/DECC/PREFIX=ALL FTPSAMPLE.C

$ LINK FTPSAMPLE, SYS$INPUT/OPTIONS

 SYS$SHARE:TCPWARE_FTPLIB_SHR/SHARE

SYS$SHARE:TCPWARE_SOCKLIB_SHR/SHARE

Ctrl/Z

To build using VAX C, enter:

$ CC/VAXC/PREFIX=ALL FTPSAMPLE.C

$ LINK FTPSAMPLE, SYS$INPUT/OPTIONS

SYS$SHARE:TCPWARE_FTPLIB_SHR/SHARE

 SYS$SHARE:TCPWARE_SOCKLIB_SHR/SHARE

 SYS$SHARE:VAXCRTL.EXE/SHARE

Ctrl/Z

Connection Control Block

The connection control block (CCB) contains all the information required to establish and maintain an FTP

connection. Each open connection requires a CCB.

The storage space for the CCB is allocated dynamically. Therefore, the number of simultaneous connections is

limited only by your process resources. You can reuse a CCB. You can close one connection and open a new

one using the same CCB.

Gain access to the CCB fields using the FTP_GET_CCB library routine as described in Library Routines.

Table 7-1 lists CCB fields and their uses:

Table 7-1 CCB Fields

CCB Fields CCB Uses

FTP_CCB_DC_CHAN Channel for the FTP data connection (unsigned word)

FTP_CCB_DC_PN Port number of the data connection (unsigned word)

FTP_CCB_FEATURE_MASK Longword bit mask of server features reported by the

response to the FTP FEAT command sent by the

CHECK_FEATURES subroutine

FTP Library

196

FTP_CCB_FILENAME Name of the file causing the transfer error (character string

descriptor)

FTP_CCB_FOR_IA IP address of the remote host (unsigned longword)

FTP_CCB_FOR_PN Remote port number of the control connection (unsigned

word)

FTP_CCB_FX_TYPE Data representation type (character string descriptor with a

maximum length of 2); see theFTP_SET_TYPE routine for

the possible values

FTP_CCB_LOC_IA IP address of the local host (unsigned longword)

FTP_CCB_LOC_PN Local port number of the control connection (unsigned

word)

FTP_CCB_LOGGED_IN Login status (Boolean); true if the user is successfully

logged in on the remote host

FTP_CCB_NETCHAN Channel for the FTP control connection (unsigned word)

FTP_CCB_NODENAME Node name of the remote host (character string descriptor

with a maximum length of 128)

FTP_CCB_OPENED Connection status (Boolean); true if control connection is

successfully opened to the remote host

FTP_CCB_PASSWORD User password on the remote host (character string

descriptor with a maximum length of 64 characters)

FTP_CCB_PASV Boolean that indicates whether passive mode is enabled

(TRUE) or disabled (FALSE).

FTP_CCB_RPLCOD Server reply code (longword)

FTP_CCB_RPLLEN Length of the server reply message (longword)

FTP_CCB_RPLTXT Reply text received from the server (character string

descriptor with a maximum length of 512 characters)

FTP_CCB_STAT_BYTES Number of bytes transferred (longword)

FTP_CCB_STAT_SECONDS Seconds required for the transfer (double floating point)

FTP Library

197

FTP_CCB_STATUS Completion status (unsigned longword)

FTP_CCB_STRU File structure (character string descriptor); see the

FTP_SET_STRU routine for the possible values

FTP_CCB_USERNAME Username on the remote host (character string descriptor

with a maximum length of 64 characters)

Transferring Files

The FTP_APPEND_FILE, FTP_GET_FILE, and FTP_PUT_FILE library routines described in Library

Routines have two optional arguments: mode and record-size. These options provide finer control in

transferring OpenVMS files.

Using the mode argument causes the transfer mode set by FTP_SET_TYPE and FTP_SET_STRU to be

ignored. The lower word of the mode longword specifies the primary transfer mode. The following symbols

define the primary transfer mode:

MODE_C_ASCII Transfers the file in ASCII format

MODE_C_IMAGE Transfers the file in IMAGE mode

MODE_C_BINARY Transfers .OBJ, .STB, .BIN, and .LDA files in BINARY format

MODE_C_BLOCK Transfers STREAM, STREAM_LF, STREAM_CR and

UNDEFINED files in BLOCK mode

The higher word of the mode longword defines optional transfer modes. The following symbols define the

optional transfer modes:

MODE_M_FCC Combined with MODE_C_ASCII, transfers the ASCII file with

FORTRAN carriage control.

MODE_M_APPEND Appends the source to a destination file. (Not supported by all

servers.)

MODE_M_VARIABLE Combined with MODE_C_IMAGE, transfers an image file in

variable length recode mode, except that all records are the same

length. (Applies to local output image files only.)

MODE_M_RECORD Transfers the file using STRU R so as to communicate the record

structure during the copy. (Not supported by all servers.)

FTP Library

198

MODE_M_RESTART When transferring the file in STREAM mode performs a restart

from where the transfer stopped based upon file size. Requires

support of the feature and the CHECK_FEATURES routine to be

called beforehand.

MODE_M_VMS Transfers the file in VMS file mode.

Using MODE_M_VMS allows you to transfer any type of RMS

file between OpenVMS systems. Note that if specifying this flag,

all other flags are ignored.

Error Status Codes
To access TCPware error status codes, such as TCPWARE_REJECTED, define them in the code as follows:

globalvalue TCPWARE_REJECTED;

Then LINK with the definitions of TCPware error messages using the link option:

TCPWARE:SOCKLIB.OLB/INCLUDE=TCPWARE_MSGPTR

For example, the following code checks if the status returned by FTP_PUT_FILE is TCPWARE_REJECTED

and takes the appropriate action:

globalvalue TCPWARE_REJECTED;

...

status = FTP_PUT_FILE(...);

if (status == TCPWARE_REJECTED)

{

do something;

return status;

}

Library Routines

This section describes each of the FTP-OpenVMS library routines. Each function argument is described using

standard OpenVMS notation for procedure arguments.

All scalar and buffer arguments are passed by reference. Strings are passed by descriptor. All function

arguments must be specified, although some optional arguments may be omitted by passing a 0 (by value).

Each FTP-OpenVMS library routine returns an unsigned longword condition value in R0. The standard system

service return codes defined in the $SSDEF macro are used. Gain access to the TCPware error statuses (those

beginning with TCPWARE) by global value.

These routines are included in the TCPWARE_FTPLIB_SHR.EXE shareable library.

FTP Library

199

FTP_ACCOUNT
Specifies the user account on the remote host.

Format

FTP_ACCOUNT (ccb, account)

Arguments

ccb

OpenVMS usage: address

type: longword (unsigned)

access: read only

mechanism: by value

Identifies the CCB with the active connection.

account

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

Name of the user account on the remote host.

Description

This routine sends the FTP ACCT command to specify the name of the account on the remote host.

Condition Values Returned

SS$_NORMAL Normal successful completion

TCPWARE_NONODE Connection is not open

FTP Library

200

TCPWARE_NEEDACCT Server requires an account for login

TCPWARE_LOGINFAIL Login attempt failed

TCPWARE_CTRLERR Unexpected error processing the control connection

(the connection is closed)

FTP Library

201

FTP_ALLOCATE_CCB
Allocates a connection control block (CCB).

Format

FTP_ALLOCATE_CCB (ccb)

Argument

ccb

OpenVMS usage: address

type: longword (unsigned)

access: write only

mechanism: by reference

Returns a pointer to the new CCB.

Description

This routine allocates a new CCB, initializes the resources, and returns a pointer to it. A CCB must be allocated

before all the subsequent calls to the FTP-OpenVMS library routines.

Condition Values Returned

Any condition value returned by LIB$GET_VM and LIB$GET_EF can be returned.

Example

#include <descrip.h>

#include <ssdef.h>

#include "ftpdef.h"

main ()

{

 $DESCRIPTOR (host, "ds.internic.net");

 $DESCRIPTOR (user, "anonymous");

 $DESCRIPTOR (pswd, "your-name@your-site");

 $DESCRIPTOR (dir, "rfc");

 $DESCRIPTOR (file, "rfc-index.txt");

 long ccb, status;

 long debug = DEBUG_REPLY;

 status = SS$_NORMAL;

 ftp_allocate_ccb (&ccb);

.

.

.

 return (status);

}

FTP Library

202

FTP_APPEND_FILE
Appends a file to a remote file.

Format

FTP_APPEND_FILE (ccb, source, [destination], [mode], [record-size])

Arguments

ccb

OpenVMS usage: address

type: longword (unsigned)

access: read only

mechanism: by value

Identifies the CCB with the active and logged-in connection for the file transfer.

source

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

Source file on the local host.

destination

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

FTP Library

203

Destination file on the remote host. If omitted, the source filename and extensions are used.

mode

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by reference

Transfer mode. See the Transferring Files section for the list of available transfer mode codes.

Note! Using mode causes the transfer mode set by FTP_SET_TYPE and FTP_SET_STRU to be ignored.

record-size

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by reference

Record size of the local output file when transferring in IMAGE mode.

Description

This routine sends the APPE command to append the local file to the file on the remote host.

Condition Values Returned

SS$_NORMAL Normal successful completion

TCPWARE_NONODE Connection is not open

TCPWARE_OPENIN Error opening a file for input

TCPWARE_OPENDATA Failed to open data connection

FTP Library

204

TCPWARE_SETPORT Failed to set up data connection

TCPWARE_FILRDERR Error reading from or sending a file

TCPWARE_CTRLERR Unexpected error processing the control connection

(the connection is closed)

FTP Library

205

FTP_AUTH
Specifies the Authentication/Security mechanism to be used as per RFC 2228 and RFC 4217. Currently only

TLS is supported.

Format

FTP_AUTH(ccb, mechanism)

Arguments

ccb

OpenVMS usage: address

type: longword (unsigned)

access: read only

mechanism: by value

Identifies the CCB with the active and logged-in connection for the file transfer.

mechanism

OpenVMS usage: address

type: string

access: read only

mechanism: by descriptor

Specifies the Authentication/Security mechanism to use. Currently only ―TLS‖ is supported.

Description

This routine sends an FTP AUTH command to the FTP server. The FTP_AUTH procedure resets the data

transfer parameters to the original state as specified in the RFCs.

Condition Values Returned

SS$_NORMAL Normal successful completion

FTP Library

206

TCPWARE_CTRLERR Unexpected error processing the control connection

(the connection is closed)

TCPWARE_IVREQUEST Invalid request

TCPWARE_REQFAIL Request failed.

FTP Library

207

FTP_CCC
Specifies that the command channel return to clear text transmission.

Format

FTP_CCC(ccb)

Arguments

ccb

OpenVMS usage: address

type: longword (unsigned)

access: read only

mechanism: by value

Identifies the CCB with the active and logged-in connection for the file transfer.

Description

This routine sends an FTP CCC command to the FTP server.

Condition Values Returned

SS$_NORMAL Normal successful completion

TCPWARE_NONODE Connection is not open

FTP Library

208

FTP_CHECK_FEATURES
Sends the FEAT command to the server and builds the bit mask of supported features.

Format

FTP_CHECK_FEATURES(CCB)

Arguments

ccb

OpenVMS usage: address

type: longword (unsigned)

access: read only

mechanism: by value

Identifies the CCB with the active and logged-in connection for the file transfer.

Description

This routine sends an FTP FEAT command to the FTP server and interprets the response to build a bit mask of

supported optional features.

Condition Values Returned

None.

FTP Library

209

FTP_CLOSE_CONNECTION
Closes the connection to the remote FTP server if one is open.

Format

FTP_CLOSE_CONNECTION (ccb)

Argument

ccb

OpenVMS usage: address

type: longword (unsigned)

access: read only

mechanism: by value

Identifies the CCB whose active FTP connection is to be closed.

Description

This routine sends an FTP QUIT command to the remote FTP server to close the connection and free up the

resources allocated to it.

Condition Value Returned

SS$_NORMAL Normal successful completion

Example

 status = ftp_get_file (ccb, &file, 0, 0, 0);

 if (!(status & 1))

 {

 printf ("failed to get file %s", file.dsc$a_pointer);

 goto error;

 }

 error:

 ftp_close_connection (ccb);

 return (status);

}

FTP Library

210

FTP_CREATE_DIRECTORY
Creates a directory on the remote host.

Format

FTP_CREATE_DIRECTORY (ccb, directory)

Arguments

ccb

OpenVMS usage: address

type: longword (unsigned)

access: read only

mechanism: by value

Identifies the CCB with the active and logged-in connection.

directory

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

Directory specification on the remote host.

Description

This routine sends an FTP MKD command that creates a specified directory on the remote server. If the

pathname is relative, a subdirectory is created under the current remote directory. If the MKD command is

rejected, the XMKD command is used.

Condition Values Returned

SS$_NORMAL Normal successful completion

FTP Library

211

TCPWARE_CREATEFAIL Failed to create the directory

TCPWARE_CTRLERR Unexpected error processing the control connection

(the connection is closed)

FTP Library

212

FTP_DEALLOCATE_CCB
Deallocates a CCB.

Format

FTP_DEALLOCATE_CCB (ccb)

Argument

ccb

OpenVMS usage: address

type: longword (unsigned)

access: read only

mechanism: by reference

Identifies the CCB you want to deallocate.

Description

This routine deallocates a CCB that is no longer needed. The CCB is deallocated when it is fully closed. An

implicit abort is performed on the connection if the CCB is still in use.

The virtual memory and event flag reserved for the CCB by the FTP_ALLOCATE_CCB routine are freed when

this routine is completed.

Condition Value Returned

SS$_NORMAL Normal successful completion

Example

 status = ftp_get_file (ccb, &file, 0, 0, 0);

 if (!(status & 1))

 {

 printf ("failed to get file %s", file.dsc$a_pointer);

 goto error;

 }

error:

 ftp_close_connection (ccb);

error_nocon:

 ftp_deallocate_ccb (&ccb);

 return (status);

}

FTP Library

213

FTP_DELETE_DIRECTORY
Deletes a directory on the remote host.

Format

FTP_DELETE_DIRECTORY (ccb, directory)

Arguments

ccb

OpenVMS usage: address

type: longword (unsigned)

access: read only

mechanism: by value

Identifies the CCB with the active and logged-in connection.

directory

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

Directory to be deleted on the remote host.

Description

This routine sends an FTP RMD command to delete a specified directory on the remote server. If the RMD

command is rejected, the XRWD command is used.

Condition Values Returned

SS$_NORMAL Normal successful completion

TCPWARE_DELETEFAIL Failed to delete the remote directory

TCPWARE_CTRLERR Unexpected error processing the control connection

(the connection is closed)

FTP Library

214

FTP_DELETE_FILE
Deletes a file on the remote host.

Format

FTP_DELETE_FILE (ccb, file)

Arguments

ccb

OpenVMS usage: address

type: longword (unsigned)

access: read only

mechanism: by value

Identifies the CCB with the active and logged-in connection.

file

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

File specification of the file to be deleted on the remote host

Description

This routine sends an FTP DELE command to delete a specified file on the remote server.

Condition Values Returned

SS$_NORMAL Normal successful completion

TCPWARE_DELETEFAIL Failed to delete the remote file

TCPWARE_CTRLERR Unexpected error processing the control connection

(the connection is closed)

FTP Library

215

FTP_GET_CCB
Gets information from a CCB field.

Format

FTP_GET_CCB (ccb, field-code, value, length)

Arguments

ccb

OpenVMS usage: address

type: longword (unsigned)

access: read only

mechanism: by value

Identifies the CCB from which information is retrieved.

field-code

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by reference

Code specifying the CCB field information you are requesting.

See Connection Control Block for the valid field codes and their data types. Symbols for these field codes are

defined in the TCPWARE_INCLUDE:FTPDEF.H file.

value

OpenVMS usage: address

type: longword (unsigned)

access: write only

FTP Library

216

mechanism: by reference

Returned value of the specified CCB field. The value argument is the address of a variable that will receive the

value of the CCB field. The data type of this variable depends on the field requested in field-code.

length

OpenVMS usage: word_signed

type: word (signed)

access: write only

mechanism: by reference

Returns the resulting length of the value field if the data type of the returned value is STRING.

Description

This routine returns the contents of the specified field from the CCB.

Condition Values Returned

SS$_NORMAL Normal, successful completion

SS$_BADPARAM Bad parameter specified

FTP Library

217

FTP_GET_FILE
Copies a file from a remote host.

Format

FTP_GET_FILE (ccb, source, [destination], [mode], [record-size])

Arguments

ccb

OpenVMS usage: address

type: longword (unsigned)

access: read only

mechanism: by value

Identifies the CCB with the active and logged-in connection for the file transfer.

source

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

Source file on the remote host.

destination

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

FTP Library

218

Destination file on the local host. If omitted, the source filename and extensions are used.

mode

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by reference

Transfer mode. See Transferring Files for a list of available transfer mode codes.

Note! Using mode causes the transfer mode set by FTP_SET_TYPE and FTP_SET_STRU to be ignored.

record-size

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by reference

Record size of the local output file when transferring in IMAGE mode.

Description

This routine sends an FTP RETR command to transfer a remote file to the local host.

Condition Values Returned

SS$_NORMAL Normal successful completion

TCPWARE_NONODE Connection is not open

TCPWARE_OPENOUT Error opening a file for output

TCPWARE_OPENDATA Failed to open data connection

FTP Library

219

TCPWARE_SETPORT Failed to set up data connection

TCPWARE_FILWRTER

R

Error writing to or receiving a file

TCPWARE_CTRLERR Unexpected error processing the control connection

(the connection is closed)

Example

$DESCRIPTOR (file, "rfc-index.txt");

 long ccb, status;

 status = ftp_get_file (ccb, &file, 0, 0, 0);

 if (!(status & 1))

 {

 printf ("failed to get file %s", file.dsc$a_pointer);

 goto error;

 }

 error:

 ftp_close_connection (ccb);

 return (status);

}

FTP Library

220

FTP_GET_LIST
Gets a file listing on the remote host.

Format

FTP_GET_LIST (ccb, [directory], output)

Arguments

ccb

OpenVMS usage: address

type: longword (unsigned)

access: read only

mechanism: by value

Identifies the CCB with the active and logged-in connection.

directory

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

Directory specification on the remote host. If omitted, the current remote directory is used.

output

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

FTP Library

221

Specifies the local file where the output of the remote directory listing is stored.

Description

This routine sends the FTP LIST command to list a remote directory and stores the output to the local file. The

output is in the format of the remote operating system.

Condition Values Returned

SS$_NORMAL Normal successful completion

TCPWARE_NONODE Connection is not open

TCPWARE_OPENOUT Error opening a file for output

TCPWARE_OPENDATA Failed to open data connection

TCPWARE_SETPORT Failed to set up data connection

TCPWARE_FILWRTERR Error writing to or receiving a file

TCPWARE_CTRLERR Unexpected error processing the control connection

(the connection is closed)

FTP Library

222

FTP_GET_NAME_LIST
Gets a filename listing on the remote host.

Format

FTP_GET_NAME_LIST (ccb, [directory], output)

Arguments

ccb

OpenVMS usage: address

type: longword (unsigned)

access: read only

mechanism: by value

Identifies the CCB with the active and logged-in connection.

directory

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

Directory specification on the remote host. If omitted, the current remote directory is used.

output

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

FTP Library

223

Specifies the local file where the output of the remote directory listing is stored.

Description

This routine sends the FTP NAME LIST (NLIST) command to retrieve the name list of the specified remote

directory and stores it in the local file. Output is a list of valid file pathnames with each name separated in

separate lines. Usually this output is more suitable for machine processing than the list obtained using

FTP_GET_LIST.

Condition Values Returned

See the FTP_GET_LIST routine.

FTP Library

224

FTP_LOGIN_USER
Authorizes the user on the remote host.

Format

FTP_LOGIN_USER (ccb, username, password)

Arguments

ccb

OpenVMS usage: address

type: longword (unsigned)

access: read only

mechanism: by value

Identifies the CCB of the active network connection.

username

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

Username on the remote host.

password

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

FTP Library

225

Password of the user on the remote host.

Description

This routine sends the FTP USER and PASS commands in sequence to the remote host to log in the specified

user with the specified password. The connection must have been opened previously. If there is already a user

logged in and the specified username and password are identical to the current values, this routine has no effect.

The user must be logged in on the remote host using this routine or a combination of FTP_USER and

FTP_PASSWORD (optionally, FTP_ACCOUNT) performed before calling any other routines for data transfer.

Condition Values Returned

SS$_NORMAL Normal successful completion

TCPWARE_NONODE Connection is not open

TCPWARE_NEEDACCT Server requires an account for login

TCPWARE_LOGINFAIL Login attempt failed

Example

#include <descrip.h>

#include <ssdef.h>

#include "ftpdef.h"

main ()

{

 $DESCRIPTOR (host, "ds.internic.net");

 $DESCRIPTOR (user, "anonymous");

 $DESCRIPTOR (pswd, "your-name@your-site");

 $DESCRIPTOR (dir, "rfc");

 $DESCRIPTOR (file, "rfc-index.txt");

 long ccb, status;

 long debug = DEBUG_REPLY;

 status = SS$_NORMAL;

 ftp_allocate_ccb (&ccb);

 status = ftp_open_connection (ccb, 0, &host, 0, 0);

 if (!(status & 1))

 {

 printf ("failed to make connection to %s", host.dsc$a_pointer);

 goto error_nocon;

 }

 status = ftp_login_user (ccb, &user, &pswd);

FTP Library

226

 if (!(status & 1))

 {

 printf ("failed to login as %s", user.dsc$a_pointer);

 goto error;

 }.

 error:

 ftp_close_connection (ccb);

 return (status);

}

FTP Library

227

FTP_OPEN_CONNECTION
Opens an FTP connection to a remote host.

Format

FTP_OPEN_CONNECTION (ccb, [ia], [host-name], [port], [timeout])

Arguments

ccb

OpenVMS usage: address

type: longword (unsigned)

access: read only

mechanism: by value

Identifies the CCB associated with the new connection.

ia

OpenVMS usage: unsigned_long

type: longword (unsigned)

access: read only

mechanism: by reference

Internet address of the remote host to which you want to connect. The argument is the address of an unsigned

longword containing the internet address in internet byte order (for example, internet address 1.2.3.4 is stored as

04030201 hex).

host-name

OpenVMS usage: character_string

type: character string

access: read only

FTP Library

228

mechanism: by descriptor

Host name of the remote host to which you want to connect. If the string is a valid internet address in a.b.c.d

format, that address is used. Otherwise, the Socket Library's gethostbyname routine is used to determine the

internet address from the host name.

port

OpenVMS usage: unsigned_word

type: word (unsigned)

access: read only

mechanism: by reference

Port number for the remote FTP server. If omitted, port number 21 is used.

timeout

OpenVMS usage: unsigned_longword

type: longword (unsigned)

access: read only

mechanism: by reference

Timeout time in seconds for establishing the FTP control connection. If omitted, the timeout time is 120

seconds (2 minutes).

Description

This routine opens an active FTP connection to the specified remote host. Specify either the internet address or

the host name. If you specify both, the internet address is used.

If you call this routine with a CCB with an active connection and the requested remote host is the same,

SS$_WASSET is returned and connection is maintained. If you request a different remote host on an active

CCB, the existing connection is closed and a new connection is opened.

FTP Library

229

Condition Values Returned

SS$_NORMAL Normal successful completion

SS$_WASSET Connection to specified node already established

SS$_BADPARAM Missing internet address or host name

SS$_UNREACHABLE Remote node is unreachable

TCPWARE_REJECTED Remote server rejected the connection

TCPWARE_OPENCTRL Failed to open control connection

Example

#include <descrip.h>

#include <ssdef.h>

#include "ftpdef.h"

main ()

{

 $DESCRIPTOR (host, "ds.internic.net");

 $DESCRIPTOR (user, "anonymous");

 $DESCRIPTOR (pswd, "your-name@your-site");

 $DESCRIPTOR (dir, "rfc");

 $DESCRIPTOR (file, "rfc-index.txt");

 long ccb, status;

 long debug = DEBUG_REPLY;

 status = SS$_NORMAL;

 ftp_allocate_ccb (&ccb);

 status = ftp_open_connection (ccb, 0, &host, 0, 0);

 if (!(status & 1))

 {

 printf ("failed to make connection to %s", host.dsc$a_pointer);

 goto error_nocon;

 }

 return (status);

}

FTP Library

230

FTP_PASSWORD
Specifies the user password on the remote host.

Format

FTP_PASSWORD (ccb, password)

Arguments

ccb

OpenVMS usage: address

type: longword (unsigned)

access: read only

mechanism: by value

Identifies the CCB with the active connection.

password

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

Password of the user on the remote host.

Description

This routine sends the FTP PASS command to specify the password of the user on the remote host. You must

call this routine immediately after the FTP_USER routine if the latter returns a TCPWARE_NEEDPWD status.

Condition Values Returned

SS$_NORMAL Normal successful completion

TCPWARE_NONODE Connection is not open

FTP Library

231

TCPWARE_NEEDACCT Server requires an account for login

TCPWARE_LOGINFAIL Login attempt failed

TCPWARE_CTRLERR Unexpected error processing the control connection

(the connection is closed)

FTP Library

232

FTP_PBSZ
Sets the protection buffer size as specified in RFC 2228 and RFC 4217. Only ―0‖ (zero) is supported as per

RFC 4217.

Format

FTP_PBSZ(ccb, size_string)

Arguments

ccb

OpenVMS usage: address

type: longword (unsigned)

access: read only

mechanism: by value

Identifies the CCB with the active and logged-in connection for the file transfer.

size_string

OpenVMS usage: address

type: string

access: read only

mechanism: by descriptor

Sets the size of the protection buffer. Currently only ―0‖ (zero) is supported as per RFC 4217.

Description

This routine sends an FTP PBSZ command to the FTP server.

Condition Values Returned

SS$_NORMAL Normal successful completion

FTP Library

233

TCPWARE_IVREQUEST Invalid request

TCPWARE_NONODE Connection is not open

FTP Library

234

FTP_PRINT_DIRECTORY
Returns the current directory on the remote host.

Format

FTP_PRINT_DIRECTORY (ccb, directory, [length])

Arguments

ccb

OpenVMS usage: address

type: longword (unsigned)

access: read only

mechanism: by value

Identifies the CCB with the active and logged-in connection.

directory

OpenVMS usage: char_string

type: character string

access: write only

mechanism: by descriptor

Returns the current directory on the remote host.

length

OpenVMS usage: word_signed

type: word (signed)

access: write only

mechanism: by reference

FTP Library

235

Returns the resulting length of the directory field.

Description

This routine sends the FTP PWD command to retrieve the current working directory on the remote server. If the

PWD command is rejected, the XPWD command is used.

Condition Values Returned

SS$_NORMAL Normal successful completion

TCPWARE_BADREPLY Unexpected reply from the server

TCPWARE_CTRLERR Unexpected error processing the control connection

(the connection is closed)

FTP Library

236

FTP_PROT
Sets the protection level specified in RFC 2228 and RFC 4217. Only ―C‖ (clear) and ―P‖ (private) are

supported as per RFC 4217

Format

FTP_PROT(ccb, prot_level)

Arguments

ccb

OpenVMS usage: address

type: longword (unsigned)

access: read only

mechanism: by value

Identifies the CCB with the active and logged-in connection for the file transfer.

prot_level

OpenVMS usage: address

type: character

access: read only

mechanism: by value

Specifies the protection level to use for data transfers. Only ―C‖ (clear) and ―P‖ (private) are supported as per

RFC 4217.

Description

This routine sends an FTP PROT command to the FTP server.

Condition Values Returned

SS$_NORMAL Normal successful completion

FTP Library

237

TCPWARE_IVREQUEST Invalid request

TCPWARE_NONODE Connection is not open

FTP Library

238

FTP_PUT_FILE
Copies a file to a remote host.

Format

FTP_PUT_FILE (ccb, source, [destination], [mode], [record-size])

Arguments

ccb

OpenVMS usage: address

type: longword (unsigned)

access: read only

mechanism: by value

Identifies the CCB with the active and logged-in connection for the file transfer.

source

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

Source file on the local host.

destination

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

FTP Library

239

Destination file on the remote host. If omitted, the source filename and extensions are used.

mode

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by reference

Transfer mode. See Transferring Files section for a list of available transfer mode codes.

Note! Using mode causes the transfer mode set by FTP_SET_TYPE and FTP_SET_STRU to be ignored.

record-size

OpenVMS usage: longword_signed

type: longword (signed)

access: read only

mechanism: by reference

Record size of the local output file when transferring in IMAGE mode.

Description

This routine sends the STOR command to copy the local file to the remote host.

Condition Values Returned

SS$_NORMAL Normal successful completion

TCPWARE_NONODE Connection is not open

TCPWARE_OPENIN Error opening a file for input

TCPWARE_OPENDATA Failed to open data connection

FTP Library

240

TCPWARE_SETPORT Failed to set up data connection

TCPWARE_FILRDERR Error reading from or sending a file

TCPWARE_CTRLERR Unexpected error processing the control connection

(the connection is closed)

FTP Library

241

FTP_QUOTE
Sends an FTP command to the remote server.

Format

FTP_QUOTE (ccb, command)

Arguments

ccb

OpenVMS usage: address

type: longword (unsigned)

access: read only

mechanism: by value

Identifies the CCB with the active connection.

command

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

Command to be sent to the remote FTP server.

Description

This routine sends the specified literal command string to the remote FTP server. For example, sending the

HELP command with this routine obtains the help information from the remote server (as reply messages), if

the remote server supports this command.

Note that you can use this routine only for simple commands, not for commands involving data transfer.

FTP Library

242

Condition Values Returned

SS$_NORMAL Normal successful completion

TCPWARE_CTRLERR Unexpected error processing the control connection

(the connection is closed)

FTP Library

243

FTP_RENAME_FILE
Renames a file on the remote host.

Format

FTP_RENAME_FILE (ccb, old-file, new-file)

Arguments

ccb

OpenVMS usage: address

type: longword (unsigned)

access: read only

mechanism: by value

Identifies the CCB with the active and logged-in connection.

old-file

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

File to rename on the remote host.

new-file

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

FTP Library

244

New filename on the remote host.

Description

This routine sends the FTP RNFR and RNTO commands in sequence to rename a file on the remote server.

Condition Values Returned

SS$_NORMAL Normal successful completion

TCPWARE_RENAMEFAIL Failed to rename the remote file

TCPWARE_CTRLERR Unexpected error processing the control connection

(the connection is closed)

FTP Library

245

FTP_SET_DEBUG
Sets the debugging mode for the FTP library.

Format

FTP_SET_DEBUG (ccb, flag, [output-routine])

Arguments

ccb

OpenVMS usage: address

type: longword (unsigned)

access: read only

mechanism: by value

Identifies the CCB with the active and logged-in connection.

flag

OpenVMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

Debugging flags to be set. Specify any of the following flag bits:

DEBUG_REPLY Output the replies received from the remote server

DEBUG_COMMAND Output the FTP commands sent to the remote server

The symbols for these flags are defined in the TCPWARE_INCLUDE:FTPDEF.H file.

output-routine

OpenVMS usage: address of pointer to procedure

FTP Library

246

type: address of address of procedure value

access: read only

mechanism: passing by reference a pointer to the address of a

routine

Address of a pointer to a routine that writes debugging text one line at a time. If omitted, LIB$PUT_OUTPUT

is used. If you specify the routine of your own, it must have the same calling format as LIB$PUT_OUTPUT.

Description

This routine sets the debugging mode for the FTP Library. When the debugging flags are set, the FTP library

outputs the debugging messages by LIB$PUT_OUTPUT, or a user-specified routine.

Condition Value Returned

SS$_NORMAL Normal successful completion

FTP Library

247

FTP_SET_DIRECTORY
Sets the remote directory.

Format

FTP_SET_DIRECTORY (ccb, directory)

Arguments

ccb

OpenVMS usage: address

type: longword (unsigned)

access: read only

mechanism: by value

Identifies the CCB with the active and logged-in connection.

directory

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

Directory specification on the remote host. If omitted, the parent directory is used.

Description

This routine sends the FTP CWD command to change the default directory on the remote server, and the CUP

command to change the directory to the parent directory. If the directory specification is null, it changes the

directory to the parent directory on the remote server. If the CWD and CUP commands are not accepted, the

XCWD and XCUP commands are used.

Condition Values Returned

SS$_NORMAL Normal successful completion

FTP Library

248

TCPWARE_SETDEFAIL Failed to set default directory

TCPWARE_CTRLERR Unexpected error processing the control connection

(the connection is closed)

Example

 status = ftp_set_directory (ccb, &dir);

 if (!(status & 1))

 {

 printf ("failed to change directory to %s", dir.dsc$a_pointer);

 goto error;

 }

 error:

 ftp_close_connection (ccb);

FTP Library

249

FTP_SET_PASV
Sets passive mode.

Format

FTP_SET_PASV (ccb, flag)

Arguments

ccb

OpenVMS usage: address

type: longword (unsigned)

access: read only

mechanism: by value

Identifies the CCB with the active and logged-in connection.

flag

OpenVMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

Value 0 disables passive mode; value 1 enables passive mode.

Description

This routine sets PASV (passive) mode. If enabled, the client sends the server the PASV command and the

client initiates data connections to the server. If disabled, the client sends the server the PORT command and the

server initiates the data connections.

Condition Values Returned

SS$_NORMAL Normal successful completion

FTP Library

250

FTP_SET_STRU
Specifies the file structure.

Note! The mode arguments with FTP_GET_FILE and FTP_PUT_FILE cause the transfer mode set by

FTP_SET_STRU to be ignored.

Format

FTP_SET_STRU (ccb, stru)

Arguments

ccb

OpenVMS usage: address

type: longword (unsigned)

access: read only

mechanism: by value

Identifies the CCB with the active connection for setting the file structure.

stru

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

Contains a character code that specifies the file structure. The valid types are:

'F' File (no record structure)

'R' Record structure

'V' VMS structure

'O' O VMS structure (for backward compatibility)

FTP Library

251

Description

This routine sends the FTP STRU command to specify the file structure for the subsequent file transfer.

Condition Values Returned

SS$_NORMAL Normal successful completion

SS$_BADPARAM Bad parameter

TCPWARE_NONODE Connection is not open

TCPWARE_UNSXFRFORM Unsupported transfer format

TCPWARE_CTRLERR Unexpected error processing the control connection

(the connection is closed)

FTP Library

252

FTP_SET_TYPE
Specifies the data representation type.

Note! The mode arguments with FTP_GET_FILE and FTP_PUT_FILE cause the transfer mode set by

FTP_SET_TYPE to be ignored.

Format

FTP_SET_TYPE (ccb, type)

Arguments

ccb

OpenVMS usage: address

type: longword (unsigned)

access: read only

mechanism: by value

Identifies the CCB with the active connection.

type

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

Character string code that specifies the file representation type. The first character is the primary transfer mode,

as follows:

A ASCII

I Image

EBCDIC type is not supported.

Do not use an additional character for transfer mode I. For transfer mode A, the second character must specify

FTP Library

253

one of the following format control options:

N Non-print (no vertical format information)

C FORTRAN carriage control

TELNET format control is not supported.

Description

This routine sends an FTP TYPE command to specify the file representation for the subsequent file

transmission. The default representation type is 'AN' (ASCII transfer in Non-print mode).

Condition Values Returned

SS$_NORMAL Normal successful completion

SS$_BADPARAM Bad parameter

TCPWARE_NONODE Connection is not open

TCPWARE_UNSTYPE Unsupported data representation type

TCPWARE_CTRLERR Unexpected error processing the control connection

(the connection is closed)

FTP Library

254

FTP_USER
Specifies the user on the remote host.

Format

FTP_USER (ccb, username)

Arguments

ccb

OpenVMS usage: address

type: longword (unsigned)

access: read only

mechanism: by value

Identifies the CCB with an active connection for specifying the username.

username

OpenVMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

Username on the remote host.

Description

This routine sends an FTP USER command to the remote host to specify the user on the remote host. It may

require a subsequent call to FTP_PASSWORD to complete the login. If there is already a user logged in on the

specified connection, that user is logged out.

FTP Library

255

Condition Values Returned

SS$_NORMAL Normal successful completion

TCPWARE_NEEDPWD Server requires a password for login

TCPWARE_LOGINFAIL Login attempt failed

Socket Library

256

Chapter 8 Socket Library

Introduction

This chapter describes the Socket Library to use for your particular programming application.

TCPware provides a Socket Library if you are running a version of VMS earlier than 5.3 or are using the

Remote Procedure Call (RPC) routines. However, Process Software does not recommend that you use the

TCPware Socket Library for later versions of OpenVMS.

HP provides a C Socket Library you should use for VMS Version 5.3 and later. HP provides a collection of

VAX C, DEC C, and DEC C++ subroutines that closely emulates the UNIX socket functions.

Note! For OpenVMS V5.3 and later, whether the compiler is VAX C, DEC C or DEC C++, network programmers

should use HP’s C Socket Library routines and header files. In the case of the compiler being DEC C or

C++, programmers MUST use HP's library and header files. This applies to VAX, Alpha and I64 systems.

See HP’s VAX C Run Time Library Manual or DEC C Language Reference Manual for information on these

socket library routines.

See Appendix A, for details on the TCPware Socket Library routines.

Transitioning to the C Socket Library: Include (Header) Files

HP provides header files for its C Socket Library that are similar to those provided by TCPware.

The header files TCPware provides in its Socket Library are described in Appendix A.

To use the HP C Socket Library header files:

• If you are transitioning an existing VAX C socket application, change any #include statements for

TCPware's header files to reference HP's header files. For example:

#include "tcpware_include:netdb.h"

becomes:

#include <netdb.h>

Then compile as follows:

– On the VAX C command line:

 $ cc prog.c

– On the DEC C command line for VAX:

 $ cc /stand=vaxcprog.c

Socket Library

257

– On the DEC C command line for Alpha and I64:

 $ cc /stand=vaxc/nomember_align/assume=noalignedprog.c

• If you are porting or developing an ANSI C or C++ application, use the HP header files as shown above.

Then compile the application (in the case of DEC C, omit the

/stand=vaxc option).

Note! If you are developing a new program using DEC C, compile using:

 $ cc /prefix_library_entries=all_entriesprog.c

Transitioning to the C Socket Library:
Linking Applications

You can then link against HP's C Socket Library as follows:

• For VAX C:

$ link prog,sys$input/options

tcpware:ucx$ipc/lib

sys$share:vaxcrtl/share

• For DEC C on the VAX, Alpha and I64, and for DEC C++:

$ link prog

The link procedure for the TCPware Socket Library is described in Appendix A.

Sample Programs

The following sample programs are included in the TCPWARE_COMMON:[TCPWARE.EXAMPLES]

directory:

• TCP_SOCKET_CLIENT.C

• TCP_SOCKET_SERVER.C

• UDP_SOCKET_CLIENT.C

• UDP_SOCKET_SERVER.C

The TCP_SOCKET_CLIENT.C and TCP_SOCKET_SERVER.C pair of programs provide a self-declared

ECHO server that sequentially accepts client connections and echoes back the client messages. The

UDP_SOCKET_CLIENT.C and UDP_SOCKET_SERVER.C pair of programs provide a self-declared

DISCARD server that can receive (and discard) datagrams from multiple clients.

These programs are functionally equivalent to the BGDRIVER sample programs in Chapter 2, UCX

Compatibility Services.

To build any one of these applications using DEC C, enter:

$ CC/DECC/PREFIX=ALL filename

$ LINK filename

Ctrl/Z

To build any one of these applications using VAX C, enter:

Socket Library

258

$ CC/VAXC filename

$ LINK filename, TCPWARE:UCX$IPC/LIB, SYS$INPUT/OPTIONS-

_$ SYS$SHARE:VAXCRTL/SHARE

Ctrl/Z

Appendix A, TCPware Socket Library, includes sample programs for the TCPware Socket Library. These

require minor modification to be used in C Socket Library applications.

Debugging programs that use the C socket library

The logical TCPWARE_SOCKET_TRACE can be defined to get a trace of socket library operations and status

values returned from TCPware to aid in debugging of applications. The details of the interpretation of the

logical are in the table below:

Table 3-1 Interpretation of TCPWARE_SOCKET_TRACE logical

number 1 - control operations

2 - read operations

4 - write operations

These values can be ORed together to get any combination of

operations.

anything else Interpreted as a (partial) file specification with the default

specification being

SYS$SCRATCH:TCPWARE_SOCKET_<process_name>.LOG

This can be useful for services that are started up by NETCU or

another listening service and that create separate processes. The

logical can be defined at the SYSTEM level and the socket library

routines will generate a separate log file for each process. When this

format is used the log consists of all three classes (control, read and

write) operations.

TELNET Library

259

Chapter 9 TELNET Library

Introduction

This chapter is for application programmers. It describes the TELNET library routines.

The TELNET library routines provide a programming interface to the TELNET protocol. Use the TELNET

library routines in your own applications to provide TELNET capabilities.

This chapter does not describe the TELNET protocol.

The following routines are included in the library:

TEL_ABORT_CONNECTION Aborts a TELNET connection

TEL_ALLOCATE_CCB Allocates a connection control block (CCB)

TEL_CLOSE_CONNECTION Closes a TELNET connection

TEL_CREATE_TERMINAL Opens and allocates a TELNET device

TEL_DEALLOCATE_CCB Deallocates a CCB

TEL_GET_CCB Gets the value of a CCB field

TEL_OPEN_CONNECTION Opens a TELNET connection

TEL_RECEIVE_DATA Receives data

TEL_SEND_COMMAND Sends TELNET commands

TEL_SEND_DATA Sends data

TEL_SET_CCB Sets the value of a CCB field

These routines allow you to establish and maintain TELNET connections with remote hosts that support the

TELNET protocol. You can establish multiple simultaneous TELNET connections; the number is limited only

by the resources available to your process.

TELNET Library

260

The TELNET library routines follow the standard OpenVMS conventions for modular library routines. See the

OpenVMS documentation on calling modular libraries for more information.

Because TELNET library routines use asynchronous system traps (ASTs), application programs must not run

with ASTs disabled for long periods of time.

The TELNET library routines are in the TCPWARE:TELLIB.OLB object library. The symbolic definitions for

the various connection control block (CCB) fields are in the TCPWARE_INCLUDE:_CCBFLD.H header file.

While this file is written for VAX C, it is easy to convert to other VAX languages.

The TELNET Client sample program is provided in

TCPWARE_COMMON:[TCPWARE.EXAMPLES]TELNET_SAMPLE.C.

To build using DEC C, enter:

$ CC/DECC/PREFIX=ALL TELNET_SAMPLE.C

$ LINK FTPSAMPLE, SYS$INPUT/OPTIONS

TCPWARE:TELLIB/LIB

SYS$SHARE:TCPWARE_SOCKLIB_SHR/SHARE

Ctrl/Z

To build using VAX C, enter:

$ CC/VAXC/PREFIX=ALL TELNET_SAMPLE.C

$ LINK FTPSAMPLE, SYS$INPUT/OPTIONS

TCPWARE:TELLIB/LIB

SYS$SHARE:TCPWARE_SOCKLIB_SHR/SHARE

 SYS$SHARE:VAXCRTL.EXE/SHARE

Ctrl/Z

Connection Control Block

This section describes the connection control block (CCB) that contains all the information required to establish

and maintain a TELNET connection. Each open connection requires a CCB.

The storage space for the CCB is allocated dynamically. Therefore, the number of simultaneous connections is

limited only by your process resources. A CCB can be reused; you can close one connection and then open a

new one using the same CCB.

Note! The ccb-ptr argument in the library routines must remain in scope at a fixed address. Also, the ccb-ptr

is to be used with a single CCB from the time of TEL_ALLOCATE_CCB to TEL_DEALLOCATE_CCB.

You can access the CCB fields with the TEL_GET_CCB and TEL_SET_CCB library routines as described

below. Table 9-1 lists the CCB fields and their uses:

Table 9-1 CCB Fields

CCB Fields CCB Uses

CCB_ASTRTN Address of the AST routine to be called when data is received (unsigned

longword). Cleared once the AST is declared. You must explicitly reset

this field each time you want the AST to be used. Use with

TEL_GET_CCB or TEL_SET_CCB, or with

TEL_OPEN_CONNECTION.

TELNET Library

261

CCB_CHAN Channel number for the TCP0: device (unsigned word), defined only

when a connection is open (otherwise 0). (Use the CCB_ISOPEN field

described below to determine if a connection is open instead of checking

for a non-zero channel number.) Use with TEL_GET_CCB.

CCB_CMDRTN Address of your TELNET command processing routine that you must

use with TEL_OPEN_CONNECTION (unsigned longword). Also use

with TEL_GET_CCB or TEL_SET_CCB.

CCB_EF Event flag number to set when there is received data (unsigned

longword). Can also be used as an argument to

TEL_OPEN_CONNECTION. Use event flag 0 to disable the use of an

event flag. Use with TEL_GET_CCB.

CCB_ISOPEN Connection status (unsigned byte). Value is 1 if the connection is open, 0

if not. Use with TEL_GET_CCB.

CCB_LIA Connection's local internet address (unsigned longword), in internet byte

order (for example, internet address 1.2.3.4 is stored as 04030201 hex).

Valid only when a connection is open. Use with TEL_GET_CCB.

CCB_LPORT Local port number for the connection (unsigned word). Valid only when

a connection is open. Use with TEL_GET_CCB.

CCB_RCVBCT Total byte count for the connection (unsigned longword). The counter

wraps with an overflow. Use with TEL_GET_CCB.

CCB_RCVBCNT Number of unread bytes in the internal receive buffer that reflects the

amount of raw data in the internal buffer (unsigned word). May be larger

than the actual number of user data bytes you read due to requirements

of the TELNET protocol. Use with TEL_GET_CCB.

CCB_RCVIOC Total count of internal network read operations performed for the

connection (unsigned longword). The counter wraps with an overflow.

Use with TEL_GET_CCB.

CCB_RIA Connection's remote internet address (unsigned longword), in internet

byte order (for example, internet address 1.2.3.4 is stored as 04030201

hex). Can be set only when used as an argument to

TEL_OPEN_CONNECTION. Use with TEL_GET_CCB.

CCB_RPORT Remote port number for the connection (unsigned word), the default

being 23 (for the TELNET server). You can only set this field when

specified as an argument to TEL_OPEN_CONNECTION. Valid only

when a connection is open. Use with TEL_GET_CCB.

TELNET Library

262

CCB_SNDBCNT Number of untransmitted bytes in the internal send buffer (unsigned

word) that reflects the amount of raw data in the internal buffer. May be

larger than the actual number of user data bytes you send due to

requirements of the TELNET protocol. Use with TEL_GET_CCB.

CCB_SNDBCT Total count of bytes sent for the connection (unsigned longword). The

counter wraps with an overflow. Use with TEL_GET_CCB.

CCB_SNDIOC Total count of internal write operations for the connection (unsigned

longword). The counter wraps with an overflow. Use with

TEL_GET_CCB.

CCB_TIMO Time-out value (in seconds) for the connection (unsigned longword), the

default being 120 seconds (2 minutes). Can also be used as an argument

to TEL_OPEN_CONNECTION. Use with TEL_GET_CCB.

CCB_UFLAGS Communicates state information between the user's application and the

library routines (unsigned longword). Table 9-2 lists the only defined

bits. All other bits are reserved and must be zero. Your program should

set and clear bits 0 and 1 in this field when TELNET negotiates the

TRANSMIT-BINARY option. Use with TEL_GET_CCB or

TEL_SET_CCB.

If you want to enable SYNCH signal processing mode, set bit 31 before opening a connection. The TELNET

library routines enter this mode when they receive urgent data. They remain in this mode until they encounter

the TELNET DATA MARK command and no more urgent data exists. In this mode, TEL_RECEIVE_DATA

discards all data and the EC and EL commands. All other TELNET commands are passed to your command

processing routine.

Table 9-2 CCB_UFLAGS Bits

Bit... If set, means...

0 Enables local binary mode

1 Enables remote binary mode

31 Enables SYNCH signal processing

CCB_USER1 User-definable (unsigned longword). Use with TEL_GET_CCB or

TEL_SET_CCB.

CCB_USER2 User-definable (unsigned longword). Use with TEL_GET_CCB or

TEL_SET_CCB.

The TELNET library routines use additional fields internally that are not accessible to application programs.

TELNET Library

263

Library Routines Reference

This section describes each of the TELNET library routines.

All scalar and buffer arguments are passed by reference. Strings are passed by descriptor. You must use all

function arguments, although you can omit some optional ones by passing a 0 (by value).

Each TELNET library routine returns an unsigned longword condition value in R0 and use the standard system

service return codes defined in the $SSDEF macro.

The function arguments are described using the following "dot" notation:

argument-name.access-data-type.passing-mechanism parameter-form

For example, the following argument specification indicates the CCB address pointer, having modify access and

a passing mechanism by reference:

ccb-ptr.ma.r

See the OpenVMS Run-Time Library documentation for a complete description of this procedure argument

notation.

These routines are included in the TCPWARE:TELLIB.OLB object library. You must also include the Socket

Library when linking.

See the beginning of this chapter for details on linking.

TELNET Library

264

TEL_ABORT_CONNECTION
Aborts a connection.

Format

ret-status.wlc.v = TEL_ABORT_CONNECTION(ccb-ptr)

Argument

ccb-ptr.ma.r

Address of a pointer to the connection control block (CCB) used by all the TELNET library routines to identify

a connection.

Description

Aborts the TELNET connection, cancels all outstanding sends and receives, and returns the SS$_VCBROKEN

status.

Condition Values Returned

SS$_NORMAL Connection aborted (connection closed)

TELNET Library

265

TEL_ALLOCATE_CCB
Allocates a connection control block (CCB).

Format

ret-status.wlc.v = TEL_ALLOCATE_CCB(ccb-ptr,rcv-buf-size,snd-buf-size)

Arguments

ccb-ptr.wa.r

Address of an unsigned longword that will receive a pointer to the CCB used by all the TELNET library

routines to identify a connection.

SeeConnection Control Block for a description of the CCB.

rcv-buf-size.rwu.r

Address of an unsigned word containing the number of bytes allocated to the internal receive buffer. There is no

minimum buffer size by default. However, use at least 64 bytes as an absolute minimum, with 1024 bytes

recommended to enhance performance.

snd-buf-size.rwu.r

Address of an unsigned word containing the number of bytes allocated to the internal send buffer. There is no

minimum buffer size by default. However, use at least 64 bytes as an absolute minimum, with 1024 bytes

recommended to enhance performance.

Description

Allocates memory for a CCB using the LIB$GET_VM routine. Memory is allocated from the default zone. The

CCB and the internal buffers are contiguous in memory. An internal local event flag will also be allocated from

the second local event flag cluster.

You should only access the CCB data fields using the TEL_GET_CCB and TEL_SET_CCB routines. You must

allocate a CCB before calling any other TELNET library routine.

Condition Values Returned

Any condition value returned by LIB$GET_VM and LIB$GET_EF.

TELNET Library

266

TEL_CLOSE_CONNECTION
Closes a TELNET connection.

Format

ret-status.wlc.v = TEL_CLOSE_CONNECTION(ccb-ptr)

Argument

ccb-ptr.ma.r

Address of a pointer to the CCB.

Description

Call this routine when you finished sending data to the remote host or when the remote host notifies you that it

closed its end of the connection.

This routine initiates a close on the local end of an open connection. For a connection to be fully closed, both

ends of the connection (local and remote) must be closed. No more data can be sent or received once a

connection is fully closed.

Additional data can be received until the remote end closes its side of the connection. Therefore, you must call

the TEL_RECEIVE_DATA routine until the SS$_VCCLOSED status is returned.

Here are the two typical close situations:

Remote end closes first TEL_RECEIVE_DATA returns the SS$_VCCLOSED status, then

you call TEL_CLOSE_CONNECTION to close your end of the

connection. TEL_CLOSE_CONNECTION returns when the

connection is fully closed.

Local end closes first You call TEL_CLOSE_CONNECTION to close your end of the

connection. TEL_CLOSE_CONNECTION returns, but the remote

end of the connection is still open. You must call

TEL_RECEIVE_DATA until it returns the SS$_VCCLOSED

status.

In general TEL_RECEIVE_DATA must return SS$_VCCLOSED. This can happen before or after you call

TEL_CLOSE_CONNECTION.

Condition Values Returned

SS$_ILLSEQOP Connection not open

SS$_NORMAL Success, close initiated or successful

SS$_THIRDPARTY Software was shut down (connection closed)

SS$_TIMEOUT Connection timed out (connection closed)

SS$_VCBROKEN Connection broken (connection closed)

TELNET Library

267

TEL_CREATE_TERMINAL
Opens and allocates a connection to an NTA device so that you can use a terminal device with TELNET.

Format

ret-status.wlc.v=TEL_CREATE_TERMINAL(ccb-ptr,[ia],[host],cmd-rtn,[efn],

[ast-addr],[port],

[timeout],[flags])

Arguments

ccb-ptr.ma.r

Address of a pointer to the CCB. The CCB must be in a closed state.

ia.rlu.r

Address of an unsigned longword containing the remote host's internet address in internet byte order (for

example, internet address 1.2.3.4 is stored as 04030201 hex). If omitted or 0, the host argument determines the

remote host.

host.rt.ds

Address of a text string descriptor of the remote host's host name. If the string is a valid a.b.c.d type internet

address, that address is used. Otherwise, the Socket Library's gethostbyname routine determines the internet

address from the host name. If omitted or a null string, the ia argument determines the remote host.

cmd-rtn.szem.r

Address of the user's command processing routine called each time a TELNET command is received. Inputs to

the command processing routine are the CCB of the connection, a buffer containing one complete command,

and a buffer byte count.

SeeUser Command Processing .

efn.rlu.r

Address of an unsigned longword containing the event flag to use. The event flag is set whenever data is

available in the receive buffer, and cleared when the last byte of data is removed. It is up to you to allocate the

event flag if necessary. You must never set or clear the event flag. If omitted, the previous value of this field is

used; if 0, the field is cleared. If no event flag is specified, you will have to use another method, such as an AST

routine, to determine when data is received.

ast-adr.szem.r

Address of an AST routine to be called when data is received. This AST routine is declared when received data

is available. You must set the ast-adr each time you want to be notified of received data. Use the

TEL_SET_CCB routine to set the ast-adr after a connection is open.

A pointer to the CCB is passed to the AST routine by reference as the AST argument. You can use the

CCB_USER1 and CCB_USER2 fields if you want to pass arguments to the AST routine.

TELNET Library

268

port.rwu.r

Address of an unsigned word containing the 16-bit port number for the connection (normally 23). Supplied for

use in special applications where the remote server is not a standard TELNET server. If omitted or 0, the default

value 23 is used.

timeout.rlu.r

Address of an unsigned longword with the number of seconds to wait on the connection before timeout. If

omitted or 0, the default value 120 (2 minutes) is used.

Description

Call this routine when you want to open and allocate a connection to an NTA device so that you can use a

terminal device with TELNET.

TELNET Library

269

TEL_DEALLOCATE_CCB
Deallocates a CCB.

Format

ret-status.wlc.v = TEL_DEALLOCATE_CCB(ccb-ptr)

Argument

ccb-ptr.ma.r

Address of a pointer to the CCB.

Description

Gets rid of a CCB you no longer need. The CCB is deallocated when it is fully closed. An implicit abort is

performed on the connection if the CCB is still in use.

The virtual memory and event flag reserved for the CCB by the TEL_ALLOCATE_CCB routine is freed when

this routine completes.

Condition Values Returned

SS$_NORMAL Success

TELNET Library

270

TEL_GET_CCB
Gets information from a CCB field.

Format

ret-status.wlc.v = TEL_GET_CCB(ccb-ptr,field-code,value)

Arguments

ccb-ptr.ma.r

Address of a pointer to the CCB. The CCB for the connection does not need to be open unless otherwise

specified.

field-code.rwu.r

Address of an unsigned word containing the symbolic value for the CCB field. The symbolic definitions for the

CCB fields are in the TCPWARE_INCLUDE:_CCBFLD.H file.

SeeConnection Control Block for a description of the CCB.

value.wz.r

Address of a variable that receives the value of the CCB field. The data type of this variable depends on the

field requested in field-code.

Description

The value of the CCB field you requested is returned in the argument value. The data type of value should be

the same as the field you requested.

Condition Values Returned

SS$_BADPARAM Bad field-code specified

SS$_NORMAL Normal, successful completion

TELNET Library

271

TEL_OPEN_CONNECTION
Opens a TELNET connection to a remote host.

Format

ret-status.wlc.v = TEL_OPEN_CONNECTION(ccb-ptr,[ia],[host],cmd-rtn,[efn],[ast-adr],[port],

[timeout])

Arguments

ccb-ptr.ma.r

Address of a pointer to the CCB.

ia.rlu.r

Address of an unsigned longword containing the remote host's internet address in internet byte order (for

example, internet address 1.2.3.4 is stored as 04030201 hex). If omitted or 0, the host argument determines the

remote host name.

host.rt.ds

Address of a text string descriptor of the remote host's host name. If the string is a valid a.b.c.d type internet

address, that address is used. Otherwise, the Socket Library's gethostbyname routine determines the internet

address from the host name. If omitted or a null string, the ia argument determines the remote host.

cmd-rtn.szem.r

Address of the user's command processing routine called each time a TELNET command is received. Inputs to

the command processing routine are the CCB of the connection, a buffer containing one complete command,

and a buffer byte count.

SeeUser Command Processing .

efn.rlu.r

Address of an unsigned longword containing the event flag to use. The event flag is set whenever data is

available in the receive buffer, and cleared when the last byte of data is removed. It is up to you to allocate the

event flag if necessary. You must never set or clear the event flag. If omitted, the previous value of this field is

used; if 0, the field is cleared. If no event flag is specified, you will have to use another method, such as an AST

routine, to determine when data is received.

ast-adr.szem.r

Address of an AST routine to be called when data is received. This AST routine is declared when received data

is available. You must set the ast-adr each time you want to be notified of received data. Use the

TEL_SET_CCB routine to set the ast-adr after a connection is open.

A pointer to the CCB is passed to the AST routine by reference as the AST argument. You can use the

CCB_USER1 and CCB_USER2 fields if you want to pass arguments to the AST routine.

port.rwu.r

Address of an unsigned word containing the 16-bit port number for the connection (normally 23). Supplied for

use in special applications where the remote server is not a standard TELNET server. If omitted or 0, the default

value 23 is used.

TELNET Library

272

timeout.rlu.r

Address of an unsigned longword with the number of seconds to wait on the connection before timeout. If

omitted or 0, the default value 120 (2 minutes) is used.

Description

Opens an active TELNET connection to the remote host specified in ia or host. A network read operation is

automatically initiated.

Specify either the internet address or host name. If you specify both, the internet address is used.

See the Management Guide for details on internet addresses and hostnames.

A connection must be opened before you can send or receive data or commands.

Condition Values Returned

SS$_BADPARAM Invalid I/O channel, missing internet address or host name, or no

route exists to the specified internet address

SS$_NORMAL Connection is open

SS$_NOSUCHNODE ia was not specified, and host was not found by gethostbyname

SS$_THIRDPARTY Software was shut down (connection closed)

SS$_TIMEOUT Connection timed-out (connection closed)

SS$_VCBROKEN Connection broken (connection closed)

Any condition value returned by the $ASSIGN and $QIO system services.

TELNET Library

273

TEL_RECEIVE_DATA
Receives data from a remote host.

Format

ret-status.wlc.v = TEL_RECEIVE_DATA(ccb-ptr,buffer-size,buffer,byte-count)

Arguments

ccb-ptr.ma.r

Address of a pointer to the CCB.

The ccb-ptr variable must remain in scope at a fixed address. Also, the ccb-ptr is to be used with a single CCB

from the time of TEL_ALLOCATE_CCB to TEL_DEALLOCATE_CCB.

buffer-size.rwu.r

Address of an unsigned word containing the number of bytes you are willing to receive.

buffer.wbu.ra

Address of the first byte of the buffer. The buffer must be at least buffer-size bytes in length.

byte-count.wwu.r

Address of an unsigned word variable that receives the length of the data in the buffer.

Description

Call this routine whenever data is available. You can use ASTs or event flags to determine when data is

available. You must also call this routine after you initiated a close from the local end, as the remote host may

still be open and sending data. When the remote host closes, TEL_RECEIVE_DATA returns a status of

SS$_VCCLOSED.

If you are using ASTs, you must set the AST address each time you want to be notified by an AST that data is

available. This is typically done before returning from your AST routine.

SeeTEL_SET_CCB on how to set the AST address or event flag number.

Do not use this routine to poll for data since that would waste CPU time.

Pairs of IAC characters (ASCII 255) are translated to a single IAC, and a NUL character (ASCII 0) following a

carriage return is removed as dictated by the TELNET protocol. When in remote binary mode (bit 1 is set in

CCB_UFLAGS) a NUL following a carriage return is not removed.

This routine ensures that TELNET commands and data are processed in the order in which they are received. It

does this by copying TELNET data to your buffer until your buffer is full, there is no more data, or a TELNET

command is encountered. If a TELNET command is encountered and data was copied to your buffer, it is not

processed until the next call to TEL_RECEIVE_DATA, at which time any additional data following the

TELNET command or commands is also returned.

When the byte-count argument is 0, all data (and commands) have been processed. If the remote end closes the

connection, a SS$_VCCLOSED status is returned after the last byte is transferred. You must call

TEL_CLOSE_CONNECTION to fully close the connection.

TELNET Library

274

Condition Values Returned

SS$_ILLSEQOP Connection not open

SS$_NORMAL Success, data was copied to internal buffer

SS$_THIRDPARTY Software was shut down (connection closed)

SS$_TIMEOUT Connection timed-out (connection closed)

SS$_VCBROKEN Connection broken (connection closed)

SS$_VCCLOSED Connection closed by remote host (local end still open)

TELNET Library

275

TEL_SEND_COMMAND
Sends TELNET commands to the remote host. Commands include option commands and control functions

(such as BREAK and AYT).

Format

ret-status.wlc.v = TEL_SEND_COMMAND(ccb-ptr,buffer,byte-count)

Arguments

ccb-ptr.ma.r

Address of a pointer to the CCB.

buffer.rbu.ra

Address of the first byte of your data. The commands must be complete and correct. Command data must

include the IAC character(s) where appropriate.

byte-count.rwu.r

Address of an unsigned word containing the number of bytes in the command buffer.

Description

This routine is similar to the TEL_SEND_DATA routine. The only difference is that no processing is done to

the command data. The buffer is transmitted with IAC and CR characters left as is.

Condition Values Returned

SS$_ILLSEQOP Connection not open

SS$_NORMAL Success, data was copied to internal buffer

SS$_THIRDPARTY Software was shut down (connection closed)

SS$_TIMEOUT Connection timed-out (connection closed)

SS$_VCBROKEN Connection broken (connection closed)

TELNET Library

276

TEL_SEND_DATA
Sends data to the remote host.

Format

ret-status.wlc.v = TEL_SEND_DATA(ccb-ptr,buffer,byte-count)

Arguments

ccb-ptr.ma.r

Address of a pointer to the CCB.

buffer.rbu.ra

Address of the first byte of your data.

byte-count.rwu.r

Address of an unsigned word containing the number of bytes in the data buffer.

Description

Sends the data in your buffer to the remote host. This routine will not return until all of the data is copied to the

internal transmit buffer.

Usually data is immediately copied to the internal buffer, and control is returned to your application program.

However, if the internal transmit buffer is full, TEL_SEND_DATA waits until there is room in the internal

buffer before copying the data and returning. Buffer space becomes available as data is delivered to the remote

host.

IAC characters (ASCII 255) in your buffer are doubled and carriage returns not followed by line feeds have a

NUL character (ASCII 0) inserted following the carriage return as dictated by the TELNET protocol. When in

local binary mode (bit 0 is set in CCB_UFLAGS) a NUL character is not inserted after a carriage return.

Condition Values Returned

SS$_ILLSEQOP Connection not open

SS$_NORMAL Success, data was copied to internal buffer

SS$_THIRDPARTY Software was shut down (connection closed)

SS$_TIMEOUT Connection timed-out (connection closed)

SS$_VCBROKEN Connection broken (connection closed)

TELNET Library

277

TEL_SEND_URGENT
Sends TELNET commands to the remote host using TCP urgent notification. Commands include option

commands and control functions (such as BREAK and AYT).

Format

ret-status.wlc.v = TEL_SEND_URGENT(ccb-ptr,buffer,byte-count)

Arguments

ccb-ptr.ma.r

Address of a pointer to the CCB.

buffer.rbu.ra

Address of the first byte of your data. The commands must be complete and correct. Command data must

include the IAC character(s) where appropriate.

byte-count.rwu.r

Address of an unsigned word containing the number of bytes in the command buffer.

Description

This routine is similar to the TEL_SEND_COMMAND routine. The only difference is that

TEL_SEND_URGENT sends data using TCP urgent notification.

Condition Values Returned

SS$_ILLSEQOP Connection not open

SS$_NORMAL Success, data was copied to internal buffer

SS$_THIRDPARTY Software was shut down (connection closed)

SS$_TIMEOUT Connection timed-out (connection closed)

SS$_VCBROKEN Connection broken (connection closed)

TELNET Library

278

TEL_SET_CCB
Sets the value of a CCB field.

Format

ret-status.wlc.v = TEL_SET_CCB(ccb-ptr,field-code,value)

Arguments

ccb-ptr.ma.r

Address of a pointer to the CCB. The CCB does not need to be open.

field-code.rwu.r

Address of an unsigned word containing the symbolic value for the CCB field. The symbolic definitions for the

CCB fields are in the TCPWARE_INCLUDE:_CCBFLD.H file.

SeeConnection Control Block for a description of the CCB.

value.rz.r

Address of a variable that receives the value of the CCB field. The data type of this variable depends on the

field requested in field-code.

Note! When you set the CCD_ASTRTN or the CCB_CMDRTN field, make sure that value is the address of the

address of the routine.

Description

The CCB field you requested is set to the value specified in value. The data type of value should be the same as

the field you specified.

Condition Values Returned

SS$_BADPARAM Bad field-code specified

SS$_NORMAL Normal, successful completion

TELNET Library

279

User Command Processing

The user command processing routine is a routine that you write to process received TELNET commands.

TELNET commands include option-negotiating commands (such as WILL, WONT, DO, and DONT) and

control functions (such as AYT, EL, and BREAK).

The TEL_RECEIVE_DATA routine calls your processing routine to process TELNET commands. TELNET

commands are processed before any data is returned in the TEL_RECEIVE_DATA call. For example, the data

stream shown in Figure 9-1 is returned to you in three calls to TEL_RECEIVE_DATA.

Figure 9-1 TEL_RECEIVE_DATA Routine Returns

D represents data bytes and C represents TELNET commands. Your command processing routine is called four

times at the beginning of call 2 and twice at the beginning of call 3. This ensures that any change in the way

data following a TELNET command is to be interpreted can go into effect before the data is processed. Also if

data needs to be included in the data stream in place of the TELNET command, it can be inserted before the

beginning of the data buffer returned by the TEL_RECEIVE_DATA routine.

Your routine should have the following call format:

your-routine (ccb-ptr.ma.r,buffer.rbu.ra,byte-count.rwu.r)

The routine is called with the following inputs:

• CCB pointer, by reference

• Address of the command buffer, as an array of bytes

• Size of the command buffer, by reference to an unsigned word

There are no outputs or return values.

One complete command at a time is passed to your command processing routine. Commands are passed with

the leading IAC character removed from them. For example, the command IAC value is passed as value; IAC

DO ECHO is passed as DO ECHO, and IAC SB subnegotiation IAC SE is passed as SB. The subnegotiation

command data is returned as is. No processing of IAC characters is done.

SNMP Extendible Agent API Routines

280

Chapter 10 SNMP Extendible Agent API Routines

Introduction

This chapter is for application programmers. It describes the Application Programming Interface (API) routines

required for an application program to export private Management Information Bases (MIBs) using the

TCPware SNMP agent.

To be able to use your private Management Information Base (MIB) with TCPware's SNMP agent, develop a

shareable image that exports the following application programming interface routines, in addition to routines

you may need to access the MIB variables:

SnmpExtensionInit Called by the SNMPD agent after startup to initialize the MIB

subagent

SnmpExtensionInitEx Registers multiple subtrees with the subagent (called by the SNMPD

agent at startup only if implemented)

SnmpExtensionQuery Completes the MIB subagent query (called by the SNMPD agent to

handle a get, getnext, or set request)

SnmpExtensionTrap Sends an enterprise-specific trap (called by the SNMPD agent when

the subagent alerts the agent that a trap needs to be sent)

Note! The routine names used in this API are taken from the Microsoft SNMP Extension Agent for Windows NT.

The SNMP shareable images need to be configured for the SNMP agent to interact with them.

See the Configuration chapter of the Installation & Configuration Guide for details on configuring the SNMP

agent.

SNMP subagent developers should use the include file SNMP_COMMON.H found in the

TCPWARE_INCLUDE directory. This file defines the data structures the API uses.

For details on TCPware's SNMP agent, see Chapter 10, in the Management Guide.

Requirements

You require the following before using the SNMP extendible agent API routines:

• Working knowledge of SNMP; specifically the following RFCs:

SNMP Extendible Agent API Routines

281

– RFC 1155, Structure and Identification of Management Information for TCP/IP-based Internets

– RFC 1157, A Simple Network Management Protocol (SNMP)

– RFC 1213, Management Information Base for Network Management of TCP/IP-based internets: MIB-II

• Working knowledge of OpenVMS shareable images

Linking the Extension Agent Image

To link the Extension Agent Image you need to create an option file:

VAX

!Note: Exclude SnmpExtensionInitEx if it is not needed.

!See the definition of this routine.

!

UNIVERSAL=SnmpExtensionInit, -

SnmpExtensionQuery, -

SnmpExtensionTrap, -

SnmpExtensionInitEx

SYS$SHARE:VAXCRTL/SHARE

!

!List your object/library files here

Alpha and I64

!Note: Exclude SnmpExtensionInitEx if it is not needed.

!See the definition of this routine.

!

SYMBOL_VECTOR=(SnmpExtensionInit=PROCEDURE, -

SnmpExtensionQuery=PROCEDURE, -

SnmpExtensionTrap=PROCEDURE, -

SnmpExtensionInitEx=PROCEDURE)

!

!List your object/library files here

Your link statement should then look like this:

$ LINK /SHARE=image-name option-file/OPT

image-name is the name of the shareable image you want to build, and option-file is the option file mentioned

above.

Installing the Extension Agent Image

You should copy the shareable image you build for your SNMP subagent to the SYS$SHARE directory.

CAUTION! Since the shareable image is loaded into the same process address space as the SNMPD server, an

access violation by the subagent shareable image can crash the server application. Ensure the

integrity of your shareable image by testing it thoroughly. Shareable image errors can also corrupt the

server's memory space or may result in memory or resource leaks.

SNMP Extendible Agent API Routines

282

Sample Code and Data Structures

Sample code is provided in the SYS$COMMON:[TCPWARE.EXAMPLES] directory in the files

SNMP_SUBAGENT.C and SNMP_SUBAGENT.H.

SNMP_SUBAGENT.H also defines the following data structures found in the subroutines:

• AsnOBJID

• RFC1157VarBindList

Debugging Code

SNMP subagent developers can use a debug logical, TCPWARE_SNMP_DEBUG to set certain debug masks.

Define the logical as follows and use the mask values in Debugging Mask Values :

$ DEFINE SYSTEM TCPWARE_SNMP_DEBUG mask

Table 10-1 Debugging Mask Values

Mask Value Description

0010 Raw SNMP input

0020 Raw SNMP output

0040 ASN.1 encoded message input

0080 ASN.1 encoded message output

1000 SNMP Subagent Developer debug mask (prints events and statuses)

Subroutine Reference

The following pages include the subroutine descriptions.

SNMP Extendible Agent API Routines

283

SnmpExtensionInit
Initializes the SNMP subagent and registers the subagent in the SNMPD agent. The subagent calls this routine

at startup.

Format

status = SnmpExtensionInit (trap-alert-routine, time-zero-reference, trap-event, supported-view)

Return Values

TRUE Subagent initialized successfully

FALSE Subagent initialization failed

Arguments

trap-alert-routine

OpenVMS usage: address

type: integer

access: read only

mechanism: by value

Address of the routine the subagent should call when it is ready to send a trap.

time-zero-reference

OpenVMS usage: unsigned long

type: longword (unsigned)

access: read only

mechanism: by value

Time reference the SNMP agent provides, in hundredths of a second. Use C routines time() and difftime()

to calculate MIB uptime (in hundredths of a second).

SNMP Extendible Agent API Routines

284

trap-event

OpenVMS usage: unused

type: longword (unsigned)

access: write only

mechanism: by reference

This parameter is reserved for future use.

supported-view

OpenVMS usage: object identifier

type: AsnOBJID (see the SNMP_SUBAGENT.H file)

access: write only

mechanism: by reference

Prefix of the MIB tree the subagent supports.

SNMP Extendible Agent API Routines

285

SnmpExtensionInitEx
Registers multiple MIB subtrees with agent.

This routine is called multiple times, once for each MIB subtree that needs to be registered. If the routine passes

back the first or next MIB subtree, return with TRUE. If all the MIB subtrees were passed back, return with

FALSE.

Note! Only implement this routine if you have multiple MIB subtrees in your extendible agent. The TCPware SNMP
agent executes this routine if it exists and overwrites MIB information set by SnmpExtensionInit.

Format

status = SnmpExtentionInitEx (supported-view)

Return Values

TRUE Returning first or next MIB subtree

FALSE All MIB subtrees were passed back

Arguments

supported-view

OpenVMS usage: object identifier

type: AsnOBJID (see the SNMP_SUBAGENT.H file)

access: write only

mechanism: by reference

Prefix of the MIB tree the subagent supports.

Example

int SnmpExtensionInitEx (AsnOBJID *supportedView)

 {

 int view1[] = {1, 3, 6, 1, 4, 1, 12, 2, 1 };

 int view2[] = {1, 3, 6, 1, 4, 1, 12, 2, 2 };

 int view3[] = {1, 3, 6, 1, 4, 1, 12, 2, 5 };

 static int whichView = 0;

 switch (whichView++) {

 case 0:

 supportedView->idLength = 9;

 memcpy (supportedView->ids, view1, 9* sizeof (int));

SNMP Extendible Agent API Routines

286

 break;

 case 1:

 supportedView->idLength = 9;

 memcpy (supportedView->ids, view2, 9* sizeof (int));

 break;

 case 2:

 supportedView->idLength = 9;

 memcpy (supportedView->ids, view3, 9* sizeof (int));

 break;

 default:

 return (0);

 }

 return (1);

 }

SNMP Extendible Agent API Routines

287

SnmpExtensionQuery
Queries the SNMP subagent to get or set a variable in the MIB tree served by the subagent. This routine is

called by the SNMPD agent to handle a get, getnext, or set request.

Format

status = SnmpExtensionQuery (request-type, var-bind-list, error-status, error-index)

Return Values

TRUE Operation successfully completed

FALSE Operation could not be carried out by the subagent;

use error-status and error-index to provide more

information

Arguments

request-type

OpenVMS usage: byte

type: unsigned char

access: read only

mechanism: by value

Identifies the type of request GET, SET, or GET NEXT. These values are defined in

TCPWARE_ROOT:[TCPWARE.INCLUDE]SNMP_COMMON.H

var-bind-list

OpenVMS usage: user defined

type: RFC1157VarBindList (see the SNMP_SUBAGENT.H file)

access: read-write

mechanism: by value

SNMP Extendible Agent API Routines

288

The list of name-value pairs used in the request. For a GET request the value is filled by the subagent and for a

SET request, the value is be used to change the current variable value in the subagent.

error-status

OpenVMS usage: integer

type: integer

access: write only

mechanism: by reference

Status of a failed operation. See SNMP_COMMON.H for error value names.

error-index

OpenVMS usage: integer

type: integer

access: write only

mechanism: by reference

The index of the variable in the variable binding list for which the operation failed.

SNMP Extendible Agent API Routines

289

SnmpExtensionTrap
Sends a trap from the subagent. If the subagent wants to send a trap, it must first call the trap-alert-

routine (see the SnmpExtensionInit routine). The trap-alert-routine should be called with two parameters

(oid ids, oid idlength). For example:

If the Process Software’s DNS process wants to send trap information to all the communities that are interested

then the DNS server must be running and the objectids passed are 1, 3, 6, 1, 4, 1, 105, 1, 2, 1, 1, 1, 3, 1, and the

length of 14.

• 1,3,6,1,4,1 is the default prefix

• 105 is the enterprise id for Process Software

• 1,2,1,1,1 are the Mib object ids for the DNS process

• 3,1 are the objectids for DNSUpTrap

The SNMP agent trap-alert-routine creates a table of all received trap mibs. For each of these entries, the agent

then calls the subagent's SnmpExtensionTrap routine when it is ready to send the trap. Note that the SNMP

agent calls the subagent from inside the trap-alert-routine.

Format

status = SnmpExtensionTrap (enterprise, generic-trap, specific-trap, time-stamp, var-bind-list)

Return Values

TRUE More traps to be generated

FALSE No more traps to be generated

Arguments

enterprise

OpenVMS usage: array of object identifiers

type: AsnOBJID (see the SNMP_SUBAGENT.H file)

access: write only

mechanism: by reference

The prefix of the MIB for the enterprise sending the trap.

SNMP Extendible Agent API Routines

290

generic-trap

OpenVMS usage: integer

type: integer

access: write only

mechanism: by reference

The generic enterprise trap id(6).

specific-trap

OpenVMS usage: integer

type: integer

access: write only

mechanism: by reference

The enterprise-specific trap number.

Note! Since an enterprise can have many traps, the combination of enterprise id, generic trap, and specific trap

should give a unique identification for a trap.

time-stamp

OpenVMS usage: integer

type: integer (timeticks)

access: write only

mechanism: by reference

The time at which the trap was generated.

SNMP Extendible Agent API Routines

291

var-bind-list

OpenVMS usage: user defined

type: RFC1157VarBindList (see the SNMP_SUBAGENT.H file)

access: read-write

mechanism: by value

The list of name-value pairs. This list contains name and value of the MIB variable for which the trap is

generated.

Token Authentication API Functions

292

Chapter 11 Token Authentication API Functions

Introduction

This chapter is for application programmers. It describes the Application Programming Interface (API) to

enable Token Authentication between the TCPware ACE/Client and the Security Dynamics ACE/Server.

See Chapter 25, Token Authentication Management, in the Management Guide for details on the TCPware

ACE/Client, PASSCODES, and tokens.

The Token Authentication Application Programming Interface (API) on the TCPware ACE/Client includes the

following functions:

creadcfg Loads the Security Dynamics ACE/Server configuration file into memory

sd_auth Combines the functions of sd_check, sd_next, and sd_pin

sd_check Provides the PASSCODE collected from the user and the username for

authentication

sd_close Destroys the socket initialized using sd_init

sd_init Initializes the socket and makes a verification call to the Security Dynamics

ACE/Server

sd_next Handles the processing of a second tokencode when one is required to complete

an authentication

sd_pin Handles the case of a new PIN required at login

Token Authentication API Functions

293

Supported Languages

The TCPware ACE/Client API routines support the following programming languages:

BASIC C MACRO PL1

BLISS FORTRAN PASCAL

How to Use Functions
Use the creadcfg routine first. This routine loads the configuration file into memory. The sd_init routine

initializes the socket and makes a call to the server to verify communication. Use this call after a successful call

to creadcfg and before calling any other API function.

If your program performs the user input/output, use the three functions sd_check, sd_pin, and sd_next. Do

not use sd_check without the other two functions. Use the sd_auth routine instead of these previous three

routines only if stdin or stdout are available for user interaction. If using sd_auth, do not also use

sd_check, sd_pin, and sd_next.

Header Files

You must include the following header files in all programs:

• sdi_athd.h

• sdconf.h

Programs that use sd_check, sd_pin, and sd_next must also include these header files:

• sdi_size.h

• sdi_type.h

• sdi_defs.h

• sdacmvls.h

You must include a variable named configure in your code. Make the following global variable declaration:

union config_record configure;

The definition for config_record is included in the header files. The header files are located in the

TCPWARE_COMMON:[TCPWARE.INCLUDE] directory.

Activating Program Shareable Image

You can use one of two methods to activate the SYS$SHARE:TCPWARE_ACECLIENT_SHR.EXE shareable

image for your application:

• Link the SYS$SHARE:TCPWARE_ACECLIENT_SHR.EXE file so that it is activated at image creation

time. Add the following line in an .OPT file to link in the

SYS$SHARE:TCPWARE_ACECLIENT_SHR.EXE shareable image:

SYS$SHARE:TCPWARE_ACECLIENT_SHR.EXE/SHAREABLE

Token Authentication API Functions

294

See the OpenVMS Linker Utility Manual for details.

• Use the LIB$FIND_IMAGE_SYMBOL to activate the shareable image at runtime. Use the OpenVMS

LIB$FIND_IMAGE_SYMBOL runtime library to activate the shareable image at runtime.

See the OpenVMS RTL Library (LIB$) Manual for details.

Function Reference

The following pages include the function descriptions.

Token Authentication API Functions

295

creadcfg
Reads the ACE/Server configuration file stored in the TCPWARE_ACECLIENT_DATA_DIRECTORY data

directory and loads it into memory. The configuration file was created on the ACE/Server during installation

and should be copied to the ACE/Client data directory when installing the ACE/Client. The name of the

configuration file is SDCONF.REC.

Call this function before any other API function.

Format

int creadcfg(void)

Return Values

0 Successful

-1 Failure to load the configuration file (it may be missing or corrupted; do not call any

further function

Arguments

None

Token Authentication API Functions

296

sd_init
Initializes client/server communication by initializing the socket and making a call to the server to verify

communication.

Call this function after a successful call to creadcfg and before calling any other API function. Use sd_close

after the authentication process to close the socket initialized by sd_init.

Format

int sd_init(struct SD_CLIENT *sd)

Return Values

0 Successful

1 Client unable to communicate with the ACE/server (general communication or

configuration problem or the server is not running)

Argument

sd

Pointer to an SD_CLIENT structure. The structure must be set to 0 by the caller before calling sd_init.

Token Authentication API Functions

297

sd_auth
Performs all user input/output. This function performs SecurID

©
 authentication dialogues, including all

authentication prompts and responses (such as Enter PASSCODE or PASSCODE accepted).

Call this function only after sd_init was called successfully.

Format

int sd_auth(struct SD_CLIENT *sd)

Return Values

ACM_OK User successfully authenticated

ACM_ACCESS_DENIED User failed authentication

Argument

sd

Pointer to the SD_CLIENT structure. Specify the login ID by setting the username field in the data structure. If

not specified, the API tries to obtain it from the environment.

Token Authentication API Functions

298

sd_check
Performs user authentication by checking the validity of the PASSCODE entered by a user. The integrating

application must do all input/output because sd_check does not display the authentication prompts and

messages (unlike sd_auth).

Call this function only after sd_init was called successfully. Use sd_pin to complete the transaction.

Format

int sd_check(char *passcode, char *username, struct SD_CLIENT *sd)

Return Values

ACM_OK User successfully authenticated

ACM_ACCESS_DENIED User failed authentication

ACM_NEXT_CODE_REQUIRED Next tokencode required; the following field is set in the

SD_CLIENT structure: timeout (the number of

seconds the server waits for a user to respond to the

next-code prompt)

ACM_NEW_PIN_REQUIRED New PIN required; the following fields are set in the

SD_CLIENT structure:

system_pin—random PIN generated by the system

min_pin_length—minimum PIN length

max_pin_length—maximum PIN length

user_selectable—can have one of three values:

• CANNOT_CHOOSE_PIN

• MUST_CHOOSE_PIN

• USER_SELECTABLE

alphanumerics—PIN can contain letters

Arguments

passcode

Pointer to the NULL-terminated PASSCODE string. The PASSCODE must contain from 4 to 16 characters.

username

Pointer to the NULL-terminated username string. The username must contain fewer than 32 characters.

sd

Pointer to the SD_CLIENT structure.

Token Authentication API Functions

299

sd_next
Function used in response to an ACM_NEXT_CODE_REQUIRED return from sd_check. Performs the Next Code

operation that takes a second successive tokencode from a user and checks it validity. The integrating

application must do all input/output because sd_next does not display the Next Code prompt.

Call this function only in response to an ACM_NEXT_CODE_REQUIRED return from sd_check.

Format

int sd_next(char *nextcode, struct SD_CLIENT *sd)

Return Values

ACM_OK User successfully authenticated

ACM_ACCESS_DENIED User failed authentication

Arguments

nextcode

Pointer to the NULL-terminated PASSCODE string. The PASSCODE must contain from 4 to 8 characters.

sd

Pointer to the SD_CLIENT structure.

Token Authentication API Functions

300

sd_pin
Function used in response to an ACM_NEW_PIN_REQUIRED return from sd_check. Performs the New PIN

operation in which a new PIN is stored in a token record. The integrating application must do all input/output

because sd_pin does not display the New PIN prompts and messages.

Call this function only in response to an ACM_NEW_PIN_REQUIRED return from sd_check.

Note! Do not treat users as authenticated as soon as they complete the New PIN operation. Require them to

authenticate using the new PIN

Format

int sd_pin(char *pin, char canceled, struct SD_CLIENT *sd)

Return Values

ACM_NEW_PIN_ACCEPTED New PIN was accepted by the ACE/Server; the user should

now be required to authenticate with it

ACM_NEW_PIN_REJECTED New PIN was rejected by the ACE/Server; the PIN may not

have matched the parameters set in the return from
sd_check

Arguments

pin

Pointer to the NULL-terminated PIN string. The PIN must contain from 4 to 8 characters.

cancelled

Should equal 0 if a PIN is selected. If a token is in New PIN mode but you do not want to select the PIN at that

time, the value should be set to 1.

sd

Pointer to the SD_CLIENT structure.

Token Authentication API Functions

301

sd_close
Closes the socket opened by sd_init.

Call this function after attempting to authenticate the user regardless whether or not the authentication was

successful.

Format

void sd_close(void)

Return Values

None

Arguments

None

ONC RPC Fundamentals

302

Chapter 12 ONC RPC Fundamentals

Introduction

TCPware provides two sets of ONC RPC Services for network programming:

• ONC RPC Services to be used with the DEC C Socket Library for DEC C

• ONC RPC Services to be used with TCPware's Socket Library for VAX C or DEC C

This chapter is for RPC programmers. It provides basic information you need to know before using ONC RPC

Services to write distributed applications, including:

• What ONC RPC Services are

• What components are in ONC RPC Services

• How ONC RPC clients and servers communicate

• Important ONC RPC concepts and terms

What Are ONC RPC Services?

ONC RPC Services are a set of software development tools that allow you to build distributed applications on

OpenVMS systems. These services are part of TCP-OpenVMS.

TCPware provides two types of ONC RPC Services:

– ONC RPC used with VAX C and the TCPware Socket Library

– RPC XDR used with DEC C and the DEC C Socket Library

The bold letters in the above list show the conventions this book uses to distinguish between the two services.

TCPware Implementation

ONC RPC Services are based on the Open Network Computing Remote Procedure Call (RPC) protocols

developed by Sun Microsystems, Inc. These protocols are defined in the following Requests for Comments

(RFCs):

• RPC: Remote Procedure Call Protocol Specification, Version 2 (RFC 1057)

• XDR: External Data Representation Standard (RFC 1014)

Distributed Applications

A distributed application executes different parts of its programs on different hosts in a network. Computers on

the network share the processing workload, with each computer performing the tasks for which it is best

equipped.

ONC RPC Fundamentals

303

For example, a distributed database application might consist of a central database running on a VAX server

and numerous client workstations. The workstations send requests to the server. The server carries out the

requests and sends the results back to the workstations. The workstations use the results in other modules of the

application.

RPCs allow programs to invoke procedures on remote hosts as if the procedures were local. ONC RPC Services

hides the networking details from the application.

ONC RPC Services facilitates distributed processing because it relieves the application programmer of

performing low-level network tasks such as establishing connections, addressing sockets, and converting data

from one machine's format to another.

Components of ONC RPC Services

ONC RPC Services comprises the following components:

Run-time libraries (RTLs) RPCGEN compiler Port Mapper RPCINFO command

Run-Time Libraries (RTLs)

XDR: ONC RPC Services provides a single shareable RTL. The library contains:

• ONC RPC client and server routines

• XDR routines

ONC: ONC RPC Services provides two shareable RTLs, one for D_float numbers and one for G_float

numbers. Both libraries contain:

• ONC RPC client and server routines

• XDR routines

• Additional management routines that are unique to ONC RPC Services

The ONC RPC RTL Management Routines, Chapter 16, and the chapters that follow it describe the RTLs in

detail.

RPCGEN Compiler

RPCGEN is a compiler that creates the network interface portion of a distributed application. It effectively

hides from the programmer the details of writing and debugging low-level network interface code. The

RPCGEN Compiler, Chapter 14 , describes how to use RPCGEN.

Port Mapper

The Port Mapper helps ONC RPC client programs connect to ports that are being used by ONC RPC servers. A

Port Mapper runs on each host that implements ONC RPC Services. These steps summarize how the Port

Mapper works:

1. ONC RPC servers register with the Port Mapper by telling it which ports they are using.

2. When an ONC RPC client needs to reach a particular server, it supplies the Port Mapper with the numbers

of the remote program and program version it wants to reach. The client also specifies a transport protocol

(UDP or TCP). (Identifying Remote Programs and Procedures provides details on these numbers.)

3. The Port Mapper provides the correct port number for the requested service. This process is called binding.

ONC RPC Fundamentals

304

Once binding has taken place, the client does not have to call the Port Mapper for subsequent calls to the same

server. A service can register for different ports on different hosts. For example, a server can register for port

800 on Host A and port 1000 on Host B. The Port Mapper is itself an ONC RPC server and uses the ONC RPC

RTL. It uses the UDPA and TCPA protocols for transports. The Port Mapper plays an important role in

disseminating messages for broadcast RPC. The Port Mapper is part of the Network Control Process (NETCP).

See the Broadcast RPC section for details.

RPCINFO Command

Use the RPCINFO command to:

• Request a listing of all programs that are registered with the Port Mapper

• Call the null routine of any program

You enter this command at the DCL prompt. (See RPCINFO Utility in Chapter 13, Building Distributed

Applications, for details.)

Client-Server Relationship

In ONC RPC, the terms client and server do not describe particular hosts or software entities. Rather, they

describe the roles of particular programs in a given transaction. Every ONC RPC transaction has a client and a

server. The client is the program that calls a remote procedure; the server is the program that executes the

procedure on behalf of the caller.

A program can be a client or a server at different times. The program's role merely depends on whether it is

making the call or servicing the call.

External Data Representation (XDR)

External Data Representation (XDR) is a standard that solves the problem of converting data from one

machine's format to another.

ONC RPC Services uses the XDR data description language to describe and encode data. Although similar to C

language, XDR is not a programming language. It merely describes the format of data, using implicit typing.

XDR: External Data Representation Standard (RFC 1014) defines the XDR language.

ONC RPC Processing Flow

Remote and local procedure calls share some similarities. In both cases, a calling process makes arguments

available to a procedure. The procedure uses the arguments to compute a result, then returns the result to the

caller. The caller uses the results of the procedure and resumes execution.

Figure 2-1 shows the underlying processing that makes a remote procedure call different from a local call.

The following steps describe the processing flow during a remote procedure call:

2 The client program passes arguments to the client stub procedure. (See Chapter 14, RPCGEN Compiler, for

details on how to create stubs.)

2 The client stub marshals the data by:

• Calling the XDR routines to convert the arguments from the local representation to XDR

• Placing the results in a packet

ONC RPC Fundamentals

305

Using ONC RPC RTL calls, the client stub sends the packet to the UDP or TCP layer for transmission to the

server.

3 The packet travels on the network to the server, up through the layers to the server stub.

4 The server stub un-marshals the packet by converting the arguments from XDR to the local representation.

Then it passes the arguments to the server procedure.

Figure 12-1 ONC RPC Processing Flow

Local Calls versus Remote Calls

This section describes some of the ways in which local and remote procedure calls handle system crashes,

errors, and call semantics.

Handling System Crashes

Local procedure calls involve programs that reside on the same host. Therefore, the called procedure cannot

crash independently of the calling program.

Remote procedure calls involve programs that reside on different hosts. Therefore, the client program does not

necessarily know when the remote host has crashed.

Handling Errors

If a local procedure call encounters a condition that prevents the call from executing, the local operating system

usually tells the calling procedure what happened.

If a remote procedure call cannot be executed for some reason (e.g., errors occur on the network or remote

host), the client might not be informed of what happened. You may want to build a signaling or condition-

handling mechanism into the application to inform the client of such errors.

ONC RPC returns certain types of errors to the client, such as those that occur when it cannot decode

arguments. The RPC server must be able to return processing-related errors, such as those that occur when

arguments are invalid, to the client. However, the RPC server may not return errors during batch processing or

broadcast RPC.

Call Semantics

Call semantics determine how many times a procedure executes.

ONC RPC Fundamentals

306

Local procedures are guaranteed to execute once and only once.

Remote procedures have different guarantees, depending on which transport protocol is used.

XDR: The TCP transport guarantees execution once and only once as long as the server does not crash. The

UDP transport guarantees execution at least once. It relies on the XID cache to prevent a remote procedure from

executing multiple times.

ONC: The TCP and TCPA transports guarantee execution once and only once as long as the server does not

crash. The UDP and UDPA transports guarantee execution at least once. They rely on the XID cache to prevent

a remote procedure from executing multiple times.

See XID Cache for details on the XID cache.

Programming Interface

The ONC RPC RTL is the programming interface to RPC. You may think of this interface as containing

multiple levels.

The ONC RPC RTL reference chapters describe each routine.

The sample programs listed in the ONC RPC Sample Programs, Chapter 20, show how ONC RPC routines are

used at each level.

High-Level Routines

The higher-level RPC routines provide the simplest RPC programming interface. These routines call lower-

level RPC routines using default arguments, effectively hiding the networking details from the application

programmer.

When you use high-level routines, you sacrifice control over such tasks as client authentication, port

registration, and socket manipulation, but you gain the benefits of using a simpler programming interface.

Programmers using high-level routines can usually develop applications faster than they can using low-level

RPC routines.

You can use the RPCGEN compiler only when you use the highest-level RPC programming interface.

Mid-Level Routines

The mid-level routines provide the most commonly used RPC interface. They give the programmer some

control over networking tasks, but not as much control as the low-level routines permit.

For example, you can control memory allocation, authentication, ports, and sockets using mid-level routines.

The mid-level routines require you to know procedure, program, and version numbers, as well as input and

output types. Output data is available for future use. You can use the registerrpc and callrpc routines.

Low-Level Routines

The low-level routines provide the most complicated RPC interface, but they also give you the most control

over networking tasks such as client authentication, port registration, and socket manipulation. These routines

are used for the most sophisticated distributed applications.

ONC: These routines also allow you to use the TCPA and UDPA transports, as described below.

ONC RPC Fundamentals

307

Transport Protocols

XDR and ONC RPC Services use the transport protocols listed in Table 12-1. The RPC client and server must

use the same transport protocol for a given transaction.

Table 12-1 XDR and ONC RPC Transport Protocols

Protocols Characteristics

UDP (XDR

and ONC)

UDPA

(ONC only)

Unreliable datagram service

Connectionless

Used for broadcast RPC

Maximum broadcast message size in either direction on an Ethernet line: 1500

Execution is guaranteed at least once (see XID Cache)

Calls cannot be processed in batch

TCP (XDR

and ONC)

TCPA

(ONC only)

Reliable

Connection-oriented

Can send an unlimited number of bytes per RPC call

Execution is guaranteed once and only once

Calls can be processed in batch

No broadcasting

Note! XDR: You must use the DEC C Socket Library with ONC RPC Services.

Note! ONC: You must use the TCPware Socket Library with ONC RPC Services.

XID Cache

The XID cache stores responses the server has sent. When the XID cache is enabled, the server does not have to

recreate every response to every request. Instead, the server can use the responses in the cache. Thus, the XID

cache saves computing resources and improves the performance of the server.

XDR: Only the UDP transports can use the XID cache. The reliability of the TCP transport generally makes

the XID cache unnecessary. UDP is inherently unreliable.

ONC: Only the UDP, UDPA, and TCPA transports can use the XID cache. The reliability of the TCP and

TCPA transports generally makes the XID cache unnecessary. UDP is inherently unreliable.

Table 12-2 shows how the XID caches differ for the UDP and UDPA/TCPA transports.

Table 12-2 XID Cache Differences

UDP Transport UDPA/TCPA Transports

Places every response in the XID

cache

Allows the server to specify which responses are to

be cached, using the svcudpa_enablecache and

svctcpa_enablecache routines

XID cache cannot be disabled Requires you to disable the XID cache after use

Cache Entries

Each entry in the XID cache contains:

• The encoded response that was sent over the network

• The internet address of the client that sent the request

ONC RPC Fundamentals

308

• The transaction ID that the client assigned to the request

Cache Size

You determine the size of the XID cache. Consider these factors:

• How many clients are using the server.

• Approximately how long the cache should save the responses.

• How much memory you can allocate. Each entry requires about 8Kbytes.

The more active the server is, the less time the responses remain in the cache.

Execution Guarantees

As explained earlier in Local Calls Versus Remote Calls, remote procedures have different execution

guarantees, depending on which transport protocol is used. The XID cache affects the execution guarantee.

XDR: The TCP transport guarantees execution once and only once as long as the server does not crash. The

UDP transport guarantees execution at least once. If the XID cache is enabled, a UDP procedure is unlikely to

execute more than once.

ONC: The TCP and TCPA transports guarantee execution once and only once as long as the server does not

crash. The UDP and UDPA transports guarantee execution at least once. If the XID cache is enabled, a UDP or

UDPA procedure is unlikely to execute more than once.

Enabling XID Cache

XDR: Use the svcudp_enablecache routine to enable the XID cache. This routine is described in the ONC

RPC RTL reference chapters.

ONC: Use the svcudp_enablecache,svcudpa_enablecache and svctcpa_enablecache routines to

enable the XID cache. Use the svcudpa_freecache and svctcpa_freecache routines to disable the cache

for a UDPA/TCPA server. These routines are described in the ONC RPC RTL reference chapters.

Not enabling the XID cache saves memory.

Active Cache

The active cache maintains a list of active requests that the server is working on. All UDPA servers use the

active cache. A UDP server does not need an active cache because it can work on only one request at a time.

XDR: TCP servers do not need an active cache because they do not receive duplicate requests.

ONC: TCP and TCPA servers do not need an active cache because they do not receive duplicate requests.

When a UDPA server receives a request, it searches the active cache for a match. If no match is found, the

server places the request in the active cache and processes it. If a match is found, the server ignores the new

request because it is already processing the request. When the server sends a response, it removes the request

from the active cache and may add it to the XID cache.

Broadcast RPC

Broadcast RPC allows the client to send a broadcast call to all Port Mappers on the network and wait for

multiple replies from ONC RPC servers.

For example, a host might use a broadcast RPC message to inform all hosts on a network of a system shutdown.

ONC RPC Fundamentals

309

Table 12-3 shows the differences between normal RPC and broadcast RPC.

Table 12-3 Normal RPC vs Broadcast RPC

Normal RPC Broadcast RPC

Client expects one answer Client expects many answers

Can use TCP or UDP Requires UDP

Server always responds to errors Server does not respond to errors;

Client does not know when errors occur

Port Mapper is desirable, but not

required if you use fixed port numbers

Requires Port Mapper services

Broadcast RPC sends messages to only one port–the Port Mapper port–on every host in the network. On each

host, the Port Mappers pass the messages to the target ONC RPC server. The servers compute the results and

send them back to the client. See Broadcast RPC Sample Programs in Chapter 20, ONC RPC Sample

Programs, for a list of sample programs using broadcast RPC.

ONC RPC Batch Facilities

Normally, an ONC RPC client sends a remote procedure call, stops processing, and waits for the server to reply.

Some remote procedure calls, however, do not require a reply or acknowledgment. In these cases, the client

wastes time waiting for the server to respond.

ONC RPC batch facilities solve this problem by allowing the client to send many remote procedure calls

without waiting for replies.

ONC RPC Services performs batching by placing the client's messages to a particular server sequentially in a

pipeline. The server knows it does not have to respond to these messages. The client sends a normal RPC call at

the end of the batch sequence to "flush" the pipeline and let the server know there are no more batch calls.

Batching decreases the amount of communication overhead used by the client and server. The client can place

many call messages in a buffer and send them to the server in one system call. The client can generate new calls

while the server processes previous calls.

Batch Requirements

All ONC RPC batch calls must meet these requirements (see Batch RPC Sample Programs in Chapter 20, ONC

RPC Sample Programs, for an example of batching):

• Specify that the result of the call is to be decoded by the XDR routine at address zero

• Have a timeout of zero

• Use the TCP transport

Identifying Remote Programs and Procedures

The ONC RPC client must uniquely identify the remote procedure it wants to reach. Therefore, all remote

procedure calls must contain these three fields:

• A remote program number

• The version number of the remote program

• A remote procedure number

ONC RPC Fundamentals

310

Remote Program Numbers

A remote program is a program that implements at least one remote procedure. Remote programs are identified

by numbers that you assign during application development. Use Table 12-4 to determine which program

numbers are available. The numbers are in groups of hexadecimal 20000000.

Table 12-4 Remote Program Numbers

Range Purpose

0 to 1FFFFFFF Defined and administered by Sun Microsystems. Should be identical

for all sites. Use only for applications of general interest to the

Internet community.

20000000 to 3FFFFFFF Defined by the client application program. Site-specific. Use

primarily for new programs.

40000000 to 5FFFFFFF Use for applications that generate program numbers dynamically.

60000000 to FFFFFFFF Reserved for the future. Do not use.

Remote Version Numbers

Multiple versions of the same program may exist on a host or network. Version numbers distinguish one version

of a program from another. Each time you alter a program, remember to increment its version number.

Remote Procedure Numbers

A remote program may contain many remote procedures. Remote procedures are identified by numbers that you

assign during application development. Follow these guidelines when assigning procedure numbers:

• Use 1 for the first procedure in a program. (Procedure 0 should do nothing and require no authentication to

the server.)

• For each additional procedure in a program, increment the procedure number by one.

Additional Terms

Before writing RPC applications, you should be familiar with the terms in Table 12-5.

Table 12-5 Additional Terms

XDR and ONC

Term Definition

Channel An OpenVMS term referring to a logical path that connects a process to a

physical device, allowing the process to communicate with that device. A

process requests OpenVMS to assign a channel to a device. Refer to HP’s

documentation for more information on channels.

ONC RPC Fundamentals

311

Client handle Information that uniquely identifies the server to which the client is sending the

request. Consists of the server's host name, program number, program version

number, and transport protocol.

See the following routines in the ONC RPC RTL Client Routines, Chapter 16:

XDR ONC

Term Definition Term Definition

Client handle authnone_create

authunix_create

authunix_create_default

clnt_create

clnttcp_create

clntudp_create

clnt_perror

Client handle authnone_create

authunix_create

authunix_create_default

clnt_create

clnttcp_create

clntudp_create

clnt_call

clnt_control

clnt_destroy

clnt_freeres

clnt_geterr

clnt_perror

XDR and ONC

Term Definition

Port An abstract point through which a datagram passes from the host layer to the

application layer protocols.

XDR

Term Definition

Server handle Information that uniquely identifies the server. Content varies according to the

transport being used. See the following routines in Chapter 18, ONC RPC RTL

Server Routines:

svcudp_create svctcp_create svc_destroy

svc_freeargs svc_getargs svc_getcaller

svc_register svc_sendreply svcerr_ routines

ONC RPC Fundamentals

312

ONC

Term Definition

Server handle Information that uniquely identifies the server. Content varies according to the

transport being used. See the following routines in Chapter 18, ONC RPC RTL

Server Routines:

svcudp_create svcudpa_create svctcp_create

svctcpa_create svc_destroy svc_freeargs

svc_getargs svc_register svc_sendreply

svcerr_ routines

XDR and ONC

Term Definition

Socket An abstract point through which a process gains access to the Internet. A

process must open a socket and bind it to a specific destination. Note: The

TCPware Socket Library must be used with ONC RPC Services.

Building Distributed Applications with RPC

313

Chapter 13

Building Distributed Applications with RPC

Introduction

This chapter is for RPC programmers. It explains:

• What components a distributed application contains

• How to use ONC RPC to develop a distributed application, step by step

• How to use the RPCINFO utility

Distributed Application Components

Table 13-1 lists the components of a distributed application.

Table 13-1 Application Components

Component Description

Main program (client) An ordinary main program that calls a remote procedure as if local

Network interface Client and server stubs, header files, XDR routines for input arguments

and results

Server procedure Carries out the client's request (at least one is required)

These components may be written in any high-level language. The ONC RPC Run-Time Library (RTL)

routines are written in C language.

Building Distributed Applications with RPC

314

What You Need to Do

The following steps summarize what you need to do to build a distributed application:

1 Design the application.

2 Write an RPC interface definition. Compile it using RPCGEN, then edit the output files as necessary. (This

step is optional. An RPC interface definition is not required. If you do not write one, proceed to step 3.)

3 Write any necessary code that RPCGEN did not generate.

4 Compile the RPCGEN output files, server procedures, and main program using the appropriate language

compiler(s).

5 Link the object code, making sure you link in the ONC RPC RTL.

6 Start the Port Mapper on the server host.

7 Execute the client and server programs.

Step 1: Design the Application

You must write a main (client) program and at least one server procedure. The network interface, however, may

be hand-written or created by RPCGEN. The network interface files contain client and server stubs, header

files, and XDR routines. You may edit any files that RPCGEN creates.

When deciding whether to write the network interface yourself, consider these factors:

Is execution time critical? Your hand-written code may execute faster than code that

RPCGEN creates.

Which RPC interface layer

do you want to use?

RPCGEN permits you to use only the highest layer interface.

If you want to use the lower layers, you must write original

code. The ONC RPC Fundamentals, Chapter 12, describes the

characteristics of each RPC interface layer.

Which transport protocol

do you want to use?

ONC: If you use an asynchronous transport (UDPA or TCPA), you must either write original code for the

server stubs or edit the RPCGEN output.

You may write your own XDR programs, but it is usually best to let RPCGEN handle these.

Step 2: Write and Compile the Interface Definition

An interface definition is a program the RPCGEN compiler accepts as input. The RPCGEN Compiler, Chapter

14, explains exactly what interface definitions must contain.

Interface definitions are optional. If you write the all of the network interface code yourself, you do not need an

interface definition.

You must write an interface definition if you want RPCGEN to generate network interface code.

After compiling the interface definition, edit the output file(s).

Building Distributed Applications with RPC

315

If you are not writing an interface definition, skip this step and proceed to step3.

Step 3: Write the Necessary Code

Write any necessary code that RPCGEN did not create for you. Table 13-2 lists the texts you may use as

references.

Table 13-2 Coding References

Reference Purpose

RFC 1057 Defines the RPC language. Use for writing interface

definitions.

RFC 1014 Defines the XDR language. Use for writing XDR filter

routines.

The ONC RPC RTL Client

Routines chapter and those

that follow

Defines each routine in the ONC RPC RTL. Use for writing

stub procedures and XDR filter routines.

Building a Structure

If an input argument or result is not an integer, you need to create a structure for it in the RPCGEN input file.

RPCGEN converts the structure to C format and creates XDR code to encode and decode it.

The TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]GETSYI.X file provides a sample interface definition

containing a structure.

Step 4: Compile All Files

Compile the RPCGEN output files, server procedures, and main program separately using the appropriate

language compiler(s):

XDR: DEC C (VAX, Alpha and I64):

$ CC /STANDARD=RELAXED /WARNING=DISABLE=(IMPLICITFUNC) filename.C

ONC: VAX C:

$ CC filename.C

ONC: DEC C (VAX):

$ CC /STANDARD=VAXC filename.C

ONC: DEC C (Alpha and I64):

$ CC /STANDARD=VAXC /NOMEMBER_ALIGN /ASSUME=NOALIGN filename.C

FORTRAN (VAX):

$ FORTRAN filename.FOR

FORTRAN (Alpha and I64):

$ FORTRAN /NOALIGN /WARNING=(DECLARATIONS,ALIGN) filename.FOR

Building Distributed Applications with RPC

316

Step 5: Link the Object Code

Link the object code files. Make sure you link in the ONC RPC RTL. Use the following command:

XDR: DEC C (VAX, Alpha and I64):

$ LINK filenames, SYS$INPUT /OPTIONS

UCX$RPCXDR_SHR /SHARE

SYS$SHARE:DECC$SHR /SHARE

Ctrl/Z

ONC: VAX:

$ LINK filenames, SYS$INPUT /OPTIONS

SYS$SHARE:VAXCRTL/SHARE

SYS$SHARE:TCPWARE_RPCLIB_SHR/SHARE

Ctrl/Z

ONC: Alpha and I64:

$ LINK filenames, SYS$INPUT /OPTIONS

UCX$RPCXDR_SHR /SHARE

SYS$SHARE:DECC$SHR /SHARE

Ctrl/Z

After entering the command, press Ctrl/Z.

To avoid repetitive data entry, you may create an OpenVMS command procedure to execute these commands.

Step 6: Start the Port Mapper

The Port Mapper must be running on the server host. If it is not running, use the NETCU ADD SERVICE

command to start it. See Chapter 2, NETCU Commands of the NETCU Command Reference manual for details

on this command.

Step 7: Execute the Client and Server Programs

Perform these steps:

1 Run the server program interactively to debug it, or using the /DETACHED qualifier. Refer to HP’s

documentation for details.

2 Run the client main program.

Using Asynchronous Transports

ONC: ONC RPC provides two asynchronous transport protocols: TCPA and UDPA. These protocols allow

you to write multi-threaded servers that can process multiple requests in parallel.

Only an asynchronous service can benefit from using an asynchronous transport.

For example, you would use an asynchronous transport for a service that performs a lot of asynchronous file I/O

by issuing QIOs. You would not use an asynchronous transport for a service that performs a lot of synchronous

file I/O.

Client processes cannot use TCPA and UDPA.

The asynchronous transport protocols are specific to TCPware.

Building Distributed Applications with RPC

317

The ONC RPC Fundamentals, Chapter 12, explains the differences between each transport protocol.

Writing an Asynchronous Server

ONC: This section explains how to write an asynchronous server.

Before You Begin

1 Decide how many threads the server will support. The number of threads determines the number of requests

the server can handle in parallel. The server can parallel process as many requests as it has threads.

2 Choose the TCPA and/or UDPA transport protocol. (A server can support both.)

3 Determine:

• The size of the XID cache. Generally, this is at least the number of UDPA or TCPA threads.

• Which procedures, if any, the XID cache will contain responses for.

Writing the Code

ONC: Write a program that performs the following steps:

1 To set up the server:

a Call svcudpa_create and/or svctcpa_create for each thread. Save the return values for later use.

Use the svc_getchan routine after the first call and specify the returned value in subsequent calls.

b If you are enabling the XID cache, call svcudpa_enablecache and/or svctcpa_enablecache for

each thread. Use the result of the first call to svcudpa_enablecache/svctcpa_enablecache as

input to successive calls to that routine, so that all threads use the same cache.

c Call the svc_register routine once for each transport to register the service.

2 Put the main code in "hibernation" by calling SYS$HIBER instead of svc_run. SYS$HIBER is an

OpenVMS system service that accepts no input arguments.

3 To shut down the server:

a Perform any shutdown steps that are specific to your server.

b Call svctcpa_shutdown once for all TCPA threads.

c Call svcudpa_shutdown once for all UDPA threads.

d Call svc_destroy once for each thread.

How Asynchronous Transports Affect Memory

ONC: Asynchronous transports use more memory than synchronous transports because each service has more

than one thread.

When TCPA receives requests greater than 4Kbytes, it uses significantly more memory than TCP uses for the

same size requests. TCP reads in 4Kbytes of data, processes the data, then reads more data as necessary. TCPA

reads all of the data before calling the server dispatch routine.

Asynchronous System Traps

ONC: All UDPA and TCPA servers use asynchronous system traps (ASTs). Refer to the Guide to VMS

Programming Resources for complete information on ASTs.

When using ASTs, follow these guidelines:

• Do not permit the main program to disable ASTs for long periods of time. If the program disables ASTs

before it calls SYS$HIBER, the server does not respond to requests.

Building Distributed Applications with RPC

318

• The AST quota for the server process must allow at least one AST for each thread.

• The dispatch routine is called as a user-mode AST. This means a program cannot do synchronous waiting

when an AST is required to wake up the program.

• Only one AST can be active at a time.

RPCINFO Utility

RPCINFO is an ONC RPC utility that allows you to:

• Request a listing of all programs registered with a Port Mapper.

• Call the NULL routine of any program

RPCINFO supports both the UDP and TCP protocols.

Requesting a Program Listing

To request a listing of all programs that are registered with the Port Mapper, enter the RPCINFO command in

the following format at the DCL prompt:

RPCINFO -p [-u | -t][host-name]

-p Calls the Port Mapper.

-u Uses the UDP transport to send the request. This is the default if you do not

specify a transport.

-t Uses the TCP transport to send the request.

host-name Specifies the domain name of the host on which the Port Mapper resides.

If you omit this parameter, RPCINFO uses the name of the local host.

Example 13-1 shows an example.

Example 13-1 Sample RPCINFO Program Listing

$ rpcinfo -p hermes

 Program Version Protocol Port

 ------- ------- -------- ----

 100000 2 udp 111 rpcbind

 100000 2 tcp 111 rpcbind

 100005 1 udp 2049 mountd

Calling a NULL Routine

To call the NULL routine of a program, enter the RPCINFO command in the following format at the DCL

prompt:

RPCINFO [-u | -t]host-nameprogram[version]

Building Distributed Applications with RPC

319

-u Uses the UDP transport to send the request.

 If you do not specify a trans port, this is the default.

-t Uses the TCP transport to send the request.

host-name Specifies the domain name of the target host.

program Specifies the program number of the target program.

version Specifies the version number of the target program.

If you omit the version, the default is 1.

For example, suppose you enter the following command:

RPCINFO ETA 100000 2

The following message displays if the call completes successfully:

Version 2 of program 100000 successfully called

RPCGEN Compiler

320

Chapter 14 RPCGEN Compiler

Introduction

This chapter is for RPC programmers.

What Is RPCGEN?

RPCGEN is the RPC Protocol Compiler. This compiler creates the network interface portion of a distributed

application, effectively hiding from the programmer the details of writing and debugging low-level network

interface code.

You are not required to use RPCGEN when developing a distributed application. If speed and flexibility are

critical to your application, you can write the network interface code yourself, using ONC RPC Run-Time

Library (RTL) calls where they are needed.

Compiling with RPCGEN is one step in developing distributed applications. See Chapter 13, Building

Distributed Applications, for a complete description of the application development process.

RPCGEN allows you to use the highest layer of the RPC programming interface. The ONC RPC Fundamentals,

Chapter 12, provides details on these layers.

Software Requirements

XDR: The following software must be installed on your system before you can use RPCGEN:

VMS Version 5.0 or later DEC C compiler Version 3.2 or later

ONC: The following software must be installed on your system before you can use RPCGEN:

VMS Version 5.0 or later VAX C compiler Version 3.0 or later

Input Files

The RPCGEN compiler accepts as input programs called interface definitions, written in RPC

Language(RPCL), an extension of XDR language. RFC 1057 and RFC 1014 describe these languages in detail.

RPCGEN Compiler

321

An interface definition must always contain the following information:

• Remote program number

• Version number of the remote program

• Remote procedure number(s)

• Input and output arguments

Example 14-1 shows a sample interface definition from the

TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]PRINT.X file.

Example 14-1 Interface Definition

/*

** RPCGEN input file for the print file RPC batching example.

**

** This file is used by RPCGEN to create the files PRINT.H and PRINT_XDR.C

** The client and server files were developed from scratch.

*/

const MAX_STRING_LEN = 1024; /* maximum string length */

/*

** This is the information that the client sends to the server

*/

struct a_record

{

 string ar_buffer< MAX_STRING_LEN>;

};

program PRINT_FILE_PROG

{ version PRINT_FILE_VERS_1

 {

 void PRINT_RECORD(a_record) = 1;

 u_long SHOW_COUNT(void) = 2;

 } = 1;

} = 0x20000003;

/* end file PRINT.X */

The default extension for RPCGEN input files is .X.

You do not need to call the ONC RPC RTL directly when writing an interface definition. RPCGEN inserts the

necessary library calls in the output file.

Output Files

RPCGEN output files contain code in C language. Table 14-1 lists the RPCGEN output files and summarizes

their purpose. You can edit RPCGEN output files during application development. The

TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC] directory provides sample RPCGEN output files.

RPCGEN Compiler

322

Table 14-1 RPCGEN Output Files

File Purpose

Client and server

stub calls

Interface between the network and the client and server programs. Stubs use

RPC RTL to communicate with the network.

XDR routines Convert data from a machine's local data format to XDR for mat, and vice

versa.

Header Contains common definitions, such as those needed for any structures being

passed.

Invoking RPC explains how to request specific output files.

Table 14-2 shows the conventions you should use to name output files.

Table 14-2 RPCGEN File Naming Conventions

File Output Filename

Client stub inputname_CLNT.C

Server stub inputname_SVC.C

Header file inputname.H

XDR filter routines inputname_XDR.C

– inputname is the name of the input file. For example, if the input file is TEST.X, the server stub is

TEST_SVC.C.

When you use the RPCGEN command to create all output files at once, RPCGEN creates the output filenames

listed in RPCGEN File Naming Conventions by default. When you want to create specific kinds of output files,

you must specify the names of the output files in the command line.

Preprocessor Directives

RPCGEN runs the input files through the C preprocessor before compiling. You can use the macros listed in

Table 14-3 with the #ifdef preprocessor directive to indicate that specific lines of code in the input file are to

be used only for specific RPCGEN output files.

Table 14-3 Macros

File Macro

Client stub RPC_CLNT

Server stub RPC_SVC

Header file RPC_HDR

XDR filter routines RPC_XDR

RPCGEN Compiler

323

Invoking RPCGEN

This section explains how to invoke RPCGEN to create:

• All output files at once

• Specific output files

• Server stubs for either the TCP or UDP transport

Creating All Output Files at Once

This command creates all four RPCGEN output files at once:

RPCGEN input

whereinput is the name of the file containing the interface definition.

In the following example, RPCGEN creates the output files PROGRAM.H, PROGRAM_CLNT.C,

PROGRAM_SVC.C, and PROGRAM_XDR.C:

RPCGEN PROGRAM.X

RPCGEN Compiler

324

Creating Specific Output Files

This command creates only the RPCGEN output file that you specify:

RPCGEN {-c |-h | -l | -m}[-o output]input

-c Creates an XDR filter file (_XDR.C)

-h Creates a header file (.H)

-l Creates a client stub (_CLNT.C)

-m Creates a server stub (_SVC.C) that uses both the UDP and TCP transports

-o Specifies an output file (or the terminal if no output file is given)

output Name of the output file

input Name of an interface definition file with a .X extension

Follow these guidelines:

• Specify just one output file (-c, -h, -l, or -m) in a command line

• If you omit the output file, RPCGEN sends output to the terminal screen

Examples:

1 RPCGEN -h PROGRAM

RPCGEN accepts the file PROGRAM.X as input and sends the header file output to the screen, because no

output file is specified.

2 RPCGEN -l -o PROGRAM_CLNT.C PROGRAM.X

RPCGEN accepts the PROGRAM.X file as input and creates the PROGRAM_CLNT.C client stub file.

3 RPCGEN -m -o PROGRAM_SVC.C PROGRAM.X

RPCGEN accepts the PROGRAM.X file as input and creates the PROGRAM_SVC.C server stub file. The

server can use both the UDP and TCP transports.

Creating Server Stubs for TCP or UDP Transports

This command creates a server stub file for either the TCP or UDP transport:

RPCGEN -s {udp | tcp}[-o output]input

-s Creates a server (_SVC.C) that uses either the UDP or TCP transport (with -s, you

must specify either udp or tcp; do not also use -m)

udp Creates a UDP server

RPCGEN Compiler

325

tcp Creates a TCP server

-o Specifies an output file (or the terminal if no output file is given)

output Name of the output file

input Name of an interface definition file with a .X extension

If you omit the output file, RPCGEN sends output to the terminal screen.

In this example, RPCGEN accepts the PROGRAM.X file as input and creates the PROGRAM_SVC.C output

file, containing a TCP server stub:

RPCGEN -s tcp -o PROGRAM_SVC.C PROGRAM.X

Error Handling

RPCGEN stops processing when it encounters an error. It indicates which line the error is on.

Restrictions

RPCGEN does not support the following:

• The syntax int x, y; . You must write this as int x; int y;

• Asynchronous transports

RPC RTL Management Routines

326

Chapter 15 RPC RTL Management Routines

Introduction

This chapter is for RPC programmers. It introduces RPC Run-Time Library (RTL) conventions and documents

the management routines in the RPC RTL. These routines are the programming interface to RPC.

Management Routines

There are two types of services with RTL:

– ONCRPC used with VAX C and the TCPware Socket Library

– RPCXDR used with DEC C and the HP Socket Library

The bold letters in the above list show the conventions this book uses to distinguish between the two services.

The RPC RTL contains:

• RPC management routines

• DEC C: RPC client and server routines for the UDP and TCP transport layers

• VAX C: RPC client and server routines for the UDP, UDPA, TCP, and TCPA transport layers

• DEC C: On VAX, Alpha and I64 systems, RPC provides a single shareable image accessed via the

UCX$RPCXDR_SHR logical. This shareable image contains routines for all of the DEC C floating-point

types. The correct routines will automatically be called based on the compiler options used to compile the

RPC application. See the DEC C documentation for how to use the floating-point compiler options.

• VAX C: On VAX systems, RPC provides two shareable RTLs:

– A D_float library, for standard double-precision real numbers between 10
-38

 and 10
+38

. This library is in

the SYS$SHARE:TCPWARE_RPCLIB_SHR.EXE file.

– A G_float library, for double-precision real numbers between 10
-308

 and 10
+308.

This library is in the

SYS$SHARE:TCPWARE_RPCLIBG_SHR.EXE file.

• DEC C: On Alpha and I64 systems, ONC RPC provides three shareable RTLs:

– A D_float library, for standard double-precision real numbers between 10
-38

 and 10
+38

. This library is in

the SYS$SHARE:TCPWARE_RPCLIBD_SHR.EXE file.

– A G_float library, for double-precision real numbers between 10
-308

 and 10
+308.

This library is in the

SYS$SHARE:TCPWARE_RPCLIB_SHR.EXE file.

– A T_float library, for IEEE double-precision real numbers between 10
-308

 and 10
+308.

This library is in the

SYS$SHARE:TCPWARE_RPCLIBT_SHR.EXE file.

• VAX C: Invoke these libraries by using the appropriate qualifiers when you compile your application

programs. See your HP VAX documentation for instructions on compiling.

Chapter 13, Building Distributed Applications with RPC, explains how to link in the RPC RTL.

RPC RTL Management Routines

327

Routine Name Conventions

In this chapter, all routines are documented according to their standard UNIX names. Routines that are unique

to TCPware have UNIX-style names.

If you are writing code in C language, you may use the routine names used in this chapter. If you are writing

code in a different language, however, you must use the TCPware names defined in the

SYS$COMMON:[TCPWARE.INCLUDE.RPCOLD]:ONCRPC_FUNC.H file. These names all begin with the

letters ONCRPC.

Header Files

All RPC programs include the file named RPC.H. Locations for this file are:

– VAX C: SYS$COMMON:[TCPWARE.INCLUDE.RPCOLD]: RPC.H

– DEC C: UCX$RPC:RPC.H

The RPC.H file includes the files listed in Table 15-1.

Table 15-1 Header Files Included In RPC.H

Filename Purpose

Pertains to DEC C and VAX C

AUTH.H Used for authentication.

AUTH_UNIX.H Contains XDR definitions for UNIX-style authentication.

CLNT.H Contains various RPC client definitions.

IN.H Defines structures for the internet and socket addresses (in_addr and

sockaddr_in). This file is part of the C Socket Library.

RPC_MSG.H Defines the RPC message format.

SVC.H Contains various RPC server definitions.

SVC_AUTH.H Used for server authentication.

TYPES.H Defines UNIX C data types.

XDR.H Contains various XDR definitions.

Pertains to VAX C only
1

ONCRPC_CONST.H Defines RPC characteristics and other constants.

ONCRPC_FUNC.H Maps ONCRPC routine names with their UNIX counterparts.

ONCRPC_STRUCT.H Defines structures for the RPC client and server counters.

Pertains to DEC C only

NETDB.H Defines structures and routines to parse /etc/rpc.

There is an additional header file not included by RPC.H that is used by xdr_pmap and xdr_pmaplist routines.

The file name is pmap_prot.h, and the location is:

1
 Specific to the ONCRPC library for TCPware.

RPC RTL Management Routines

328

VAX C: SYS$COMMON:[TCPWARE.INCLUDE.RPCOLD]:PMAP_PROT.H

DEC C: UCX$RPC:PMAP_PROT.H

Boolean Values

Many ONC RPC routines return TRUE or FALSE values. In C, FALSE is zero, and TRUE is any other value.

TCPware/Sun Implementation Differences

ONC RPC Services are based on the Open Network Computing Remote Procedure Call protocols developed by

Sun Microsystems, Inc. This section lists the ways in which the TCPware's implementation of ONC RPC

Services differs from Sun's UNIX implementation of RPC.

• DEC C: TCPware provides the following management routines:

get_myaddress getrpcbynumber getrpcport

• VAX C: TCPware provides the following management routines:

ONCRPC_GET_CHAR ONCRPC_SET_CHAR ONCRPC_GET_STATS

These routines allow you to retrieve and maintain information that describes how a process is using ONC

RPC. Sun does not provide these routines.

• VAX C: TCPware does not support the following Sun routines:

svcstdio_create svcraw_create clntraw_create

These routines deal with transports that the OpenVMS environment does not support.

• The svcfd_create routine provided by TCPware supports only TCP sockets. The Sun version supports file

descriptors, including stdin and stdout.

• In TCPware, the global variable svc_fdset contains an array of structures, where each element is a socket

pointer and a service handle. Sun implements this variable as a bit mask with an associated array of service

handles.

• The authunix_create_default routine provided by TCPware creates credentials based on the VAX C

geteuid and getegid routines.

• TCPware provides the pmap_freemaps routine to free the memory that was allocated by the

pmap_getmaps routine. Sun requires the programmer to know the internals of the pmaplist structure and

free the memory himself.

• TCPware provides the xdr_netobj routine. This routine encodes and decodes netobj, an aggregate data

structure that is opaque and contains a counted array of 1024 bytes.

• TCPware provides the xdr_netobj routine. This routine encodes and decodes netobj, an aggregate data

structure that is opaque and contains a counted array of 1024 bytes.

• ONC: TCPware provides asynchronous transports, with the following routines:

svctcpa_create svctcpa_getxdrs svcudpa_enablecache

RPC RTL Management Routines

329

svctcpa_shutdown svcudpa_bufcreate svcudpa_freecache

svctcpa_enablecache svcudpa_create svcudpa_getxdrs

svctcpa_freecache svcudpa_shutdown

Sun does not provide asynchronous transports.

• VAX C: TCPware provides the following macros:

svc_getchan svc_getport

Sun does not provide these macros.

• The TCPware RPCGEN compiler gives the input file a default extension of .X if no extension is specified.

The Sun RPCGEN compiler requires you to enter the .X extension.

• The TCPware RPCGEN compiler accepts input only from a file, not from the terminal. The Sun RPCGEN

compiler accepts both types of input.

• The TCPware RPCINFO command supports the TCP and UDP protocol for any request. The Sun version

supports only the UDP protocol when you use RPCINFO to request a Port Mapper listing.

RPC RTL Management Routines

330

Management Routines

RPC management routines retrieve and maintain information that describes how a process is using RPC. This

section describes each management routine and function in detail. The following information is provided for

each routine:

• Format

• Arguments

• Description

• Diagnostics, or status codes returned, if any

RPC RTL Management Routines

331

get_myaddress
DEC C and VAX C Returns the internet address of the local host.

Format

#include

void get_myaddress (struct sockaddr_in *addr);

Argument

addr

Address of a sockaddr_in structure that will be loaded with the host internet address. The port number is

always set to htons(PMAPPORT).

Description

The get_myaddress routine returns the internet address of the local host without doing any name translation

or DNS lookups.

RPC RTL Management Routines

332

getrpcbynumber
DEC C Gets an RPC entry.

Format

#include

struct rpcent *getrpcbynumber(number)

int number;

Argument

number

Program name or number.

Description

The getrpcbynumber routine returns a pointer to an object with the following structure containing the broken-

out fields of a line in the RPC program number database, /etc/rpc.

struct rpcent {

 char *r_name; /* name of server for this RPC program */

 char **r_aliases; /* alias list */

 long r_number; /* RPC program number */

 };

The members of this structure are:

r_name Name of the server for this RPC program

r_aliases Zero-terminated list of alternate names for the RPC

program

r_number RPC program number for this service

The getrpcbynumber routine sequentially searches from the beginning of the file until a matching RPC

program name or program number is found, or until an EOF is encountered.

Diagnostics

A NULL pointer is returned on EOF or error.

RPC RTL Management Routines

333

getrpcport
DEC C Gets an RPC port number.

Format

int getrpcport(host, prognum, versnum, proto)

char *host;

int prognum, versnum, proto;

Arguments

host

Host running the RPC program.

prognum

Program number.

proto

Protocol name. Must be IPPROTO_TCP or IPPROTO_UDP.

Description

The getrpcport routine returns the port number for version versnum of the RPC program prognum running

on host and using protocol proto.

It returns 0 if it cannot contact the portmapper, or if prognum is not registered. If prognum is registered but not

with versnum, it still returns a port number (for some version of the program), indicating that the program is

indeed registered. The version mismatch is detected on the first call to the service.

RPC RTL Management Routines

334

ONCRPC_GET_CHAR
VAX C Returns the characteristic values of an RPC client or server process.

Format

u_long ONCRPC_GET_CHAR(code, value)

u_long code;

void *value;

Arguments

code

Characteristic being returned. The following text describes each code.

RPCCHAR_ _AC_SIZE

Alters the number of entries in the active cache. This code is for UDPA transports only. If you try to set

RPCCHAR__AC_SIZE when a UDPA transport is active, then RPC_SET_CHAR returns the SS$_DEVACTIVE

error code. The type is u_short *value. The default is 20.

RPCCHAR_ _CHECKSUM

Enables or disables checksums for outgoing packets. The receiver checks packets if the sender generates a

checksum. Disabling checksums improves performance, but reduces data integrity. This code is for UDPA

servers only. Valid values are RPCCKSUM__ENABLE and RPCCKSUM__DISABLE. The type is u_long *value.

The default is RPCCKSUM__ENABLE.

RPCCHAR_ _DEBUG

Enables the printing of messages that indicate what RPC is doing. All logging messages go to SYS$OUTPUT.

The type is u_long *value. The default is 0.

These are the mask values for RPCCHAR__DEBUG:

RPCDBG_ _XDR Prints a message indicating which XDR routines are being used.

RPCDBG_ _XID Prints a message each time the XID cache is referenced. The

message indicates the type of operation being per formed on the

XID cache. For UDP and UDPA servers only.

RPCDBG_ _ACTIVE_CA Prints a message each time the active cache is referenced. The

message indicates the type of operation being per formed on the

active cache. For UDPA servers only.

RPCDBG_ _GENERAL Prints general messages about the activities of RPC RTL routines.

RPCDBG_ _RAW_RCV Prints, in hexadecimal and ASCII, the contents of packets that

were received.

RPCDBG_ _RAW_SEND Prints, in hexadecimal and ASCII, the contents of packets that

were sent.

RPC RTL Management Routines

335

RPCDBG_ _AUTH Prints authentication processing information.

RPCDBG_ _MEMORY Tracks memory allocation for the RPC RTL.

rRPCCHAR_ _DEFPORTS

If an RPC program does not specify a port to use, RPC assigns it a port. The RPCCHAR_ _DEFPORTS code

determines whether RPC tries to use privileged ports (600 to 1023) or non-privileged ports (1024 and greater).

The type is u_long*value. Values are RPCPORTS_ _PRIVILEGE and RPCPORTS_NORMAL.

RPCPORTS_PRIVILEGE is the default, which means the application uses a privileged port if it has sufficient

privileges, otherwise it uses a non-privileged port.

RPCCHAR_ _FATALRTN

Calls an error-handling routine when the TCPA or UDPA transports detect a fatal error. The OpenVMS error

status code is passed to the error-handling routine. If *value is zero, the default value is used. The type is void

(**value)(u_long status). The default is SYS$EXIT.

value

Address where the routine places the characteristic value.

Description

The characteristic values are defined as constants in the RPC_CONST.H file. Each process using the RPC

library has its own copy of these values. The ONCRPC_GET_CHAR routine retrieves these values.

Example

u_long debug;

oncrpc_get_char(RPCCHAR__DEBUG, &debug);

printf("The debugging value is %08X", debug);

This example prints a message that shows the present debugging value for RPC. The message goes to

SYS$OUTPUT.

Diagnostics

SS$_NORMAL Routine executed successfully.

SS$_BADPARAM code is invalid.

SS$_ACCVIO value is a null address.

See Also

ONCRPC_SET_CHAR

RPC RTL Management Routines

336

ONCRPC_GET_STATS
VAX C Returns counters for memory usage, the RPC server, or the RPC client.

Format

u_long ONCRPC_GET_STATS(code, buffer)

u_long code;

u_char *buffer;

Arguments

code

These codes are valid:

RPCSTAT_ _ZERO Zeros out the client or server counters.

RPCSTAT_ _CLIENT Retrieves client counters.

RPCSTAT_ _SERVER Retrieves server counters.

RPCSTAT_ _MEMORY Retrieves memory counters.

The Example shows how to use the RPCSTAT_ _ZERO code in combination with the other codes to zero-out the

client and server counters after they are retrieved. You cannot zero-out memory counters.

buffer

Address of the structure to receive the requested counters. These structures are defined in the RPC_STRUCT.H

file. The length of the buffer equals the size of the structures. These are the structures:

/*

** Statistics structure (server)

*/

typedef struct

{

time_tzero_time; /* # seconds since zeroed*/

u_longrecvs, /* # receives*/

recv_errs, /* # bad receives*/

xmits, /* # transmits*/

xmit_errs, /* # transmit errors*/

xerr_badlen /* # calls w/body too small*/

xerr_nullrecv, /* # empty calls*/

xerr_auth_weak, /* # weak auth errors*/

xerr_auth_other, /* # other auth errors*/

xerr_decode, /* # decode errors

xerr_noproc, /* # no procedure errors*/

xerr_noprog, /* # no program errors*/

xerr_novers, /* # no matching version errors*/

xerr_systemerr, /* # other system errors*/

xid_hits, /* # replies sent from xid cache*/

xid_saves, /* # replies cached*/

RPC RTL Management Routines

337

duprcvs; /* # calls found in active cache*/

} svc_counters;

/*

** Statistics structure (client)

*/

typedef struct

{

time_t zero_time; /* # seconds since zeroed*/

u_long recvs, /* # receives */

 recv_errs, /* # receive errors*/

 badxid, /* # xid mismatches*/

 xmits, /* # transmits*/

 xmit_errs /* # transmit errors*/

 newcred, /* # new credentials (always 0)*/

 retrans, /* # retransmissions*/

 timeout, /* # timeouts*/

 wait; /* (always 0)*/

} clnt_counters;

/*

** Memory statistics structure

*/

typedef struct

{

u_long no_mallocs, /* # times memory was allocated*/

 no_frees, /* # times memory was freed*/

 mem_in_use; /* # bytes of memory in use*/

} mem_counters;

Description

The ONCRPC_GET_STATS routine returns counters for this process only.

Example

clnt_counters cstats;

oncrpc_get_stats(RPCSTAT__CLIENT | RPCSTAT__ZERO, &cstats);

/* cstats now contains the client statistics */

This example retrieves client counters, then zeros them out.

Diagnostics

SS$_NORMAL Routine successfully returned the counters.

SS$_BADPARAM code is invalid.

SS$_ACCVIO buffer is a null address.

RPC RTL Management Routines

338

ONCRPC_SET_CHAR
VAX C Defines the values of characteristics for each RPC client and server process.

Format

u_long ONCRPC_SET_CHAR(code, value)

u_long code;

void *value;

Arguments

code

Characteristic being set. See theONCRPC_GET_CHAR routine for a description of each code.

value

Address of the characteristic value.

Description

Use the ONCRPC_SET_CHAR routine to define characteristic values for RPC processes. Each RPC process has

its own values. Codes and values are defined as constants in the RPC_CONST.H file.

Example

void exit_routine(status)

 u_long status;

{

 exit(status);

}

main()

{

 void (*fatal_routine)();

 fatal_routine = exit_routine;

 /* fatal_routine is the address of exit_routine */

 oncrpc_set_char(RPCCHAR__FATALRTN, &fatal_routine);

}

Sets the exit routine to be called when the TCPA or UDPA transport detects a fatal error.

Diagnostics

SS$_NORMAL Routine executed successfully.

SS$_ACCVIO value is a null address.

SS$_BADPARAM code is invalid.

RPC RTL Management Routines

339

SS$_DEVACTIVE Process tried to change the size of the active cache

while the UDPA transport was active.

See Also

ONCRPC_GET_CHAR

ONC RPC RTL Client Routines

340

Chapter 16 ONC RPC RTL Client Routines

Introduction

This chapter is for RPC programmers. It documents the client routines in the ONC RPC Run-Time Library

(RTL). These routines are the programming interface to ONC RPC.

Common Arguments

Many client, Port Mapper, and server routines use the same arguments.

Table 16-1 lists these arguments and defines their purpose. Arguments that are unique to each routine are

documented together with their respective routines in this and the following chapters

Table 16-1 Common Arguments

Argument Purpose

args_ptr Address of the buffer to contain the decoded RPC arguments.

auth RPC authentication client handle created by the authnone_create,

authunix_create, or authunix_create_default routine.

clnt Client handle returned by any of the client create routines.

in Input arguments for the service procedure.

inproc XDR routine that encodes input arguments.

out Results of the remote procedure call.

outproc XDR routine that decodes output arguments.

procnum Number of the service procedure.

prognum Program number of the service program.

protocol Transport protocol for the service. Must be IPPROTO_UDP or IPPROTO_TCP.

s String containing the message of your choice. The routines append an error

message to this string.

ONC RPC RTL Client Routines

341

sockp Socket to be used for this remote procedure call. If sockp is RPC_ANYSOCK,

the routine creates a new socket and defines sockp. The clnt_destroy

routine closes the socket.

If sockp is a value other than RPC_ANYSOCK, the routine uses this socket

and ignores the internet address of the server.

versnum Version number of the service program.

xdr_args XDR procedure that describes the RPC arguments.

xdrs Structure containing XDR encoding and decoding information.

xprt RPC server handle.

Client Routines

The client routines are called by the client main program or the client stub procedures.

The following sections describe each client routine in detail.

ONC RPC RTL Client Routines

342

auth_destroy
ONC A macro that destroys authentication information associated with an authentication handle.

Format

void auth_destroy (AUTH *auth)

Argument

auth

RPC authentication client handle created by the authnone_create, authunix_create, or

authunix_create_default routine.

Description

Use auth_destroy to free memory that was allocated for authentication handles. This routine undefines the

value of auth by deallocating private data structures.

Do not use this memory space after auth_destroy has completed. You no longer own it.

See Also

authnone_create, authunix_create, authunix_create_default

ONC RPC RTL Client Routines

343

authnone_create
XDR ONC Creates and returns a null RPC authentication handle for the client process.

Format

#include

AUTH *authnone_create();

Arguments

None.

Description

This routine is for client processes that require no authentication. RPC uses it as a default when it creates a

client handle.

See Also

auth_destroy, authnone_create, authunix_create_default,

clnt_create, clntraw_create, clnttcp_create,

clntudp_create / c

ONC RPC RTL Client Routines

344

authunix_create
XDR ONC Creates and returns an RPC authentication handle for the client process. Use this routine when

the server requires UNIX-style authentication.

Format

#include

AUTH *authunix_create (char *host, int uid,int gid,int len,int gids);

Arguments

host

Address of the name of the host that created the authentication information. This is usually the local host

running the client process.

uid

User ID of the person who is executing this process.

gid

User's group ID.

len

Number of elements in the *gids array.

gids

Address of the array of groups to which the user belongs.

Description

Since the client does not validate the uid and gid, it is easy to impersonate an unauthorized user. Choose values

the server expects to receive. The application must provide OpenVMS-to-UNIX authorization mapping.

You can use a Socket Library lookup routine to get the host name.

See Also

auth_destroy, authnone_create, authunix_create_default

ONC RPC RTL Client Routines

345

authunix_create_default
XDR ONC Calls the authunix_create routine and provides default values as arguments.

Format

#include

AUTH *authunix_create_default()

Arguments

See below.

Description

Like the authunix_create routine, authunix_create_default provides UNIX-style authentication for

the client process. However, authunix_create_default does not require you to enter any arguments.

Instead, this routine provides default values for the arguments used by authunix_create, listed in Table 16-

2.

Table 16-2 Default Arguments

Argument Default Value

host local host domain name

uid getuid ()

gid getgid ()

len 0

gids 0

This routine is provided to ensure compatibility with Sun Microsystems' ONC RPC. You can replace this call

with authunix_create and provide appropriate values.

Example

auth_destroy(client->cl_auth);

client->cl_auth = authunix_create_default();

This example overrides the authnone_create routine, where client is the value returned by the

clnt_create, clntraw_create, clnttcp_create, or clntudp_create routine.

See Also

auth_destroy, authnone_create, authunix_create

ONC RPC RTL Client Routines

346

callrpc
XDR ONC Calls the remote procedure identified by the routine's arguments.

Format

#include

int callrpc (char *host,u_long prognum,u_long versnum,u_long procnum,xdrproc_t

inproc,u_char *in,

xdrproc_t outproc,u_char *out);

Arguments

host

Host where the procedure resides.

prognum, versnum, procnum, inproc, in, outproc, out

See Common Arguments for a description of the above arguments.

Description

The callrpc routine performs the same functions as the clnt_create, clnt_call, and clnt_destroy

routines.

Since the callrpc routine uses the UDP transport protocol, messages can be no larger than 8Kbytes. This

routine does not allow you to control timeouts or authentication.

If you want to use the TCP transport, use the clnt_create or clnttcp_create routine.

Diagnostics

The callrpc routine returns zero if it succeeds, and the value of enum clnt_stat cast to an integer if it fails.

You can use the clnt_perrno routine to translate failure status codes into messages.

See Also

clnt_broadcast, clnt_call, clnt_create, clnt_destroy,

clnt_perrno / c, clnttcp_create

ONC RPC RTL Client Routines

347

clnt_broadcast
XDR ONC Broadcasts a remote procedure call to all local networks, using the broadcast address.

Format

#include

enum clnt_stat clnt_broadcast (u_long prognum, u_long versnum, u_long procnum,

xdrproc_t inproc, u_char *in,

xdrproc_t outproc, u_char *out, resultproc_t eachresult);

Arguments

prognum, versnum, procnum, inproc, in, outproc, out

See Common Arguments for a description of the above arguments.

eachresult

Each time clnt_broadcast receives a response, it calls the eachresult routine. If eachresult returns zero,

clnt_broadcast waits for more replies. If eachresult returns a nonzero value, clnt_broadcast stops

waiting for replies. The eachresult routine uses this form:

int eachresult(out, addr)

u_char *out;

struct sockaddr_in *addr;

out Contains the results of the remote procedure call, in the local data format.

*addr Is the address of the host that sent the results.

Description

The clnt_broadcast routine performs the same functions as the callrpc routine. However,

clnt_broadcast sends a message to all local networks, using the broadcast address. The clnt_broadcast

routine uses the UDP protocol.

Table 16-3 indicates how large a broadcast message can be.

Table 16-3 Maximum

Message Size

Line Maximum Size

Ethernet 1500 bytes

proNet 2044 bytes

Example

The TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]SYSINFO.C file provides a sample program using

clnt_broadcast.

ONC RPC RTL Client Routines

348

Diagnostics

This routine returns diagnostic values defined in the CLNT.H file for enumclnt_stat.

See Also

callrpc, clnt_perrno / c

ONC RPC RTL Client Routines

349

clnt_call
ONC A macro that calls a remote procedure.

Format

enum clnt_stat clnt_call (CLIENT *clnt, u_long procnum,

xdrproc_t inproc, u_char *in, xdrproc_t outproc, u_char *out,

struct timeval tout);

Arguments

clnt, procnum, inproc, in, outproc, out

See Common Arguments for a description of the above arguments.

tout

Time allowed for the results to return to the client, in seconds and microseconds. If you use the clnt_control

routine to change the CLSET_TIMEOUT code, this argument is ignored.

Description

Use the clnt_call routine after using clnt_create. After you have finished with the client handle, use

the clnt_destroy routine. You can use the clnt_perror routine to print messages for any errors that

occurred.

Diagnostics

This routine returns diagnostic values defined in the CLNT.H file for enumclnt_stat.

See Also

clnt_control, clnt_create, clnt_destroy,

clnt_perrno / c

ONC RPC RTL Client Routines

350

clnt_control
ONC A macro that changes or retrieves information about an RPC client process.

Format

bool_t clnt_control (CLIENT *clnt, u_long code, void *info);

Arguments

clnt

Client handle returned by any of the client create routines.

code

Code listed in Table 16-4.

Table 16-4 Valid Codes

Code Type Purpose

CLSET_TIMEOUT struct timeval Set total timeout

CLGET_TIMEOUT struct timeval Get total timeout

CLSET_RETRY_TIMEOUT* struct timeval Set retry timeout

CLGET_RETRY_TIMEOUT* struct timeval Get retry timeout

CLGET_SERVER_ADDR struct sockaddr_in Get server address

* Valid only for the UDP transport protocol.

The timeval is specified in seconds and microseconds. The total timeout is the length of time that the client

waits for a reply. The default total timeout is 25 seconds.

The retry time is the length of time that UDP waits for the server to reply before transmitting the request. The

default retry timeout is 5 seconds. You might want to increase the retry time if your network is slow.

For example, suppose the total timeout is 10 seconds and the retry time is five seconds. The client sends the

request and waits five seconds. If the client does not receive a reply, it sends the request again. If the client does

not receive a reply within five seconds, it does not send the request again.

If you use CLSET_TIMEOUT to set the timeout, the clnt_call routine ignores the timeout parameter it receives

for all future calls.

info

Address of the information being changed or retrieved.

Diagnostics

This routine returns TRUE if it succeeds, and FALSE if it fails.

See Also

clnt_call, clnt_create, clnt_destroy, clntraw_create,

clnttcp_create, clntudp_create / c

ONC RPC RTL Client Routines

351

clnt_create
XDR ONC Creates an RPC client handle.

Format

#include

CLIENT *clnt_create (char *host, u_long prognum, u_long versnum, char *proto);

Arguments

host

Address of the string containing the name of the remote host where the server is located.

prognum, versnum

See Common Arguments for a description of the above arguments.

proto

Address of a string containing the name of the transport protocol. Valid values are UDP and TCP. The ONC

RPC Fundamentals chapter explains the advantages and disadvantages of each transport protocol.

Description

The clnt_create routine creates an RPC client handle for prognum. An RPC client handle is a structure

containing information about the RPC client. The client can use the UDP or TCP transport protocol.

This routine uses thePort Mapper. You cannot control the local port.

The default sizes of the send and receive buffers are 8800 bytes for the UDP transport, and 4000 bytes for the

TCP transport.

The retry time for the UDP transport is five seconds.

Use the clnt_create routine instead of the callrpc or clnt_broadcast routines if you want to use one of

the following:

• The TCP transport

• An authentication other than null

• More than one active client at the same time

You can also use clntraw_create to use the IP protocol, clnttcp_create to use the TCP protocol, or

clntudp_create to use the UDP protocol.

The clnt_create routine uses the global variable rpc_createerr. rpc_createerr is a structure that

contains the most recent service creation error. Use rpc_createerr if you want the client program to handle

the error. The value of rpc_createerr is set by any RPC client creation routine that does not succeed.

The rpc_createerr variable is defined in the CLNT.H file.

Example

The TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]GETSYI_CLNT_CALL.C file provides a sample

program that uses clnt_create.

ONC RPC RTL Client Routines

352

Diagnostics

The clnt_create routine returns the address of the client handle, or zero (if it could not create the client

handle).

If the clnt_create routine fails, you can use the clnt_pcreateerror or clnt_spcreateerror routines

to obtain diagnostic information.

See Also

clnt_call, clnt_control, clnt_destroy,

clnt_pcreateerror / c, clntraw_create,

clnttcp_create, clntudp_create / c

ONC RPC RTL Client Routines

353

clnt_destroy
ONC A macro that destroys an RPC client handle.

Format

void clnt_destroy (CLIENT *clnt);

Argument

clnt

Client handle returned by any of the client create routines.

Description

The clnt_destroy routine destroys the client's RPC handle by deallocating all memory related to the handle.

The client is undefined after the clnt_destroy call.

If the clnt_create routine had previously opened a socket, this routine closes the socket. Otherwise, the

socket remains open.

Example

The TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]GETSYI_CLNT_CALL.C file provides a sample

program that uses clnt_destroy.

See Also

clnt_create, clntraw_create, clnttcp_create,

clntudp_create / c

ONC RPC RTL Client Routines

354

clnt_freeres
ONC A macro that frees the memory that was allocated when the RPC results were decoded.

Format

bool_t clnt_freeres (CLIENT *clnt, xdrproc_t xdr_res, char *res_ptr);

Arguments

clnt

Client handle returned by any of the client create routines.

xdr_res

Address of the XDR procedure that describes the RPC results.

res_ptr

Address of the RPC results.

Description

The clnt_freeres routine calls the xdr_free routine.

Example

The TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]GETSYI_CLNT_CALL.C file provides a sample

program that uses clnt_freeres.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_free

ONC RPC RTL Client Routines

355

clnt_geterr
ONC A macro that returns an error code indicating why an RPC call failed.

Format

void clnt_geterr (CLIENT *clnt, struct rpc_err *errp);

Arguments

clnt

Client handle returned by any of the client create routines.

errp

Address of the structure containing information that indicates why an RPC call failed. This information is the

same as clnt_stat contains, plus one of the following: the C error number, the range of server versions

supported, or authentication errors.

Description

This routine is primarily for internal diagnostic use.

Example

#define PROGRAM 1

#define VERSION 1

 CLIENT *clnt;

 struct rpc_err err;

 clnt = clnt_create("server name", PROGRAM, VERSION, "udp");

 /* calls to RPC library */

 clnt_geterr(clnt, &err);

This example creates a UDP client handle and performs some additional RPC processing. If an RPC call fails,

clnt_geterr returns the error code.

See Also

clnt_perror / c

ONC RPC RTL Client Routines

356

clnt_pcreateerror / clnt_spcreateerror
XDR ONC Return a message indicating why RPC could not create a client handle.

Format

#include

void clnt_pcreateerror (char *s);

char *clnt_spcreateerror (char *s);

Argument

s

String containing the message of your choice. The routines append an error message to this string.

Description

The clnt_pcreateerror routine prints a message to SYS$OUTPUT.

The clnt_spcreateerror routine returns the address of a string. Use this routine if:

• You want to save the string.

• You do not want to use printf to print the message.

• The message format is different from the one that clnt_perrno supports.

The clnt_spcreateerror routine overwrites the string it returns, unless you save the results.

Use these routines when the clnt_create, clntraw_create, clnttcp_create, or clntudp_create

routine fails.

See Also

clnt_create, clntraw_create, clnttcp_create,

clntudp_create / c

ONC RPC RTL Client Routines

357

clnt_perrno / clnt_sperrno
XDR ONC Return a message indicating why the callrpc or clnt_broadcast routine failed to create a

client handle.

Format

#include

void clnt_perrno (enum clnt_stat stat);

char *clnt_sperrno (enum clnt_stat stat);

Argument

stat

Appropriate error condition. Values for stat are defined in the CLNT.H file.

Description

The clnt_perrno routine prints a message to SYS$OUTPUT.

The clnt_sperrno routine returns the address of a string. Use this routine instead if:

• You want to save the string.

• You do not want to use printf to print the message.

• The message format is different from the one that clnt_perrno supports.

To save the string, copy it into your own memory space.

See Also

callrpc, clnt_broadcast

ONC RPC RTL Client Routines

358

clnt_perror / clnt_sperror
XDR ONC Return a message if the clnt_call routine fails.

Format

#include

void clnt_perror (CLIENT *clnt, char *s);

char *clnt_sperror (CLIENT *clnt, char *s);

Arguments

clnt, s

See Common Arguments for a description of the above arguments.

Description

Use these routines after clnt_call.

The clnt_perror routine prints an error message to SYS$OUTPUT.

The clnt_sperror routine returns a string. Use this routine if:

• You want to save the string.

• You do not want to use printf to print the message.

• The message format is different from the one that clnt_perror supports.

The clnt_sperror routine overwrites the string with each call. Copy the string into your own memory space

if you want to save it.

See Also

clnt_call, clnt_create, clntraw_create, clnttcp_create,

clntudp_create / c

ONC RPC RTL Client Routines

359

clntraw_create
XDR Returns an RPC client handle. The remote procedure call uses the IP transport.

Format

#include

CLIENT *clntraw_create (struct sockaddr_in *addr,

u_long prognum, u_long versnum, int *sockp, u_long sendsize,

u_long recvsize);

Arguments

addr, prognum, versnum

See Common Arguments for a description of the above arguments.

sockp

Socket to be used for this remote procedure call. sockp can specify the local address and port number. If sockp

is RPC_ANYSOCK, then a port number is assigned. The example shown for the clntudp_create routine

shows how to set up sockp to specify a port. See Common Arguments for a description of sockp and

RPC_ANYSOCK.

addr

Internet address of the host on which the server resides.

sendsize

Size of the send buffer. If you enter a value less than 100, then 4000 is used as the default.

recvsize

Size of the receive buffer. If you enter a value less than 100, then 4000 is used as the default.

Description

The clntraw_create routine creates an RPC client handle for addr, prognum, and versnum. The client uses

the IP transport. The routine is similar to the clnt_create routine, except clnttcp_create allows you to

specify a socket and buffer sizes. If you specify the port number as zero by using addr->sin_port, the Port

Mapper provides the number of the port on which the remote program is listening.

The transport used to pass messages to the service is actually a buffer within the process's address space, so the

corresponding RPC server should live in the same address space (see also svcraw_create). This allows

simulation of RPC and getting RPC overheads, such as round trip times, without kernel interference.

The clnttcp_create routine uses the global variable rpc_createerr, which is a structure that contains the

most recent service creation error. Use rpc_createerr if you want the client program to handle the error. The

value of rpc_createerr is set by any RPC client creation routine that does not succeed. The

rpc_createerr variable is defined in the CLNT.H file.

Diagnostics

The clntraw_create routine returns the address of the client handle, or zero (if it could not create the client

handle). If the routine fails, use the clnt_pcreateerror or clnt_spcreateerror routine to obtain

additional diagnostic information.

ONC RPC RTL Client Routines

360

See Also

clnt_call, clnt_control, clnt_create, clnt_destroy,

clnt_pcreateerror / c, clnttcp_create,

clntudp_create / c

ONC RPC RTL Client Routines

361

clnttcp_create
XDR ONC Returns an RPC client handle. The remote procedure call uses the TCP transport.

Format

#include

CLIENT *clnttcp_create (struct sockaddr_in *addr,

u_long prognum, u_long versnum, int *sockp, u_long sendsize,

u_long recvsize);

Arguments

addr, prognum, versnum

See Common Arguments for a description of the above arguments.

sockp

Socket to be used for this remote procedure call. sockp can specify the local address and port number. If sockp

is RPC_ANYSOCK, then a port number is assigned. The example shown for the clntudp_create routine

shows how to set up sockp to specify a port. See Common Arguments for a description of sockp and

RPC_ANYSOCK.

addr

Internet address of the host on which the server resides.

sendsize

Size of the send buffer. If you enter a value less than 100, then 4000 is used as the default.

recvsize

Size of the receive buffer. If you enter a value less than 100, then 4000 is used as the default.

Description

The clnttcp_create routine creates an RPC client handle for addr, prognum, and versnum. The client uses

the TCP transport. The routine is similar to the clnt_create routine, except clnttcp_create allows you to

specify a socket and buffer sizes. If you specify the port number as zero by using addr->sin_port, the Port

Mapper provides the number of the port on which the remote program is listening.

The clnttcp_create routine uses the global variable rpc_createerr. rpc_createerr is a structure that

contains the most recent service creation error. Use rpc_createerr if you want the client program to handle

the error. The value of rpc_createerr is set by any RPC client creation routine that does not succeed. The

rpc_createerr variable is defined in the CLNT.H file.

Diagnostics

The clnttcp_create routine returns the address of the client handle, or zero (if it could not create the client

handle). If the routine fails, use the clnt_pcreateerror or clnt_spcreateerror routine to obtain

additional diagnostic information.

ONC RPC RTL Client Routines

362

See Also

clnt_call, clnt_control, clnt_create, clnt_destroy,

clnt_pcreateerror / c,

clntudp_create / c

ONC RPC RTL Client Routines

363

clntudp_create / clntudp_bufcreate
XDR ONC Returns an RPC client handle. The remote procedure call uses the UDP transport.

Format

#include

CLIENT *clntudp_create (struct sockaddr_in *addr,

u_long prognum, u_long versnum, struct timeval wait,

int *sockp);

CLIENT *clntudp_bufcreate (struct sockaddr_in *addr,

u_long prognum, u_long versnum, struct timeval wait,

int *sockp, u_long sendsize, u_long recvsize);

Arguments

addr

Internet address of the host on which the server resides.

prognum, versnum, sockp

See Common Arguments for a description of the above arguments.

wait

Time interval the client waits before resending the call message. This value changes the

CLSET_RETRY_TIMEOUT code. The clnt_call routine uses this value.

sendsize

Size of the send buffer. If you enter a value less than 100, then 4000 is used as the default.

recvsize

Size of the receive buffer. If you enter a value less than 100, then 4000 is used as the default.

Description

These routines create an RPC client handle for addr, prognum, and versnum. The client uses the UDP transport

protocol.

If you specify the port number as zero by using addr->sin_port, the Port Mapper provides the number of the

port on which the remote program is listening.

Note! Use the clntudp_create routine only for procedures that handle messages shorter than 8K bytes. Use

the clntudp_bufcreate routine for procedures that handle messages longer than 8K bytes.

The clntudp_create routine uses the global variable rpc_createerr. rpc_createerr is a structure that

contains the most recent service creation error. Use rpc_createerr if you want the client program to handle

the error. The value of rpc_createerr is set by any RPC client creation routine that does not succeed.

The rpc_createerr variable is defined in the CLNT.H file.

ONC RPC RTL Client Routines

364

Example

main()

{

 int sock;

 u_long prog = PROGRAM, vers = VERSION;

 CLIENT *clnt;

 struct sockaddr_in local_addr, remote_addr;

 struct timeval timeout = { 35, 0},

 retry = { 5, 0};

 remote_addr.sin_family = AF_INET;

 remote_addr.sin_port = 0; /* consult the remote port mapper */

 remote_addr.sin_addr.s_addr = 0x04030201; /* internet

 addr 1.2.3.4 */

 local_addr.sin_family = AF_INET;

 local_addr.sin_port = 12345; /* use port 12345 */

 local_addr.sin_addr.s_addr = 0x05030201; /* internet addr

 1.2.3.5 */

 sock = socket(AF_INET, SOCK_DGRAM, 0);

 /* bind the socket to the local addr */

 bind(sock, &local_addr, sizeof(local_addr));

 /* create a client that uses the local IA and port given above */

 clnt = clntudp_create(&remote_addr, prog, vers, retry, &sock);

 /* use a connection timeout of 35 seconds, not the default */

 clnt_control(clnt, CLSET_TIMEOUT, &timeout);

 /*call the server here*/

}

This example defines a socket structure, binds the socket, and creates a UDP client handle.

Diagnostics

These routines return the address of the client handle, or zero (if they cannot create the client handle).

If these routines fail, you can obtain additional diagnostic information by using the clnt_pcreateerrror or

clnt_spcreateerror routine.

See Also

clnt_call, clnt_control, clnt_create, clnt_destroy,

clnt_pcreateerror / c, clnttcp_create

ONC RPC RTL Port Mapper Routines

365

Chapter 17 ONC RPC RTL Port Mapper Routines

Introduction

This chapter is for RPC programmers. It documents the port mapper routines in the ONC RPC Run-Time

Library (RTL). These routines are the programming interface to ONC RPC.

Port Mapper Routines

Port Mapper routines provide a simple callable interface to the Port Mapper. They allow you to request Port

Mapper services and information about port mappings. Table 17-1 summarizes the purpose of each Port Mapper

routine.

Table 17-1 Port Mapper Routines

Routine Purpose

pmap_freemaps Frees memory that was allocated by the pmap_getmaps routine.

pmap_getmaps Returns a list of Port Mappings for the specified host.

pmap_getport Returns the port number on which a specified service is waiting.

pmap_rmtcall Requests the Port Mapper on a remote host to call a procedure on that host.

pmap_set Registers a remote service with a remote port.

pmap_unset Unregisters a service so it is no longer mapped to a port.

ONC RPC RTL Port Mapper Routines

366

Port Mapper Arguments

Port Mapper routines use many of the same arguments as client routines.

See Table 16-1 in the ONC RPC RTL Client Routines chapter for a list of these arguments.

Routine Descriptions

The following sections describe each Port Mapper routine in detail.

ONC RPC RTL Port Mapper Routines

367

pmap_freemaps
ONC Frees memory that was allocated by the pmap_getmaps routine.

Format

void pmap_freemaps (struct pmaplist *list);

Argument

list

Address of a structure containing the list returned by the pmap_getmaps routine.

Description

Call the pmap_freemaps routine when the list returned by pmap_getmaps is no longer needed. Do not call

pmap_freemaps to free a list that you created.

See Also

pmap_getmaps

ONC RPC RTL Port Mapper Routines

368

pmap_getmaps
XDR ONC Returns a list of Port Mappings for the specified host.

Format

struct pmaplist *pmap_getmaps (struct sockaddr_in *addr);

Argument

addr

Address of a structure containing the internet address of the host whose Port Mapper is being called.

Description

The pmap_getmaps routine returns a list of current RPC server-to-Port Mappings on the host at addr. The list

structure is defined in the PMAP_PROT.H file.

The RPCINFO command uses this routine.

Diagnostics

If an error occurs (for example, pmap_getmaps cannot get a list of Port Mappings, the internet address is

invalid, or the remote Port Mapper does not exist), the routine returns either NULL or the address of the list.

See Also

pmap_freemaps, pmap_getport, pmap_set, pmap_unset

ONC RPC RTL Port Mapper Routines

369

pmap_getport
XDR ONC Returns the port number on which a specified service is waiting.

Format

u_short pmap_getport (struct sockaddr_in *addr,

u_long prognum, u_long versnum, u_long protocol);

Arguments

addr

Address of a structure containing the internet address of the remote host on which the server resides.

prognum, versnum, protocol

See Table 16-1 in the ONC RPC RTL Client Routines chapter for a list of these arguments.

Diagnostics

If the requested mapping does not exist or the routine fails to contact the remote Port Mapper, the routine

returns either the port number or zero.

The pmap_getport routine uses the global variable rpc_createerr. rpc_createerr is a structure that

contains the most recent service creation error. Use rpc_createerr if you want the service program to handle

the error. The value of rpc_createerr is set by any RPC server creation routine that does not succeed.

The rpc_createerr variable is defined in the CLNT.H file.

See Also

pmap_getmaps, pmap_set, pmap_unset

ONC RPC RTL Port Mapper Routines

370

pmap_rmtcall
XDR ONC Requests the Port Mapper on a remote host to call a procedure on that host.

Format

enum clnt_stat pmap_rmtcall (struct sockaddr_in *addr,

u_long prognum, u_long versnum, u_long procnum,

xdrproc_t inproc, u_char *in, xdrproc_t outproc, u_char *out, struct

timeval tout, u_long *portp);

Arguments

addr

Address of a structure containing the internet address of the remote host on which the server resides.

prognum, versnum, procnum, inproc, in, outproc, out

See Table 16-1 in the ONC RPC RTL Client Routines chapter for a list of these arguments.

tout

Time allowed for the results to return to the client, in seconds and microseconds.

portp

Address where pmap_rmtcall will write the port number of the remote service.

Description

The pmap_rmtcall routine allows you to get a port number and call a remote procedure in one call. The

routine requests a remote Port Mapper to call a prognum, versnum, and procnum on the Port Mapper's host. The

remote procedure call uses the UDP transport.

If pmap_rmtcall succeeds, it changes portp to contain the port number of the remote service.

After calling the pmap_rmtcall routine, you may call the clnt_perrno routine.

Example

The TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]GETSYI_CLNT_RMTCALL.C file provides a

sample program using pmap_rmtcall.

Diagnostics

This routine returns diagnostic values defined in the CLNT.H file for enumclnt_stat.

See Also

 clnt_broadcast, clnt_perrno / clnt_sperrno

ONC RPC RTL Port Mapper Routines

371

pmap_set
XDR ONC Registers a remote service with a remote port.

Format

bool_t pmap_set (u_long prognum, u_long versnum,

u_long protocol, u_short port);

Arguments

prognum, versnum, protocol

See Table 16-1 in the ONC RPC RTL Client Routines chapter for a list of these arguments.

port

Remote port number.

Description

The pmap_set routine calls the local Port Mapper to tell it which port and protocol theprognum, versnum is

using.

You are not likely to use pmap_set, because svc_register calls it.

Diagnostics

The pmap_set routine returns TRUE if it succeeds, and FALSE if it fails.

See Also

pmap_getport, pmap_getmaps, pmap_unset, svc_register

ONC RPC RTL Port Mapper Routines

372

pmap_unset
XDR ONC Unregisters a service so it is no longer mapped it to a port.

Format

bool_t pmap_unset (u_long prognum, u_long versnum);

Arguments

prognum, versnum

See Table 16-1 in the ONC RPC RTL Client Routines chapter for a list of these arguments.

Description

The pmap_unset routine calls the local Port Mapper and, for all protocols, removes the prognum and versnum

from the list that maps servers to ports.

You are not likely to use pmap_unset, because svc_unregister calls it.

Example

The GETSYI_PROC_A.C and GETSYI_SVC.C files provide sample programs using the pmap_unset routine.

These files are in the TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC] directory.

Diagnostics

The pmap_unset routine returns TRUE if it succeeds, FALSE if it fails.

See Also

pmap_getport, pmap_getmaps, pmap_set, svc_unregister

ONC RPC RTL Server Routines

373

Chapter 18 ONC RPC RTL Server Routines

Introduction

This chapter is for RPC programmers. It documents the server routines in the ONC RPC Run-Time Library

(RTL). These routines are the programming interface to ONC RPC.

Server Routines

The server routines are called by the server program or the server stub procedures. Table 18-1 lists each server

routine and summarizes its purpose.

Table 18-1 Server Routines

XDR and ONC

Routines

Purpose

registerrpc Performs creation and registration tasks for server.

svc_destroy Macro that destroys RPC server handle.

svc_freeargs Macro that frees memory allocated when RPC arguments were

decoded.

svc_getargs Macro that decodes RPC arguments.

svc_getcaller Macro that returns address of client that called server.

svc_getchan Macro that returns channel of server handle.

svc_getport Macro that returns port associated with server handle.

svc_getreqset Reads data for each server connection.

svc_register Adds specified server to list of active servers, and registers service

program with Port Mapper.

svc_run Waits for RPC requests and calls svc_getreqset routine to

dispatch to appropriate RPC service program.

svc_sendreply Sends results of remote procedure call to client.

svc_unregister Calls Port Mapper to unregister specified program and version for all

protocols.

svcerr_auth Sends error code when server cannot authenticate client.

svcerr_decode Sends error code to client if server cannot decode arguments.

ONC RPC RTL Server Routines

374

svcerr_noproc Sends error code to client if server cannot implement requested

procedure.

svcerr_noprog Sends error code to client when requested program is not registered

with Port Mapper.

svcerr_progvers Sends error code to client when requested program is registered with

Port Mapper, but requested version is not registered.

svcerr_systemerr Sends error code to client when server encounters error not handled by

particular protocol.

svcerr_weakauth Sends error code to client when server cannot perform remote

procedure call because it received insufficient (but correct)

authentication parameters.

svcfd_create Returns address of structure containing server handle for specified

TCP socket.

svctcp_create Returns address of server handle that uses TCP transport.

ONC

Routine

Purpose

svctcpa_create Returns address of server handle that uses TCPA transport.

svctcpa_enablecache Enables XID cache for specified TCPA transport server.

svctcpa_freecache Deallocates TCPA XID cache.

svctcpa_getxdrs Returns XDR structure associated with server handle.

svctcpa_shutdown Cancels all outstanding I/O on channel associated with server handle.

XDR ONC

Routine

Purpose

svcudp_bufcreate Returns address of server handle that uses UDP transport. For

procedures that pass messages longer than 8Kbytes.

svcudp_create Returns address of server handle that uses UDP transport. For

procedures that pass messages shorter than 8Kbytes.

svcudp_enablecache Enables XID cache for specified UDP transport server.

ONC

Routine

Purpose

svcudpa_bufcreate Returns address of server handle that uses UDPA transport. For

procedures that pass messages longer than 8Kbytes.

svcudpa_create Returns address of server handle that uses UDPA transport. For

procedures that pass messages shorter than 8Kbytes.

svcudpa_enablecache Enables XID cache for specified UDPA transport server.

svcudpa_freecache Deallocates UDPA XID cache.

svcudpa_getxdrs Returns XDR structure associated with server handle.

svcudpa_shutdown Cancels all outstanding I/O on channel associated with the server

handle.

ONC RPC RTL Server Routines

375

XDR ONC

Routine

Purpose

xprt_register Adds UDP or TCP server socket to list of sockets.

xprt_unregister Removes UDP or TCP server socket from list of sockets.

Routine Descriptions

The following sections describe each server routine in detail.

ONC RPC RTL Server Routines

376

registerrpc
XDR ONC Performs creation and registration tasks for the server.

Format

#include

int registerrpc (u_long prognum, u_long versnum, u_long procnum,

u_char *(*procname) (), xdrproc_t inproc, xdrproc_t outproc);

Arguments

prognum, versnum, procnum, inproc, outproc

See Table 16-1 in the ONC RPC RTL Client Routines chapter for a list of these arguments.

procname

Address of the routine that implements the service procedure. The routine uses the following format:

u_char *procname(out);

u_char *out;

where outis the address of the data decoded by outproc.

Description

The registerrpc routine performs the following tasks for a server:

• Creates a UDP server handle.

• Calls the svc_register routine to register the program with the Port Mapper.

• Adds prognum, versnum, and procnum to an internal list of registered procedures. When the server receives

a request, it uses this list to determine which routine to call.

A server should call registerrpc for every procedure it implements, except for the NULL procedure.

Example

The GETSYI_SVC_REG.C file provide a sample program using the registerrpc routine. This file is in the

TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC] directory.

Diagnostics

The registerrpc routine returns zero if it succeeds, and -1 if it fails.

See Also

svc_register

ONC RPC RTL Server Routines

377

svc_destroy
ONC Macro that destroys the RPC server handle.

Format

void svc_destroy (SVCXPRT *xprt);

Argument

xprt

RPC server handle.

Description

The svc_destroy routine destroys xprt by deallocating private data structures. After this call, xprt is

undefined.

If the server creation routine received RPC_ANYSOCK as the socket, svc_destroy closes the socket.

Otherwise, you must close the socket.

Example

The TCPWARE_ROOT[TCPWARE.EXAMPLES.RPC]GETSYI_PROC_A.C file provides a sample program

using the svc_destroy routine.

See Also

svcfd_create, svctcp_create, svcudp_create

ONC RPC RTL Server Routines

378

svc_freeargs
ONC Macro that frees the memory that was allocated when the RPC arguments were decoded.

Format

bool_t svc_freeargs (SVCXPRT *xprt, xdrproc_t xdr_args,

char *args_ptr);

Arguments

xprt, xdr_args, args_ptr

See Table 16-1 in the ONC RPC RTL Client Routines chapter for a list of these arguments.

Description

The svc_freeargs routine calls the xdr_free routine.

Example

The GETSYI_PROC_A.C and GETSYI_SVC.C files provide sample programs that use the svc_freeargs

routine. These files are in the TCPWARE:[TCPWARE.EXAMPLES.RPC] directory.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

svc_getargs, xdr_free

ONC RPC RTL Server Routines

379

svc_getargs
ONC Macro that decodes the RPC arguments.

Format

bool_t svc_getargs (SVCXPRT *xprt, xdrproc_t xdr_args,

u_char *args_ptr);

Arguments

xprt, xdr_args, args_ptr

See Table 16-1 in the ONC RPC RTL Client Routines chapter for a list of these arguments.

Example

The GETSYI_PROC_A.C and GETSYI_SVC.C files provide sample programs that use the svc_getargs

routine.

These files are in the TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC] directory.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

svc_freeargs

ONC RPC RTL Server Routines

380

svc_getcaller
ONC Macro that returns the address of the client that called the server.

Format

struct sockaddr_in *svc_getcaller (SVCXPRT *xprt);

Argument

xprt

RPC server handle.

ONC RPC RTL Server Routines

381

svc_getchan
ONC Macro that returns the channel associated with the server handle.

Format

u_short svc_getchan (SVCXPRT *xprt);

Argument

xprt

RPC server handle.

Description

Use svc_getchan when multiple servers are listening on the same channel and port.

Example

The TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]GETSYI_PROC_A.C file provides a sample program

that uses svc_getchan.

ONC RPC RTL Server Routines

382

svc_getport
ONC Macro that returns the port associated with the server handle.

Format

u_short svc_getport (SVCXPRT *xprt);

Argument

xprt

RPC server handle.

Description

Use svc_getport when you want to know what port the server is listening on. You can use this macro with

synchronous and asynchronous transports.

Example

The TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]GETSYI_PROC_A.C file provides a sample program

that uses svc_getport.

ONC RPC RTL Server Routines

383

svc_getreqset
XDR ONC Reads data for each server connection.

Format

#include

void svc_getreqset (int rdfds);

Argument

rdfds

Address of the read socket descriptor array. This array is returned by the select routine.

Description

The server calls svc_getreqset when it receives an RPC request. The svc_getreqset routine reads in data

for each server connection, then calls the server program to handle the data.

The svc_getreqset routine does not return a value. It finishes executing after all rdfds sockets have been

serviced.

You are unlikely to call this routine directly, because the svc_run routine calls it. However, there are times

when you cannot call svc_run. For example, suppose a program services RPC requests and reads or writes to

another socket at the same time. The program cannot call svc_run. It must call select and svc_getreqset.

The svc_getreqset routine is for servers that implement custom asynchronous event processing, do not use

the svc_run routine.

You may use the global variable svc_fdset with svc_getreqset. The svc_fdset variable lists all sockets

the server is using. It contains an array of structures, where each element is a socket pointer and a service

handle. It uses the following format:

struct sockarr svc_fdset [MAXSOCK +1];

This is how to use svc_fdset: first, copy the socket handles from svc_fdset into a temporary array that ends

with a zero. Pass the array to the select routine. The select routine overwrites the array and returns it. Pass

this array to the svc_getreqset routine.

You may use svc_fdset when the server does not use svc_run.

The svc_fdset variable is not compatible with UNIX.

Example

#define MAXSOCK 10

 int readfds[MAXSOCK+1], /* sockets to select from */

 i, j;

 for(i = 0, j = 0; i < MAXSOCK; i++)

 if((svc_fdset[i].sockname != 0) && (svc_fdset[i].sockname !=

1))

 readfds[j++] = svc_fdset[i].sockname;

 readfds[j] = 0; /* list of sockets ends w/ a zero */

ONC RPC RTL Server Routines

384

 switch(select(0, readfds, 0, 0, 0))

 {

 case -1: /* an error happened */

 case 0: /* time out */

 break;

 default: /* 1 or more sockets ready for reading */

 errno = 0;

 ONCRPC_SVC_GET_REQSET(readfds);

 if(errno == ENETDOWN || errno == ENOTCONN)

 sys$exit(SS$_THIRDPARTY);

 }

See Also

svc_run

ONC RPC RTL Server Routines

385

svc_register
XDR ONC Adds the specified server to a list of active servers, and registers the service program with the

Port Mapper.

Format

#include

bool_t svc_register (SVCXPRT *xprt, u_long prognum,

u_long versnum, void (*dispatch) (), u_long protocol);

Arguments

xprt, prognum, versnum

See Table 16-1 in the ONC RPC RTL Client Routines chapter for a list of these arguments.

dispatch

Routine that svc_register calls when the server receives a request for prognum, versnum. This routine

determines which routine to call for each server procedure. This routine uses the following form:

void dispatch(request, xprt)

struct svc_req *request;

SVCXPRT *xprt;

The svc_getreqset and svc_run routines call dispatch.

protocol

Must be IPPROTO_UDP, IPPROTO_TCP, or zero. Zero indicates that you do not want to register the server

with the Port Mapper.

Example

The GETSYI_PROC_A.C and GETSYI_SVC.C files provide sample programs that use the svc_register

routine.

These files are in the TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC] directory.

Diagnostics

The svc_register routine returns TRUE if it succeeds and FALSE if it fails.

See Also

pmap_set, svc_getreqset, svc_unregister

ONC RPC RTL Server Routines

386

svc_run
XDR ONC Waits for RPC requests and calls the svc_getreqset routine to dispatch to the appropriate

RPC service program.

Format

#include

void svc_run()

Arguments

None.

Description

The svc_run routine calls the select routine to wait for RPC requests. When a request arrives, svc_run calls

the svc_getreqset routine. Then svc_run calls select again.

The svc_run routine never returns.

You may use the global variable svc_fdset with svc_run. See the svc_getreqset routine for more

information on svc_fdset.

Examples

These files contain sample programs that use svc_run:

• GETSYI_SVC.C

• GETSYI_SVC_REG.C

• PRINT_SVC.C

• SYSINFO_SVC.C

These files are in the TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC] directory.

See Also

svc_getreqset

ONC RPC RTL Server Routines

387

svc_sendreply / svc_sendreply_dq
Sends the results of a remote procedure call to the client.

Format

XDR ONC

#include

bool_t svc_sendreply (SVCXPRT *xprt, xdrproc_t outproc, u_char *out);

ONC

bool_t svc_sendreply_dq (SVCXPRT *xprt, xdrproc_t outproc, u_char *out);

Arguments

XDR ONC

xprt, outproc, out

See Table 16-1 in the ONC RPC RTL Client Routines chapter for a list of these arguments.

Description

Both routines send the results of a remote procedure call to the client.

The svc_sendreply_dq routine, however, does not queue a read and is for UDPA and TCPA servers only.

Examples

These files contain sample programs that use svc_sendreply:

• SYSINFO_SVC.C

• PRINT_SVC.C

• GETSYI_PROC_A.C

• GETSYI_SVC.C

These files are in the TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC] directory.

Diagnostics

These routines returns TRUE if they succeed and FALSE if they fail.

ONC RPC RTL Server Routines

388

svc_unregister
XDR ONC Calls the Port Mapper to unregister the specified program and version for all protocols. The

program and version are removed from the list of active servers.

Format

#include

void svc_unregister (u_long prognum, u_long versnum);

Arguments

prognum, versnum

See Table 16-1 in the ONC RPC RTL Client Routines chapter for a list of these arguments.

Example

The TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]GETSYI_PROC_A.C file contains a sample program

that uses the svc_unregister routine.

See Also

pmap_unset, svc_register

ONC RPC RTL Server Routines

389

svcerr_auth

svcerr_decode

svcerr_noproc

svcerr_noprog

svcerr_progvers

svcerr_systemerr

svcerr_weakauth
XDR ONC Sends various error codes to the client process.

Format

#include

void svcerr_auth (SVCXPRT *xprt, enum auth_stat why);

void svcerr_decode (SVCXPRT *xprt);

void svcerr_noproc (SVCXPRT *xprt);

void svcerr_noprog (SVCXPRT *xprt);

void svcerr_progvers (SVCXPRT *xprt, u_long low-vers, u_long high-vers);

void svcerr_systemerr (SVCXPRT *xprt);

void svcerr_weakauth (SVCXPRT *xprt);

Arguments

xprt

RPC server handle.

why

Error code defined in the AUTH.H file.

low-vers

Lowest version number in the range of versions that the server supports.

high-vers

Highest version in the range of versions that the server supports.

Description

svcerr_auth

See svc_getreqset. Calls svcerr_auth when it cannot authenticate a client. The svcerr_auth routine

returns an error code (why) to the caller.

svcerr_decode

Sends an error code to the client if the server cannot decode the arguments.

svcerr_noproc

Sends an error code to the client if the server does not implement the requested procedure.

ONC RPC RTL Server Routines

390

svcerr_noprog

Sends an error code to the client when the requested program is not registered with the Port Mapper. Generally,

the Port Mapper informs the client when a server is not registered. Therefore, the server is unlikely to use this

routine.

svcerr_progvers

Sends an error code to the client when the requested program is registered with the Port Mapper, but the

requested version is not registered.

svcerr_systemerr

Sends an error code to the client when the server encounters an error that is not handled by a particular protocol.

svcerr_weakauth

Sends an error code to the client when the server cannot perform a remote procedure call because it received

insufficient (but correct) authentication parameters. This routine calls the svcerr_auth routine. The value of

why is AUTH_TOOWEAK, which means "access permission denied."

ONC RPC RTL Server Routines

391

svcfd_create
XDR ONC Returns the address of a structure containing a server handle for the specified TCP socket.

Format

#include

SVCXPRT *svcfd_create (int sock, u_long sendsize, u_long recvsize);

Arguments

sock

Socket number. Do not specify a file descriptor.

sendsize

Size of the send buffer. If you enter a value less than 100, then 4000 is used as the default.

recvsize

Size of the receive buffer. If you enter a value less than 100, then 4000 is used as the default.

Description

The svcfd_create routine returns the address of a server handle for the specified TCP socket. This handle

cannot use a file. The server calls the svcfd_create routine after it accepts a TCP connection.

Diagnostics

This routine returns zero if it fails.

See Also

svctcp_create

ONC RPC RTL Server Routines

392

svcraw_create
XDR Creates a server handle for memory-based Sun RPC for simple testing and timing.

Format

#include

SVCXPRT svcraw_create ();

Argument

None.

Description

The svcraw_create routine creates a toy Sun RPC service transport, to which it returns a pointer. The

transport is really a buffer within the process's address space, so the corresponding client should live in the same

address space.

This routine allows simulation of and acquisition of Sun RPC overheads (such as round trip times) without any

kernel interference.

Diagnostics

This routine returns NULL if it fails.

See Also

clntraw_create

ONC RPC RTL Server Routines

393

svctcp_create
XDR ONC Returns the address of a server handle that uses the TCP transport.

Format

#include

SVCXPRT *svctcp_create (int sock, u_long sendsize, u_long recvsize);

Arguments

sock

Socket for this service. The svctcp_create routine creates a new socket if you enter RPC_ANYSOCK. If the

socket is not bound to a TCP port, svctcp_create binds it to an arbitrary port.

sendsize

Size of the send buffer. If you enter a value less than 100, then 4000 bytes is used as the default.

recvsize

Size of the receive buffer. If you enter a value less than 100, then 4000 bytes is used as the default.

Examples

The PRINT_SVC.C and GETSYI_SVC.C files provides sample programs that use svctcp_create. These

files are in the TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC] directory.

Diagnostics

The svctcp_create routine returns either the address of the server handle, or zero (if it could not create the

server handle).

See Also

svcfd_create, svc_destroy

ONC RPC RTL Server Routines

394

svctcpa_create
ONC Returns the address of a server handle that uses the TCPA transport.

Format

SVCXPRT *svctcpa_create (u_short channel, u_short port, u_long sendsize, u_long

recvsize);

Arguments

channel

If you enter RPC_ANYCHAN (defined in the SVC.H file), the svctcpa_create routine assigns a channel

and sets the local port to the port value. If you enter any other value, svctcpa_create ignores the port

value.

Multiple server handles may use the same channel if you specify RPC_ANYCHAN and a port number on the

first call to svctcpa_create, and if you specify the assigned channel with any port number on subsequent

calls to svctcpa_create. (Use svc_getchan to obtain the channel. Note that for TCPA, this is really not a

channel, just a unique identifier.)

All server handles that use the same channel should use the same XID cache.

port

Number of the TCP port on which the server will listen. If you enter RPCANYPORT, then RPC assigns a port.

sendsize

Size of the send buffer. If you enter a value less than 100, then 4000 bytes is used as the default.

recvsize

Size of the receive buffer. If you enter a value less than 100, then 4000 bytes is used as the default.

Examples

The GETSYI_PROC_A.C file contains a sample program that uses svctcpa_create. This file is in the

TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC] directory.

Diagnostics

The svctcpa_create routine returns either the address of the server handle, or zero (if it could not create the

server handle).

See Also

svc_destroy, svctcp_create, svctcpa_shutdown, svcudpa_create

ONC RPC RTL Server Routines

395

svctcpa_enablecache
ONC Enables the XID cache for the specified TCPA transport server.

Format

void *svctcpa_enablecache (SVCXPRT *xprt, void *cacheaddr, u_long size, reply_id

*reqlst);

Arguments

xprt

RPC server handle.

cacheaddr

Address of the XID cache. If cacheaddr is zero, this routine allocates a cache with size number of entries. All

TCPA transports that use this cache must have the same size buffers.The first time you call

svctcpa_enablecache, specify zero as the cacheaddr. The second time you call svctcpa_enablecache,

specify the address that svctcpa_enablecache returned on the previous call as the cacheaddr. All server

handles that use a channel should use the same XID cache.

size

Number of entries in the cache. You may estimate this number based on how active the server is, and on how

long you want to retain old replies.

reqlst

Address of an array of structures containing a list of procedures for which replies are to be cached. The array is

terminated by prognum==0. This is the structure:

typedef struct

{

 u_long prognum,

 versnum,

 procnum;

} reply_id

If this address is zero, the server saves all replies in the XID cache.

Description

Call the svctcpa_enablecache routine after each TCPA server handle is created. The server places all

appropriate outgoing responses in the XID cache. The cache can be used to improve the performance of the

server, for example, by preventing the server from recalculating the results or sending incorrect results. You can

disable the cache by calling the svctcpa_freecache routine. The ONC RPC Fundamentals, Chapter 12,

provides more information on the XID cache.

Diagnostics

The svctcpa_enablecache routine returns either the address of the cache, or zero if an error occurs.

See Also

svctcpa_create, svctcpa_freecache

ONC RPC RTL Server Routines

396

svctcpa_freecache
ONC Deallocates the TCPA XID cache.

Format

void svctcpa_freecache (void *cacheaddr);

Argument

cacheaddr

Address of the TCPA XID cache.

Description

The svc_destroy routine calls the svctcpa_freecache routine for every server handle, after all servers that

reference the cache have been destroyed.

The ONC RPC Fundamentals, Chapter 12, provides more information on the XID cache.

See Also

svc_destroy, svctcpa_enablecache

ONC RPC RTL Server Routines

397

svctcpa_getxdrs
ONC Returns the XDR structure associated with the server handle.

Format

XDRS *svctcpa_getxdrs (SVCXPRT *xprt);

Argument

xprt

RPC server handle.

ONC RPC RTL Server Routines

398

svctcpa_shutdown
ONC Cancels all outstanding I/O on the channel associated with the server handle.

Format

void svctcpa_shutdown (SVCXPRT *xprt);

Argument

xprt

RPC server handle.

Description

The svctcpa_shutdown routine cancels all I/O on the channel associated with xprt and flags the server as

shutting down. The server then begins the shutdown process. Call this routine only once for a channel before

calling svc_destroy to destroy individual server handles.

This routine affects all TCPA handles that are using the same channel.

Example

The TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]GETSYI_PROC_A.C file contains a sample program

that uses svctcpa_shutdown.

See Also

svc_destroy, svctcpa_create

ONC RPC RTL Server Routines

399

svcudp_create / svcudp_bufcreate
XDR ONC Returns the address of a server handle that uses the UDP transport.

Format

#include

SVCXPRT *svcudp_create (int sock);

SVCXPRT *svcudp_bufcreate (int sock, u_long sendsize,

u_long recvsize);

Arguments

sock

Socket for this service. The svcudp_create routine creates a new socket if you enter RPC_ANYSOCK. If the

socket is not bound to a UDP port, the svcudp_create routine binds it to an arbitrary port.

sendsize

Size of the send buffer. The minimum size is 100 bytes. The maximum size is 65468, the maximum UDP

packet size. If you enter a value less than 100, then 4000 is used as the default.

recvsize

Size of the receive buffer. The minimum size is 100 bytes. The maximum size is 65000, the maximum UDP

packet size. If you enter a value less than 100, then 4000 is used as the default.

Description

Use the svc_create routine only for procedures that pass messages shorter than 8Kbytes long. Use the

svcudp_bufcreate routine for procedures that pass messages longer than 8Kbytes.

Examples

The SYSINFO_SVC.C and GETSYI_SVC.C files contain sample programs that use svcudp_create. These

files are in the TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC] directory.

Diagnostics

These routines return either a server handle, or zero (if they could not create the server handle).

See Also

svc_destroy, svcudp_enablecache

ONC RPC RTL Server Routines

400

svcudp_enablecache
XDR ONC Enables the XID cache for the specified UDP transport server.

Format

bool_t svcudp_enablecache (SVCXPRT *xprt, u_long size);

Arguments

xprt

RPC server handle.

size

Number of entries permitted in the XID cache. You may estimate this number based on how active the server is,

and on how long you want to retain old replies.

Description

Use the svcudp_enablecache routine after a UDP server handle is created. The server places all outgoing

responses in the XID cache. The cache can be used to improve the performance of the server, for example, by

preventing the server from recalculating the results or sending incorrect results.

You cannot disable the XID cache for UDP servers.

The ONC RPC Fundamentals, Chapter 12, provides more information on the XID cache.

Example

#define FALSE 0

#define UDP_CACHE_SIZE 10

 SVCXPRT *udp_xprt;

 udp_xprt = svcudp_create(RPC_ANYSOCK);

 if(svcudp_enablecache(udp_xprts, UDP_CACHE_SIZE) == FALSE)

 printf("XID cache was not enabled");

 else

 printf("XID cache was enabled");

Diagnostics

This routine returns TRUE if it enables the XID cache, and FALSE if the cache was previously enabled or an

error occurs.

ONC RPC RTL Server Routines

401

svcudpa_create / svcudpa_bufcreate
ONC Returns the address of a server handle that uses the UDPA transport.

Format

SVCXPRT *svcudpa_create (u_short channel, u_short port);

SVCXPRT *svcudpa_bufcreate (u_short channel, u_short port, u_long sendsize, u_long

recvsize);

Arguments

channel

If you enter RPC_ANYCHAN (defined in the SVC.H file), then the svcudpa_bufcreate routine assigns the

channel and sets the local port to the port value. If you enter any other value, then svcudpa_bufcreate

ignores the port value. Multiple server handles may use the same channel if you specify RPC_ANYCHAN and

a port number on the first call to svcudpa_create, and if you specify the assigned channel with any port

number on subsequent calls to svcudpa_create. All server handles that use the same channel should use the

same XID cache.

port

Number of the UDP port on which the server will listen. All servers that use the same port should use the same

channel. If you enter RPCANYPORT, then RPC assigns the port.

sendsize

Size of the send buffer. If you enter a value less than 100, then 4000 is used as the default.

recvsize

Size of the receive buffer. If you enter a value less than 100, then 4000 is used as the default.

Description

Both routines return the address of a structure containing a UDPA server handle. The svcudpa_create

routine limits the call to 8Kbytes of data. The svcudpa_bufcreate routine allows you to define the buffer

sizes.

See Using Asynchronous Transports in Chapter 13, Building Distributed Applications with RPC, for more

information on writing asynchronous transports.

Example

TCPWARE_ROOT:[TCPWARE.EXAMPLE].RPC]GETSYI_PROC_A.C provides a sample program and

procedure that use svcudpa_create.

Diagnostics

These routines return the address of the server handle, or zero (if they could not create the server handle).

See Also

svc_destroy, svcudpa_enablecache, svcudpa_shutdown

ONC RPC RTL Server Routines

402

svcudpa_enablecache
ONC Enables the XID cache for the specified UDPA transport server.

Format

void *svcudpa_enablecache (SVCXPRT *xprt, void *cacheaddr, u_long size, reply_id

*reqlst);

Arguments

xprt

RPC server handle.

cacheaddr

Address of the XID cache. If cacheaddr is zero, this routine allocates a cache with size number of entries. All

UDPA transports that use this cache must have the same size buffers.

The first time you call svcudpa_enablecache, specify zero as the cacheaddr. The second time you call

svcudpa_enablecache, specify the address that svcudpa_enablecache returned on the previous call as the

cacheaddr.

All server handles that use a channel should use the same XID cache.

size

Number of entries in the cache. You may estimate this number based on how active the server is, and on how

long you want to retain old replies.

reqlst

Address of an array of structures containing a list of procedures for which replies are to be cached. The array is

terminated by prognum==0. This is the structure:

typedef struct

{

 u_long prognum,

 versnum,

 procnum;

} reply_id

If this address is zero, the server saves all replies in the XID cache.

Description

Call the svcudpa_enablecache routine after each UDPA server handle is created. The server places all

appropriate outgoing responses in the XID cache.

The cache can be used to improve the performance of the server, for example, by preventing the server from

recalculating the results or sending incorrect results. You can disable the cache by calling the

svcudpa_freecache routine.

The ONC RPC Fundamentals, Chapter 12, provides more information on the XID cache.

ONC RPC RTL Server Routines

403

Example

The TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]GETSYI_PROC_A.C file contains a sample program

that uses the svcudpa_enablecache routine.

Diagnostics

The svcudpa_enablecache routine returns either the address of the cache, or zero if an error occurs.

See Also

svcudpa_create, svcudpa_freecache

ONC RPC RTL Server Routines

404

svcudpa_freecache
ONC Deallocates the UDPA XID cache.

Format

void svcudpa_freecache (void *cacheaddr);

Argument

cacheaddr

Address of the UDPA XID cache.

Description

The svc_destroy routine calls the svcudpa_freecache routine for every server handle, after all servers that

reference the cache have been destroyed.

The ONC RPC Fundamentals, Chapter 12, provides more information on the XID cache.

Example

The TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]GETSYI_PROC_A.C file contains a sample program

that uses svcudpa_freecache.

See Also

svc_destroy, svcudpa_enablecache

ONC RPC RTL Server Routines

405

svcudpa_getxdrs
ONC Returns the XDR structure associated with the server handle.

Format

XDRS *svcudpa_getxdrs (SVCXPRT *xprt);

Argument

xprt

RPC server handle.

ONC RPC RTL Server Routines

406

svcudpa_shutdown
ONC Cancels all outstanding I/O on the channel that is associated with the server handle.

Format

void svcudpa_shutdown (SVCXPRT *xprt);

Argument

xprt

RPC server handle.

Description

The svcudpa_shutdown routine cancels all I/O on the channel associated with xprt and flags the server as

shutting down. The server then begins the shutdown process. Call this routine only once for a channel, before

calling svc_destroy to destroy individual servers.

This routine affects all UDPA handles that are using the same channel.

Example

The TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]GETSYI_PROC_A.C file contains a sample program

that uses svcudpa_shutdown.

See Also

svc_destroy, svcudpa_create

ONC RPC RTL Server Routines

407

xprt_register
XDR ONC Adds a TCP or UDP server socket to a list of sockets.

Format

#include

void xprt_register (SVCXPRT *xprt);

Argument

xprt

RPC server handle.

Description

The xprt_register and xprt_unregister routines maintain a list of sockets. This list ensures that the

correct server is called to process the request. The xprt_register routine adds the server socket to the

svc_fdset variable, which also stores the server handle that is associated with the socket. The svc_run

routine passes the list of sockets to the select routine. The select routine returns to svc_runa list of sockets

that have outstanding requests.

You are unlikely to call this routine directly because svc_register calls it.

See Also

svc_register, xprt_unregister

ONC RPC RTL Server Routines

408

xprt_unregister
XDR ONC Removes a TCP or UDP server socket from a list of sockets.

Format

#include

void xprt_unregister (SVCXPRT *xprt);

Argument

xprt

RPC server handle.

Description

This list of sockets ensures that the correct server is called to process the request. See the xprt_register routine

for a description of how this list is maintained.

You are unlikely to call this routine directly because svc_unregister calls it.

See Also

svc_unregister, xprt_register

ONC RPC RTL XDR Routines

409

Chapter 19 ONC RPC RTL XDR Routines

Introduction

This chapter is for RPC programmers. It documents the XDR routines in the ONC RPC Run-Time Library

(RTL). These routines are the programming interface to ONC RPC.

XDR Routines

This section explains what XDR routines do and when you would call them. It also provides quick reference

and detailed reference sections describing each XDR routine.

What XDR Routines Do

Most XDR routines share these characteristics:

• They convert data in two directions: from the host's local data format to XDR format (called encoding or

marshalling), or the other way around (called decoding or unmarshalling).

• They use xdrs, a structure containing instructions for encoding, decoding, and deallocating memory.

• They return a boolean value to indicate success or failure.

Some XDR routines allocate memory while decoding an argument. To free this memory, call the xdr_free

routine after the program is done with the decoded value.

Table 19-1 shows the order in which XDR routines perform encoding and decoding.

Table 19-1 XDR Actions

Client Server

1. Encodes arguments

2. Decodes results

3. Frees results from memory

1. Decodes arguments

2. Encodes results

3. Frees arguments from memory

When to Call XDR Routines

Under most circumstances, you are not likely to call any XDR routines directly. The clnt_call and

svc_sendreply routines call the XDR routines.

You would call the XDR routines directly only when you write your own routines to convert data to or from

XDR format.

ONC RPC RTL XDR Routines

410

Quick Reference

Table 19-2 lists the XDR routines that encode and decode data.

Table 19-2 XDR Encoding and Decoding Routines

This routine... Encodes and decodes...

xdr_array Variable-length array

xdr_bool Boolean value

xdr_bytes Bytes

xdr_char Character

xdr_double Double-precision floating point number

xdr_enum Enumerated type

xdr_float Floating point value

xdr_hyper VAX quad word to an XDR hyper-integer, or the other way

xdr_int Four-byte integer

xdr_long Longword

xdr_opaque Contents of a buffer (treats the data as a fixed length of bytes and does not

attempt to interpret them)

xdr_pointer Pointer to a data structure

xdr_reference Pointer to a data structure (the address must be non-zero)

xdr_short Two-byte unsigned integer

xdr_string Null-terminated string

xdr_u_char Unsigned character

xdr_u_hyper VAX quad word to an XDR unsigned hyper-integer

xdr_u_int Four-byte unsigned integer

xdr_u_long Unsigned longword

xdr_u_short Two-byte unsigned integer

xdr_union Union

xdr_vector Vector (fixed length array)

xdr_void Nothing

xdr_wrapstring Null-terminated string

Table 19-3 lists the XDR routines that perform various support functions.

Table 19-3 XDR Support Routines

This routine... Does this...

xdr_free Deallocates a data structure from memory

xdrmem_create Creates a memory buffer XDR stream

xdrrec_create Creates a record-oriented XDR stream

ONC RPC RTL XDR Routines

411

xdrrec_endofrecord Marks the end of a record

xdrrec_eof Goes to the end of the current record, then verifies whether any more

data can be read

xdrrec_skiprecord Goes to the end of the current record

xdrstdio_create Initializes an stdio stream

Table 19-4 lists the upper layer XDR routines that support RPC.

Table 19-4 Upper Layer XDR Routines

This routine... Encodes and decodes...

xdr_accepted_reply Part of an RPC reply message after the reply is accepted

xdr_authunix_parms UNIX-style authentication information

xdr_callhdr Static part of an RPC request message header (encoding only)

xdr_callmsg RPC request message

xdr_netobj Data in the netobj structure

xdr_opaque_auth Authentication information

xdr_pmap Port Mapper parameters

xdr_pmaplist List of Port Mapping data

xdr_rejected_reply Part of an RPC reply message after the reply is rejected

xdr_replymsg RPC reply header; it then calls the appropriate routine to convert the

rest of the message

Routine Descriptions

The following sections describe each XDR routine in detail.

ONC RPC RTL XDR Routines

412

xdr_accepted_reply
XDR ONC Converts an RPC reply message from local format to XDR format, or the other way around.

Format

#include

bool_t xdr_accepted_reply (XDR *xdrs, struct accepted_reply *ar);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

ar

Address of the structure containing the RPC reply message.

Description

The xdr_replymsg routine calls the xdr_accepted_reply routine.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_replymsg

ONC RPC RTL XDR Routines

413

xdr_array
XDR ONC Converts a variable-length array from local format to XDR format, or the other way around.

Format

#include

bool_t xdr_array (XDR *xdrs, u_char **addrp, u_long *sizep, u_long maxsize, u_long

elsize, xdrproc_t elproc);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

addrp

Address of the address containing the array being converted. If addrp is zero, then xdr_array allocates

((*sizep)*elsize) number of bytes when it decodes.

sizep

Address of the number of elements in the array.

maxsize

Maximum number of elements the array can hold.

elsize

Size of each element, in bytes.

elproc

XDR routine that handles each array element.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

ONC RPC RTL XDR Routines

414

xdr_authunix_parms
XDR ONC Converts UNIX-style authentication information from local format to XDR format, or the other

way around.

Format

#include

bool_t xdr_authunix_parms (XDR *xdrs, struct authunix_parms *aupp);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

aupp

UNIX-style authentication information being converted.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

ONC RPC RTL XDR Routines

415

xdr_bool
XDR ONC Converts a boolean value from local format to XDR format, or the other way around.

Format

#include

bool_t xdr_bool (XDR *xdrs, bool_t *bp);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

bp

Address of the boolean value.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

ONC RPC RTL XDR Routines

416

xdr_bytes
XDR ONC Converts bytes from local format to XDR format, or the other way around.

Format

#include

bool_t xdr_bytes (XDR *xdrs, u_char **cpp, u_long *sizep, u_long maxsize);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

cpp

Address of the address of the buffer containing the bytes being converted. If *cpp is zero, xdr_bytes allocates

maxsize bytes when it decodes.

sizep

Address of the actual number of bytes being converted.

maxsize

Maximum number of bytes that can be used. The server protocol determines this number.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

ONC RPC RTL XDR Routines

417

xdr_callhdr
XDR ONC Encodes the static part of an RPC request message header.

Format

#include

bool_t xdr_callhdr (XDR *xdrs, struct rpc_msg *chdr);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

chdr

Address of the data being converted.

Description

The xdr_callhdr routine converts the following fields: transaction ID, direction, RPC version, server

program number, and server version. It converts the last four fields once, when the client handle is created.

The clnttcp_create and clntudp_create routines call the xdr_callhdr routine.

Diagnostics

This routine always returns TRUE.

See Also

clnt_call, clnttcp_create, clntudp_create, xdr_callmsg

ONC RPC RTL XDR Routines

418

xdr_callmsg
XDR ONC Converts an RPC request message from local format to XDR format, or the other way around.

Format

#include

bool_t xdr_callmsg (XDR *xdrs, struct rpc_msg *cmsg);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

cmsg

Address of the message being converted.

Description

The xdr_callmsg routine converts the following fields: transaction ID, RPC direction, RPC version, program

number, version number, procedure number, client authentication.

The pmap_rmtcall, svc_sendreply, and svc_sendreply_dq routines call xdr_callmsg.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_callhdr

ONC RPC RTL XDR Routines

419

xdr_char
XDR ONC Converts a character from local format to XDR format, or the other way around.

Format

#include

bool_t xdr_char (XDR *xdrs, char *cp);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

cp

Address of the character being converted.

Description

This routine provides the same functionality as the xdr_u_char routine.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_u_char

ONC RPC RTL XDR Routines

420

xdr_double
XDR ONC Converts a double-precision floating point number between local and XDR format.

Format

#include

bool_t xdr_double (XDR *xdrs, double *dp);

Arguments

xdrs

Pointer to an XDR stream handle created by one of the XDR stream handle creation routines.

dp

Pointer to the double-precision floating point number.

Description

NEW

This routine provides a filter primitive that translates between double-precision numbers and their external

representations. It is actually implemented by four XDR routines:

xdr_double_D Converts VAX D format floating point numbers

xdr_double_G Converts VAX G format floating point numbers

xdr_double_T Converts IEEE T format floating point numbers

xdr_double_X Converts IEEE X format floating point numbers

You can reference these routines explicitly or you can use compiler settings to control which routine is used

when you reference the xdr_double routine.

ONC

VAX

 If you use... link your program with...

VAX C D_float RTL TCPWARE_RPCLIB_SHR.EXE

VAX C G_float RTL TCPWARE_RPCLIBG_SHR.EXE.

ONC RPC RTL XDR Routines

421

ALPHA and I64

If you use... link your program with...

DEC C D_float RTL TCPWARE_RPCLIBD_SHR.EXE.

DEC C G_float RTL TCPWARE_RPCLIB_SHR.EXE.

DEC C T_float RTL TCPWARE_RPCLIBT_SHR.EXE.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

ONC RPC RTL XDR Routines

422

xdr_enum
XDR ONC Converts an enumerated type from local format to XDR format, or the other way around.

Format

#include

bool_t xdr_enum (XDR *xdrs, enum_t *ep);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

ep

Address containing the enumerated type.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

ONC RPC RTL XDR Routines

423

xdr_float
XDR ONC Converts a floating point value from local format to XDR format, or the other way around.

Format

#include

bool_t xdr_float (XDR *xdrs, float *fp);

Arguments

xdrs

Pointer to an XDR stream handle created by one of the XDR stream handle creation routines.

fp

Pointer to a single-precision floating point number.

Description

NEW

This routine provides a filter primitive that translates between double-precision numbers and their external

representations. It is actually implemented by four XDR routines:

xdr_float_F Converts VAX F format floating point numbers

xdr_float_S Converts IEEE T format floating point numbers

You can reference these routines explicitly or you can use compiler settings to control which routine is used

when you reference the xdr_float routine.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

ONC RPC RTL XDR Routines

424

xdr_free
XDR ONC Deallocates a data structure from memory.

Format

#include

void xdr_free (xdrproc_t proc, u_char *objp);

Arguments

proc

XDR routine that describes the data structure.

objp

Address of the data structure.

Description

Call this routine after decoded data is no longer needed. Do not call it for encoded data.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

ONC RPC RTL XDR Routines

425

xdr_hyper
XDR ONC Converts a VAX quad word to an XDR hyper-integer, or the other way around.

Format

bool_t xdr_hyper (XDR *xdrs, quad *ptr);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

ptr

Address of the structure containing the quad word. The quad word is stored in standard VAX quad word format,

with the low-order longword first in memory.

Description

This routine provided the same functionality as the xdr_u_hyper routine.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_u_hyper

ONC RPC RTL XDR Routines

426

xdr_int
XDR ONC Converts one four-byte integer from local format to XDR format, or the other way around.

Format

#include

bool_t xdr_int (XDR *xdrs, int *ip);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

ip

Address containing the integer.

Description

This routine provides the same functionality as the xdr_u_int, xdr_long, and xdr_u_long routines.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_u_int, xdr_long, xdr_u_long

ONC RPC RTL XDR Routines

427

xdr_long
XDR ONC Converts one longword from local format to XDR format, or the other way around.

Format

#include

bool_t xdr_long (XDR *xdrs, u_long *lp);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

lp

Address containing the longword.

Description

This routine provides the same functionality as the xdr_u_long, xdr_int, and xdr_u_int routines.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_u_long, xdr_int, xdr_u_int

ONC RPC RTL XDR Routines

428

xdr_netobj
XDR ONC Converts data in the netobj structure from the local data format to XDR format, or the other

way around.

Format

bool_t xdr_netobj (XDR *xdrs, netobj *ptr);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

ptr

Address of the following structure:

typedef struct

{

 u_long n_len;

 byte *n_bytes;

} netobj;

This structure defines the data being converted.

Description

The netobj structure is an aggregate data structure that is opaque and contains a counted array of 1024 bytes.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

ONC RPC RTL XDR Routines

429

xdr_opaque
XDR ONC Converts the contents of a buffer from the local data format to XDR format, or the other way

around. This routine treats the data as a fixed length of bytes and does not attempt to interpret them.

Format

#include

bool_t xdr_opaque (XDR *xdrs, char *cp, u_long cnt);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

cp

Address of the buffer containing opaque data.

cnt

Byte length.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

ONC RPC RTL XDR Routines

430

xdr_opaque_auth
XDR ONC Converts authentication information from the local data format to XDR format, or the other way

around.

Format

#include

bool_t xdr_opaque_auth (XDR *xdrs, struct opaque_auth *ap);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

ap

Address of the authentication information. This data was created by the authnone_create,

authunix_create, or authunix_create_default routine.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

ONC RPC RTL XDR Routines

431

xdr_pmap
XDR ONC Converts Port Mapper parameters from the local data format to XDR format, or the other way

around.

Format

#include "TCPWARE_INCLUDE:PMAP_PROT.H"

bool_t xdr_pmap (XDR *xdrs, struct pmap *regs);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

regs

Address of a structure containing the program number, version number, protocol number, and port number. This

is the data being converted.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

ONC RPC RTL XDR Routines

432

xdr_pmaplist
XDR ONC Converts a list of Port Mapping data from the local data format to XDR format, or the other

way around.

Format

#include "TCPWARE_INCLUDE:PMAP_PROT.H"

bool_t xdr_pmaplist (XDR *xdrs, struct pmaplist **rpp);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

rpp

Address of the address of the structure containing Port Mapper data. If this routine is used to decode a Port

Mapper listing, rpp is set to the address of the newly allocated linked list of structures.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

ONC RPC RTL XDR Routines

433

xdr_pointer
XDR ONC Converts a recursive data structure from the local data format to XDR format, or the other way

around.

Format

#include

bool_t xdr_pointer (XDR *xdrs, u_char **objpp, u_long obj_size,

xdrproc_t xdr_obj);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

objpp

Address of the address containing the data being converted. May be zero.

obj_size

Size of the data structure in bytes.

xdr_obj

XDR routine that describes the object being pointed to. This routine can describe complex data structures, and

these structures may contain pointers.

Description

An XDR routine for a data structure that contains pointers to other structures, such as a linked list, would call

the xdr_pointer routine. The xdr_pointer routine encodes a pointer from an address into a boolean. If the

boolean is TRUE, the data follows the boolean.

Example

bool_t xdr_pointer(xdrs, objpp, obj_size, xdr_obj)

 XDR *xdrs;

 char **objpp;

 longw obj_size;

 xdrproc_t xdr_obj;

{

 bool_t more_data;

/*

** determine if the pointer is a valid address (0 is invalid)

*/

 if(*objpp != NULL)

 more_data = TRUE;

 else

 more_data = FALSE;

/*

** XDR the flag

** If we are decoding, then more_data is overwritten.

*/

ONC RPC RTL XDR Routines

434

 if(!xdr_bool(xdrs, &more_data))

 return(FALSE);

/*

** If there is no more data, set the pointer to 0 (No effect if we

** were encoding) and return TRUE

*/

 if(!more_data)

 {

 *objpp = NULL;

 return(TRUE);

 }

/*

** Otherwise, call xdr_reference. The result is that xdr_pointer is

** the same as xdr_reference, except that xdr_pointer adds a Boolean

** to the encoded data and will properly handle NULL pointers.

*/

 return(xdr_reference(xdrs, objpp, obj_size, xdr_obj));

} /* end function xdr_pointer() */

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

ONC RPC RTL XDR Routines

435

xdr_reference
XDR ONC This routine recursively converts a structure that is referenced by a pointer inside the structure.

Format

#include

bool_t xdr_reference (XDR *xdrs, u_char **objpp, u_long obj_size, xdrproc_t

xdr_obj);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

objpp

Address of the address of a structure containing the data being converted. If objpp is zero, the xdr_reference

routine allocates the necessary storage when decoding. This argument must be non-zero when encoding.

When xdr_reference encodes data, it passes *objpp to xdr_obj. When decoding, xdr_reference

allocates memory if *objpp equals zero.

obj_size

Size of the referenced structure.

xdr_obj

XDR routine that describes the object being pointed to. This routine can describe complex data structures, and

these structures may contain pointers.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

ONC RPC RTL XDR Routines

436

xdr_rejected_reply
XDR ONC Converts the remainder of an RPC reply message after the header indicates that the reply is

rejected.

Format

#include

bool_t xdr_rejected_reply (XDR *xdrs, struct rejected_reply *rr);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

rr

Address of the structure containing the reply message.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

ONC RPC RTL XDR Routines

437

xdr_replymsg
XDR ONC Converts the RPC reply header, then calls the appropriate routine to convert the rest of the

message.

Format

#include

bool_t xdr_replymsg (XDR *xdrs, struct rpc_msg *rmsg);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

rmsg

Address of the structure containing the reply message.

Description

The xdr_replymsg routine calls the xdr_rejected_reply or xdr_accepted_reply routine to convert the

body of the RPC reply message from the local data format to XDR format, or the other way around.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_accepted_reply, xdr_rejected_reply

ONC RPC RTL XDR Routines

438

xdr_short
XDR ONC Converts a two-byte integer from the local data format to XDR format, or the other way

around.

Format

#include

bool_t xdr_short (XDR *xdrs, short *sp);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

sp

Address of the integer being converted.

Description

This routine provides the same functionality as xdr_u_short.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_u_short

ONC RPC RTL XDR Routines

439

xdr_string
XDR ONC Converts a null-terminated string from the local data format to XDR format, or the other way

around.

Format

#include

bool_t xdr_string (XDR *xdrs, char **cpp, u_long maxsize);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

cpp

Address of the address of the first byte in the string.

maxsize

Maximum length of the string. The service protocol determines this value.

Description

The xdr_string routine is the same as the xdr_wrapstring routine, except xdr_string allows you to

specify the maxsize.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_wrapstring

ONC RPC RTL XDR Routines

440

xdr_u_char
XDR ONC Converts an unsigned character from local format to XDR format, or the other way around.

Format

#include

bool_t xdr_u_char (XDR *xdrs, u_char bp);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

bp

Address of the character being converted.

Description

This routine provides the same functionality as xdr_char.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_char

ONC RPC RTL XDR Routines

441

xdr_u_hyper
XDR ONC Converts an VAX quad word to an XDR unsigned hyper-integer, or the other way around.

Format

bool_t xdr_u_hyper (XDR *xdrs, quad *ptr);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

ptr

Address of the structure containing the quad word. The quad word is stored in standard VAX format, with the

low-order longword first in memory.

Description

This routine provides the same functionality as the xdr_hyper routine.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_hyper

ONC RPC RTL XDR Routines

442

xdr_u_int
XDR ONC Converts a four-byte unsigned integer from local format to XDR format, or the other way

around.

Format

#include

bool_t xdr_u_int (XDR *xdrs, int *ip);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

ip

Address of the integer.

Description

This routine provides the same functionality as xdr_int, xdr_long, and xdr_u_long.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_int

ONC RPC RTL XDR Routines

443

xdr_u_long
XDR ONC Converts an unsigned longword from local format to XDR format, or the other way around.

Format

#include

bool_t xdr_u_long (XDR *xdrs, u_long *lp);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

lp

Address of the longword.

Description

This routine provides the same functionality as xdr_long, xdr_int, and xdr_u_int.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_long, xdr_int, xdr_u_int

ONC RPC RTL XDR Routines

444

xdr_u_short
XDR ONC Converts a two-byte unsigned integer from the local data format to XDR format, or the other

way around.

Format

#include

bool_t xdr_u_short (XDR *xdrs, u_short *sp);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

sp

Address of the integer being converted.

Description

This routine provides the same functionality as xdr_short.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_short

ONC RPC RTL XDR Routines

445

xdr_union
XDR ONC Converts a union from the local data format to XDR format, or the other way around.

Format

#include

bool_t xdr_union (XDR *xdrs, enum_t *dscmp, u_char *unp, xdr_discrim *choices,

xdrproc_t dfault);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

dscmp

Integer from the choices array.

unp

Address of the union.

choices

Address of an array. This array maps integers to XDR routines.

dfault

XDR routine that is called if the dscmp integer is not in the choices array.

Description

The xdr_union routine searches the array choices for the value of dscmp. If it finds the value, it calls the

corresponding XDR routine to process the remaining data.If xdr_union doesn't find the value, it calls the

dfault routine.

Example

The TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]GETSYI_XDR_2.C file contains a sample routine

that calls xdr_union.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

ONC RPC RTL XDR Routines

446

xdr_vector
XDR ONC Converts a vector (fixed length array) from the local data format to XDR format, or the other

way around.

Format

#include

bool_t xdr_vector (XDR *xdrs, u_char *basep, u_long nelem, u_long elmsize,

xdrproc_t xdr_elem);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

basep

Address of the array.

nelem

Number of elements in the array.

elmsize

Size of each element.

xdr_elem

Converts each element from the local data format to XDR format, or the other way around.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

ONC RPC RTL XDR Routines

447

xdr_void
XDR ONC Converts nothing.

Format

#include

bool_t xdr_void (XDR *xdrs, u_char *ptr);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

ptr

Ignored.

Description

Use this routine as a place-holder for a program that passes no data. The server and client expect an XDR

routine to be called, even when there is no data to pass.

Diagnostics

This routine always returns TRUE.

ONC RPC RTL XDR Routines

448

xdr_wrapstring
XDR ONC Converts a null-terminated string from the local data format to XDR format, or the other way

around.

Format

#include

bool_t xdr_wrapstring (XDR *xdrs, char **cpp);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

cpp

Address of the address of the first byte in the string.

Description

The xdr_wrapstring routine calls the xdr_string routine. The xdr_wrapstring routine hides the

maxsize argument from the programmer. Instead, the maximum size of the string is assumed to be 2
32

 - 1.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_string

ONC RPC RTL XDR Routines

449

xdrmem_create
XDR ONC Creates a memory buffer XDR stream.

Format

#include

void xdrmem_create (XDR *xdrs, u_char *addr, u_long size, enum xdr_op op);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

addr

Address of the buffer containing the encoded data.

size

Size of the addr buffer.

op

Operations you will perform on the buffer. Valid values are XDR_ENCODE, XDR_DECODE, and XDR_FREE. You

may change this value.

Description

The xdrmem_create routine initializes a structure so that other XDR routines can write to a buffer. The UDP

and UDPA transports use this routine.

ONC RPC RTL XDR Routines

450

xdrrec_create
XDR ONC Creates a record-oriented XDR stream.

Format

#include

void xdrrec_create (XDR *xdrs, u_long sendsize, u_long recvsize,

u_char *tcp_handle, int (*readit)(), int (*writeit)();

Arguments

xdrs

Address of the structure being created. The xdrrec_create routine will write XDR encoding and decoding

information to this structure.

sendsize

Size of the send buffer in bytes. The minimum size is 100 bytes. If you specify fewer than 100 bytes, 4000 bytes

is used as the default.

recvsize

Size of the receive buffer in bytes. The minimum size is 100 bytes. If you specify fewer than 100 bytes, 4000

bytes is used as the default.

tcp_handle

Address of the client or server handle.

readit

Address of a user-written routine that reads data from the stream transport. This routine must use the following

format:

int readit(tcp_handle, buffer, len)

u_char *tcp_handle;

u_char *buffer;

u_long len;

where *tcp_handle is the client or server handle, *buffer is the buffer to fill, and len is the number of

bytes to read. The readit routine returns either the number of bytes read, or -1 if an error occurs.

writeit

Address of a user-written routine that writes data to the stream transport. This routine must use the following

format:

int writeit(tcp_handle, buffer, len)

u_char *tcp_handle;

u_char *buffer;

u_long len;

– tcp_handle is the client or server handle.

– buffer is the address of the buffer being written.

ONC RPC RTL XDR Routines

451

– len is the number of bytes to write.

The writeit routine returns either the number of bytes written, or -1 if an error occurs.

Description

The xdrrec_create routine requires one of the following:

• The TCP transport

• A stream-oriented interface (such as file I/O) not supported by TCPware. The stream consists of data

organized into records. Each record is either an RPC request or reply.

The clnttcp_create and svcfd_create routines call the xdrrec_create routine.

See Also

clnttcp_create, svcfd_create, xdrrec_endofrecord, xdrrec_eof, xdrrec_skiprecord

ONC RPC RTL XDR Routines

452

xdrrec_endofrecord
XDR ONC Marks the end of a record.

Format

#include

bool_t xdrrec_endofrecord (XDR *xdrs, bool_t sendnow);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

sendnow

Indicates when the calling program will send the record to the writeit routine (see xdrrec_create).

If sendnow is TRUE, xdrrec_endofrecord sends the record now. If sendnow is FALSE,

xdrrec_endofrecord writes the record to a buffer and sends the buffer when it runs out of buffer space.

Description

A client or server program calls the xdrrec_endofrecord routine when it reaches the end of a record it is

writing. The program must call the xdrrec_create routine before calling xdrrec_endofrecord.

Diagnostics

This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdrrec_create, xdrrec_eof, xdrrec_skiprecord

ONC RPC RTL XDR Routines

453

xdrrec_eof
XDR ONC Goes to the end of the current record, then verifies whether any more data can be read.

Format

#include

bool_t xdrrec_eof (XDR *xdrs);

Argument

xdrs

Address of the structure containing XDR encoding and decoding information.

Description

The client or server program must call the xdrrec_create routine before calling xdrrec_eof.

Diagnostics

This routine returns TRUE if it reaches the end of the data stream, and FALSE if it finds more data to read.

See Also

xdrrec_create, xdrrec_endofrecord, xdrrec_skiprecord

ONC RPC RTL XDR Routines

454

xdrrec_skiprecord
XDR ONC Goes to the end of the current record.

Format

#include

bool_t xdrrec_skiprecord (XDR *xdrs);

Argument

xdrs

Address of the structure containing XDR encoding and decoding information.

Description

A client or server program calls the xdrrec_skiprecord routine before it reads data from a stream. This

routine ensures that the program starts reading a record from the beginning.

The xdrrec_skiprecord routine is similar to the xdrrec_eof routine, except that xdrrec_skiprecord

does not verify whether any more data can be read.

The client or server program must call the xdrrec_create routine before calling xdrrec_skiprecord.

Diagnostics

This routine returns TRUE if it has skipped to the start of a record. Otherwise, it returns FALSE.

See Also

xdrrec_create, xdrrec_endofrecord, xdrrec_eof

ONC RPC RTL XDR Routines

455

xdrstdio_create
XDR Initializes an stdio XDR stream.

Format

#include

void xdrstdio_create (XDR *xdrs, FILE *file, enum xdr_op op);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

file

File pointer FILE *, which is to be associated with the stream.

op

An XDR operation, one of: XDR_ENCODE, XDR_DECODE, or XDR_FREE.

Description

The xdrstdio_create routine initializes an stdio stream for the specified file.

ONC RPC Sample Programs

456

Chapter 20 ONC RPC Sample Programs

Introduction

This chapter is for RPC programmers. It explains:

• How to run the sample programs.

• The purpose of each sample program file.

Introducing Sample Programs

The ONC RPC sample programs are divided into three groups:

• GETSYI

• PRINT

• SYSINFO

Each group has a command procedure to facilitate compiling and linking. All command procedures are in the

TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC] directory.

For more information on each program, see the comments in the GETSYI.COM, PRINT.COM, and

SYSINFO.COM files.

Running Sample Programs

To run an RPC sample program, follow these steps:

1 Move to the directory where you want the command procedure to place the client and server sample

programs. It must be a directory in which you have write privilege.

2 Compile the sample client and server programs by entering one of the following commands at the DCL

prompt:

$ @TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]PRINT

$ @TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]SYSINFO

$ @TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]GETSYI XDR1

$ @TCPWARE_ROOT:[TCPWARE.EXAMPLES.RPC]GETSYI XDR2

3 Verify whether the Port Mapper is running. Use the RPCINFO command or the NETCU SHOW SERVICES

command. If the Port Mapper is not running, ask the system manager to start it.

4 Log on to a second terminal. Run the server that you compiled in step 2. To stop the server, type CTRL/C.

5 Define symbols that point to the executable client program. A symbol can point to either a logical or a

disk/directory specification, as follows:

ONC RPC Sample Programs

457

symbol:==$logical:prog

symbol:==$disk:[dir]prog

– symbol specifies GETSYI, PRINTF, or SYSINFO.

– logical is the logical pointing to the directory that contains the .EXE client program. This logical must

translate to a disk and directory specification.

– prog is the .EXE program for GETSYI, PRINT, or SYSINFO.

– disk:[dir] is the disk and directory where the .EXE client program is located.

These symbols remain valid until you log off.

6 Run the clients. Use the commands given in the following sections.

Running GETSYI Client

To run the GETSYI client, enter the following command at the DCL prompt:

$ GETSYI [-u | -t][-d#][-nnode][-hhost]code[code...]

GETSYI Runs the GETSYI client.

-u UDP transport. Supported only for the GETSYI_CLNT_CALL client. This is the

default.

-t TCP transport. Supported only for the GETSYI_CLNT_CALL client.

-d# Debugging value passed to the ONCRPC_SET_CHAR routine. Debugging values

are defined in the ONCRPC_CONST.H file. The pound sign (#) represents a

hexadecimal number. The default is 0.

-nnode Name of the node about which the server is returning information. Can be used

only if the server is part of a VMS cluster. The default is a NULL string (no

node).

-hhost Domain name of the host running the remote server. If you omit host, node is

used as the default. If node is not specified, the default is the local host.

code String indicating what information the server needs to return. You can enter up to

64 codes. The codes are

– BOOTTIME NODE_SWVERS

– CLUSTER_NODES NODENAME

– CPU PAGEFILE_FREE

– NODE_HWTYPE PAGEFILE_PAGE

– NODE_HWVERS SWAPFILE_FREE

– NODE_NUMBER SWAPFILE_PAGE

– NODE_SWTYPE VERSION

ONC RPC Sample Programs

458

 The GETSYI_SVC_SUBS.C file defines all possible codes. Three codes in the

file are specific to VMS Version 5.x or OpenVMS. These are commented out.

You can remove the comments in order to use them.

 The OpenVMS System Services Reference Manual describes each code under the

$ GETSYI system service.

Running PRINT Client

To run the PRINT client, type the following command at the DCL prompt:

PRINTF [-d#][-hhost]filename

-d# Debugging value that is passed to the ONCRPC_SET_CHAR routine. Debugging

values are defined in the ONCRPC_CONST.H file. The pound sign (#) represents

a hexadecimal number. The default is 0.

-hhost Domain name of the host running the remote server. The default is the local host.

filename Name of the file to be displayed on the screen. You must have the appropriate

privilege to gain access to this file.

Running SYSINFO Client

To run the SYSINFO client, type the following command at the DCL prompt:

SYSINFO [-d#][limit]

-d# Debugging value that is passed to the ONCRPC_SET_CHAR routine. Debugging

values are defined in the ONCRPC_CONST.H file. The pound sign (#) represents a

hexadecimal number. The default is 0.

limit Maximum number of replies the client can receive before it exits. The client processes

until it reaches this limit or it times out, whichever comes first.

Miscellaneous Clients and Servers
The sample programs listed in Table 20-1 include three client programs using the client_call, callrpc,

and pmap_rmtcall routines; a synchronous server; and a server using the registerrpc routine.

In this group of programs, a client calls a server to request system information, and the server provides the

information.

ONC RPC Sample Programs

459

Table 20-1 GETSYI Sample Programs

File Description

GETSYI.COM Command procedure that compiles and links related RPC

sample programs.

GETSYI.H Header file used by the sample RPC GETSYI programs.

Generated by RPCGEN.

GETSYI.X Sample RPCGEN input file for the TCP and UDP

transports.

GETSYI_CLNT.C Sample client code generated by the RPCGEN compiler.

GETSYI_CLNT_CALL.C Sample RPC client program using the clnt_call routine.

GETSYI_CLNT_CALLRPC.C Sample RPC client program using the callrpc routine.

GETSYI_CLNT_RMTCALL.C Sample RPC client program using the pmap_rmtcall

routine.

GETSYI_CLNT_SUBS.C Miscellaneous client support routines.

GETSYI_DEF.H Contains various structure definitions used by the RPC

sample programs.

GETSYI_PROC_S.C Sample RPC procedure for a synchronous server.

GETSYI_SVC.C Sample RPC program for a synchronous server. Generated

by RPCGEN.

GETSYI_SVC_REG.C Sample RPC program and procedure using the

registerrpc routine.

GETSYI_SVC_SUBS.C Miscellaneous server support routines for the sample

GETSYI programs.

GETSYI_XDR.C XDR routines generated by RPCGEN, used by sample RPC

clients and servers.

GETSYI_XDR_2.C Alternative XDR routines using xdr_union, used by

sample RPC clients and servers.

Batch RPC Sample Programs

In the batch programs listed in Table 20-2, a client sends a file to a server one record at a time. After the last

record is sent, the client flushes the pipeline and receives the total number of records received by the server.

Table 20-2 Sample RPC Batch Programs

File Description

PRINT.C Sample RPC batch client program.

PRINT.COM Command procedure that compiles and links related RPC sample programs.

PRINT.H Header file for the sample RPC batch programs. Generated by RPCGEN.

ONC RPC Sample Programs

460

PRINT.X RPCGEN input file used by the sample RPC batch programs.

PRINT_DEF.H Contains various structure definitions used by the RPC sample batch

programs.

PRINT_SVC.C Sample RPC batch server program.

PRINT_XDR.C XDR routines used by the sample RPC batch programs. Generated by

RPCGEN.

Broadcast RPC Sample Programs

In the broadcast RPC programs listed in Table 20-3, the server returns the name of its host and operating

system. The each result routine displays the address of the remote host and the values returned.

The clnt_broadcast routine waits for replies until it times out or reaches the specified limit. Then the client

stops processing.

Table 20-3 Broadcast RPC Sample Programs

File Description

SYSINFO.C Sample RPC client program using broadcast RPC.

SYSINFO.COM Command procedure that compiles and links related RPC sample

programs.

SYSINFO.H Header file used by the sample RPC broadcast programs. Generated by

RPCGEN.

SYSINFO.X RPCGEN input file used by the sample RPC broadcast programs.

SYSINFO_DEF.H Contains various structure definitions used by the sample RPC

broadcast programs.

SYSINFO_SVC.C Sample RPC server program using broadcast RPC.

SYSINFO_XDR.C XDR routines used by the sample RPC broadcast programs. Generated

by RPCGEN.

TCPware Socket Library

461

Appendix A TCPware Socket Library

Introduction

This appendix describes the TCPware for OpenVMS Socket Library.

Note! This appendix is for use with versions of VMS earlier than 5.3. For later versions, use the VAX C or DEC C

socket libraries described in Chapter 8, Socket Library.

The Socket Library is a collection of VAX C (on VAX machines) and DEC C (on Alpha and I64 machines)

subroutines that closely emulates the UNIX socket functions. The Socket Library supports a subset of these

functions, including stream and datagram sockets.

ALPHA and I64 When using DEC C, be sure to use the /stand=vaxc compiler option.

TCPware provides these subroutines so that UNIX C programs, which use the UNIX socket functions, can

easily be migrated to the TCPware environment. Programs written in VAX C, DEC C, or other high level

languages can call the Socket Library.

TCPware does not support all features of the UNIX socket functions. It provides only limited asynchronous

support. Most differences are primarily due to the differences between the UNIX and OpenVMS operating

systems.

When developing new applications, consider using a QIO programming interface. This interface is not difficult

to use and provides full capabilities for event-driven programming.

For more information on the direct QIO programming interfaces, see Chapter 6, INETDRIVER Services,

Chapter 3, TCPDRIVER Services, Chapter 4, UDPDRIVER Services, or Chapter 5, IPDRIVER Services.

The Socket Library and related VAX C header files are located in the TCPWARE_INCLUDE: directory.

Include (Header) Files

The following VAX C header files are provided with the Socket Library:

IF.H Defines the interface data structures used with the socket_ioctl routine to

obtain information about network interfaces.

IF_ARP.H Defines the ARP (Address Resolution Protocol) data structures used with the

socket_ioctl routine to set and get ARP entries.

IN.H Defines the internet address structure (in_addr) and socket address structure

(sockaddr_in). This file is required for almost all socket operations.

TCPware Socket Library

462

INET.H Defines the inet subroutines. Use this file when you need to call them.

ALPHA and I64 Use the INET.H file when calling the TCPware inet subroutines. If you do not, the program

uses HP subroutines instead. See Subroutines Redefined in Header Files for Use on Alpha and I64 Systems for

a list of subroutines that are redefined in this file.

IOCTL.H Defines the socket_ioctl subroutine.

NAMESER.H Defines the constant needed for using the resolver routines for Domain

Name Services (DNS) lookups.

NETDB.H Defines the network database structures; in particular, the hostent,

protoent, and servent structures. It also declares the subroutines. This

file is required if using the gethostbyname, gethostbyaddr,

getprotobyname, getprotobynumber, getservbyname, and

getservbyport subroutines.

ALPHA and I64 Use the NETDB.H file when calling the TCPware subroutines above. If you do not, the

program uses HP subroutines instead. See Subroutines Redefined in Header Files for Use on Alpha and I64

Systems for a list of subroutines that are redefined in this file.

RESOLV.H Defines the options provided for the resolver routines for DNS lookups.

ROUTE.H Defines the routing data structures used with the socket_ioctl routine to

set and get routing table entries.

SOCKERR.H Defines the socket error codes (these are usually defined in ERRNO.H). This

file is required for all socket operations if you want to test for specific error

status codes.

SOCKET.H Defines the sockaddr structure and the SOCK_STREAM, SOCK_DGRAM,

AF_INET, and various other symbols used when calling the Socket Library

subroutines. This file is required for all socket operations.

ALPHA and I64 Use the SOCKET.H file when calling the TCPware subroutines. If you do not, the program

uses HP subroutines instead. See Subroutines Redefined in Header Files for Use on Alpha and I64 Systems for

a list of subroutines that are redefined in this file.

SOCKETVAR.H Defines the socket structure used by the socket subroutines themselves. It

is only needed if you want to get access to this internal structure for

special purposes (such as reading the channel number).

It is not recommended that you use the SOCKETVAR.H header file as it

may be removed in a future TCPware release. Use the getsockopt

subroutine, with SO_IOCHAN as optname, if you need the OpenVMS I/O

channel a socket uses.

TCPware Socket Library

463

TYPES.H Defines many UNIX C data type names. It is useful when adapting UNIX

C programs to work under VAX C. The TYPES.H file also defines macros

used in manipulating the socket descriptor sets used with select, such as

FD_SET, FD_CLR, FD_ISSET, FD_ZERO, FD_SET, and FD_SETSIZE.

ALPHA and I64 Use the TYPES.H file when calling certain TCPware subroutines. If you do not, the program

uses HP subroutines instead. See Subroutines Redefined in Header Files for Use on Alpha and I64 Systems for

a list of subroutines that are redefined in this file.

The INET.H, NETDB.H, SOCKET.H, and TYPES.H header files are included with TCPware. These header

files contain the subroutine and function name re-definitions in Table A-1.

Table A-1 Subroutines Redefined in Header Files for Use on Alpha and I64

Systems

This Subroutine/Function... Is Redefined As...

File: SOCKET.H

accept tcpware_accept

bind tcpware_bind

connect tcpware_connect

getpeername tcpware_getpeername

getsockname tcpware_getsockname

getsockopt tcpware_getsockopt

listen tcpware_listen

recvfrom tcpware_recvfrom

select tcpware_select

sendto tcpware_sendto

setsockopt tcpware_setsockopt

socket tcpware_socket

socket_close tcpware_socket_close

socket_ioctl tcpware_socket_ioctl

socket_read tcpware_socket_read

socket_recv tcpware_socket_recv

socket_send tcpware_socket_send

socket_write tcpware_socket_write

shutdown tcpware_shutdown

getdomainname tcpware_getdomainname

setdomainname tcpware_setdomainname

gethostid tcpware_gethostid

TCPware Socket Library

464

gethostaddr tcpware_gethostaddr

gethostname tcpware_gethostname

sethostname tcpware_sethostname

pneterror tcpware_pneterror

File: TYPES.H

htonl tcpware_htonl

htons tcpware_htons

ntohl tcpware_ntohl

ntohs tcpware_ntohs

File: INET.H

inet_addr tcpware_inet_addr

inet_aton tcpware_inet_aton

inet_lnaof tcpware_inet_lnaof

inet_makeaddr tcpware_inet_makeaddr

inet_ntoa tcpware_inet_ntoa

inet_netof tcpware_inet_netof

inet_network tcpware_inet_network

File: NETDB.H

gethostbyname tcpware_gethostbyname

gethostbyaddr tcpware_gethostbyaddr

getnetent tcpware_getnetent

getnetbyaddr tcpware_getnetbyaddr

getnetbyname tcpware_getnetbyname

getprotobyname tcpware_getprotobyname

getprotobynumber tcpware_getprotobynumber

getprotoent tcpware_getprotoent

getservbyname tcpware_getservbyname

getservbyport tcpware_getservbyport

Linking Applications

To use the Socket Library from your applications, you must link to the Socket Library shareable image and the

VAX C Run-Time Library (RTL). On Alpha and I64 systems, HP supplied RTLs link in automatically.

TCPware Socket Library

465

VAX For example, the following command on the VAX links a program called TEST with the Socket Library

shareable image and the VAX C RTL:

$ LINK TEST,SYS$INPUT/OPTIONS

 SYS$SHARE:TCPWARE_SOCKLIB_SHR/SHARE

 SYS$SHARE:VAXCTRL/SHARE

Ctrl/Z

Although it is recommended that you use TCPWARE_SOCKLIB_SHR.EXE or

TCPWARE_SOCKLIBG_SHR.EXE, you can link with TCPWARE:SOCKLIB.OLB instead.

The following command links the TEST program with SOCKLIB.OLB and the VAX C RTL:

$ LINK TEST,TCPWARE:SOCKLIB/LIB,SYS$INPUT/OPTIONS

 SYS$SHARE:VAXCRTL/SHARE

Ctrl/Z

For details on linking C programs, see the VAX C documentation.

ALPHA and I64 The command is:

$ LINK TEST,SYS$INPUT/OPTIONS

 SYS$LIBRARY:TCPWARE_SOCKLIB_SHR/SHARE

Ctrl/Z

Although it is recommended that you use TCPWARE_SOCKLIB_SHR.EXE,

TCPWARE_SOCKLIBD_SHR.EXE, or TCPWARE_SOCKLIBT_SHR.EXE, you can link with

TCPWARE:SOCKLIB.OLB instead.

The following command links the TEST program with SOCKLIB.OLB and the DEC C RTL:

$ LINK TEST,TCPWARE:SOCKLIB/LIB

On Alpha and I64 systems, HP supplied RTL's link in automatically.

For details on linking C programs, see the HP C documentation.

Sample Programs

Table A-2 lists the sample Socket Library based client and server programs TCPware provides in the

SYS$COMMON:[TCPWARE.EXAMPLES]:.

Table A-2 Sample Programs

Program Purpose

DAYTIMED.C Server for the DAYTIME protocol

DISCARD.C Client for the DISCARD protocol

DISCARDD.C Server for the DISCARD protocol

FINGER.C Client for the FINGER protocol

FINGERD.C Server for the FINGER protocol

WHOIS.C Client for the NAME protocol

TCPware Socket Library

466

Subroutine Categories

This section lists the subroutines provided in the Socket Library. These subroutines are divided into the

following categories:

Socket operations Lookup operations

Byte-order conversion operations Byte string operations

Internet address conversion Server operation

See the Socket Library Reference section for details on each one of the subroutines and functions associated

with these categories.

Socket Operations

The Socket Library contains the following socket operations:

accept pneterror socket_read

bind select socket_recv

connect setsockopt recvfrom

getpeername shutdown socket_send

getsockname socket socket_write

getsockopt socket_close sendto

listen socket_ioctl tcpware_server

Lookup Operations

The Socket Library contains the following lookup operations:

getdomainname getnetbyaddr HNS_LOOKUPHOST

gethostname getnetbyname HNS_LOOKUPIA

gethostbyaddr getprotobyname resolver

gethostbyname getprotobynumber setdomainname

TCPware Socket Library

467

gethostid getservbyname/

getservbyport

sethostname

Byte Order Conversion Operations

The Socket Library contains the following byte order conversion functions, defined in the TYPES.H and IN.H

header files:

htonl htons ntohl ntohs

Byte String Operations

The Socket Library contains the following byte string operations:

bcopy bcmp bzero

Internet Address Conversion Subroutines

The Socket Library contains the following internet address conversion subroutines:

inet_addr inet_makeaddr inet_network inet_aton

inet_lnaof inet_netof inet_ntoa

Server Operation

The Socket Library contains one server operation subroutine called tcpware_server.

TheSample Discard Protocol Programs section shows how to use tcpware_server.

Subroutine Data Structures

The following sections contain information about the data structures included in various socket library

subroutines. These structures include:

hostent protoent sockaddr_in netent servent

hostent

The hostent structure represents the internet-host-name-to-address mappings in the subroutines

gethostbyaddr and gethostbyname. The structure is defined as follows in the NETDB.H header file in the

TCPWARE_INCLUDE: directory:

TCPware Socket Library

468

struct hostent {

 char *h_name; /* official host name */

 char **h_aliases; /* alias list */

 int h_addrtype; /* host address type */

 int h_length; /* address length */

 char **h_addr_list; /* list of addresses (name server) */

#define h_addr haddr_list[0]; /* address (backward compatibility) */

};

The h_addr_list list of addresses is null-terminated and is required because some hosts can have many

addresses, each having the same name. The h_addr definition provides backward compatibility and is the first

address (in network byte order) in the list of addresses in the hostent structure.

netent

The netent structure represents the network name/number mappings used with the subroutines

getnetbyname and getnetbyaddr. The structure is defined as follows in the NETDB.H header file in the

TCPWARE_INCLUDE: directory:

struct netent {

 char *n_name; /* official name of net */

 char **n_aliases; /* alias list */

 int n_addrtype; /* net address type */

 unsigned long n_net; /* network #, host byte order */

};

protoent

The protoent structure represents the protocol-name mappings used with the subroutines getprotobyname

and getprotobynumber. The structure is defined as follows in the NETDB.H header file in the

TCPWARE_INCLUDE: directory:

struct protoent {

 char *p_name; /* official protocol name */

 char **p_aliases; /* alias list */

 int p_proto; /* protocol number */

};

servent

The servent structure represents the service mappings used with the subroutines getservbyname and

getservbynumber. The structure is defined as follows in the NETDB.H header file in the

TCPWARE_INCLUDE: directory:

struct servent {

 char *s_name; /* official service name */

 char **s_aliases; /* alias list */

 int s_port; /* port number, network byte order */

 char *s_proto; /* protocol to use */

};

sockaddr_in

The sockaddr_in structure represents the socket address used with the subroutines bind, connect,

getpeername, getsockname, getservbyname and getservbynumber. The structure is defined as follows

in the IN.H header file in the TCPWARE_INCLUDE: directory:

TCPware Socket Library

469

struct sockaddr_in {

 short sin_family; /* address family */

 unsigned short sin_port; /* port number */

 struct in_addr sin_addr; /* address */

 char sin_zero[8];

};

struct in_addr {

 unsigned long s_addr;

};

WIN/TCP Socket Library Support

You can use most WIN/TCP applications with TCPware. You can do so if you use the existing WIN/TCP

socket library and invoke the SETUP_TWG.COM command procedure provided with TCPware. This command

procedure defines some logicals and sets up some files to emulate the Wollongong environment so that the

WIN/TCP socket library can operate.

Using WIN/TCP applications with TCPware assumes that the applications were:

• Built with the Wollongong header files.

• Linked against the TWGLIB.OLB socket library or TWG_RTL.EXE run-time library.

Note that the Run-Time Library must be present on your system in SYS$SHARE if the application is linked

against it.

Using WIN/TCP Applications Under TCPware

When you install TCPware for OpenVMS, one of the files provided is the TCPWARE:SETUP_TWG.COM

file. TCPware does not invoke this command procedure. Edit your system startup file to invoke this procedure.

If you use applications developed for Wollongong's WIN/TCP (or Pathways) under TCPware for OpenVMS,

observe the following:

1 Start TCPware if it is not running.

2 Invoke the SETUP_TWG.COM procedure, for example, @TCPWARE:SETUP_TWG

This command procedure uses the definitions of several TCPware logicals.

3 Edit your system startup file to include the following line after TCPware is started if you want the command

procedure to be permanent: $ @TCPWARE:SETUP_TWG

The SETUP_TWG.COM procedure:

• Defines the logical needed to use the WIN/TCP socket library under TCPware:

ARPANET_HOST_NAME

INET_DOMAIN_NAME

INET_NAMESERVER_LIST

TWG$TCP

• Creates the TWG$TCP:[NETDIST.ETC] directory it does not already exist.

• Copies the following TCPware files to the TWG$TCP:[NETDIST.ETC] directory:

HOSTS.

NETWORKS.

PROTOCOLS.

SERVICES.

TCPware Socket Library

470

Recompiling and Linking WIN/TCP Applications

Applications written for the WIN/TCP socket library that you recompile and then link with the TCPware Socket

Library (object or RTL) will probably not work without modification. The WIN/TCP and TCPware socket

libraries have differences, such as:

• TCPware uses TCPDRIVER and UDPDRIVER, not INETDRIVER. This means that any mix of

SYS$QIO[W] calls with socket library calls will not work.

• The TCPware socket number is not the VMS I/O channel; it is the address of an internal data structure.

• Not all routines in the WIN/TCP library are available in the TCPware socket library. Also, not all routines in

the TCPware socket library are available in the WIN/TCP library.

• Some routines use different names.

Fortunately, modifying the applications written for the WIN/TCP socket library so that they can link against

TCPware's socket library usually does not require a lot of work. It can typically be done using conditional

compilations.

Socket Library Reference

This section describes each Socket Library subroutine and function in detail.

TCPware Socket Library

471

accept
Waits for and accepts the next listening connection. Usually used by servers. Valid only for stream TCP

sockets.

Format

snew = accept(s, name, namelen)

Arguments

int snew

Accepted connection's socket descriptor, or -1 for failure.

int s

Socket descriptor (as returned by socket). The listen subroutine must have been called on this socket.

struct sockaddr_in *name

Address of the sockaddr_in structure to receive peer's internet address and port number. (See the sockaddr_in

subsection for the sockaddr_in structure definition.)

int *namelen

Address of the length of the sockaddr_in structure (passed to and returned by accept).

Description

Allocates a new socket structure and performs a passive open on the socket with the port number from the listen

socket.

Call the listen subroutine before calling accept.

Calls to the socket and bind subroutines are made to create the new socket.

QIO Function Performed

IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP | 0x0800 issued on the channel for the socket to wait for

the next passive connection on the port.

See Also

listen

select

TCPware Socket Library

472

Status

Returns -1 for failure. For a failure status, the errno variable contains the reason for the error as follows:

EADDRINUSE Port number is already in use.

EBADF Socket structure is not valid.

ECONNRESET Peer resets the connection.

EINVAL namelen value is not valid or listen has not been called on socket s.

EIO Unexpected system status returned during operation.

EOPNOTSUPP Not a stream socket.

ENETDOWN Network was shut down.

ETIMEDOUT Connection timed-out.

EWOULDBLOCK Socket was set to non-blocking mode and the operation would block.

Also, accept may return any status that the socket and bind subroutines return.

The vaxc$errno variable contains the system service or I/O status code for EADDRINUSE, ECONNRESET, EIO,

ENETDOWN, or ETIMEDOUT.

TCPware Socket Library

473

bcmp
Compares two buffers to determine if they are identical.

Format

status = bcmp(b1, b2, length)

Arguments

char *b1, *b2

Address of the first and second strings.

int length

Number of bytes to compare.

Description

Provides a byte string operation that compares two buffers of a specified length, returning zero if they are

identical and non-zero if they are not. The function does not check for null bytes.

Status

• Returns 0 if the byte strings are identical or if the length is zero

• Returns non-zero if the byte strings are not identical

TCPware Socket Library

474

bcopy
Copies a specified number of bytes from one buffer to another.

Format

(void) bcopy(b1, b2, length)

Arguments

char *b1, *b2

Address of the source and destination strings. The two strings can overlap.

int length

Number of bytes to be copied.

Description

Provides a byte string operation that copies a specified number of bytes from one buffer to another. Does not

check for null bytes. Overlapping strings are handled correctly.

TCPware Socket Library

475

bind
Binds the local internet address information to the socket.

Format

status = bind(s, name, namelen)

Arguments

int s

Socket descriptor (as returned by socket).

struct sockaddr_in *name

Address of the sockaddr_in structure containing the local internet address and local port number. (See the

sockaddr_in subsection for the sockaddr_in structure definition.)

int namelen

Length of the sockaddr_in structure.

Description

Binds the local address information to the socket. You must specify the local internet address (or

INADDR_ANY[=0]) and local port number (or 0).

QIO Function Performed

• IO$_SETMODE | IO$M_CTRL for a stream (TCP) socket

• IO$_SETMODE | IO$M_CTRL | IO$M_STARTUP for a datagram (UDP) socket

Status

Returns 0 for success or -1 for failure. For a failure status, the errno variable contains the reason for the error

as follows. The vaxc$errno variable is valid for EADDRINUSE, EADDRNOTAVAIL, EIO, or ENETDOWN.

EACCES Insufficient privilege.

EADDRINUSE Port number is already in use.

EADDRNOTAVAIL Local internet address is invalid.

EBADF Socket structure is not valid.

EINVAL Name structure is invalid, its length is wrong, or the socket is already

in use.

EIO Unexpected system status returned during operation.

ENETDOWN Network was shut down.

TCPware Socket Library

476

bzero
Places a specified length of zero bytes into a buffer.

Format

(void) bzero(b, length)

Arguments

char *b

Address of the string.

int length

Number of bytes to be zeroed.

Description

Provides a byte string operation that places a specified length of zero bytes into a buffer.

TCPware Socket Library

477

connect
Initiates an active connection to a server. It is usually used by the client-end of applications.

Format

status = connect(s, server, serverlen)

Arguments

int s

Socket descriptor (as returned by socket).

struct sockaddr_in *server

Address of the sockaddr_in structure containing the peer's internet address and port number. (See the

sockaddr_in subsection for the sockaddr_in structure definition.)

int serverlen

Length of the sockaddr_in structure.

Description

This subroutine opens an active connection for a stream (TCP) socket. For a datagram (UDP) socket, the port is

configured as fully specified (meaning that only datagrams from the specified peer can be received). For a raw

(IP) socket, the destination internet address is set.

A bind call is optional before a connect call.

QIO Function Performed

• IO$_SENSEMODE | IO$M_CTRL|IO$M_STARTUP for a stream (TCP) socket

• IO$_SENSEMODE | IO$M_CTRL for a datagram (UDP) socket

Status

The connect subroutine returns 0 for success or -1 for failure. For a failure status, the errno variable contains

the reason for the error as follows:

EADDRINUSE Port number is already in use.

EAFNOSUPPORT Address family specified in the server structure is not AF_INET.

EBADF Socket structure is not valid.

ECONNREFUSED Connection was refused by the peer.

EINVAL Server structure is invalid, its length is wrong, or the socket is al ready

in use.

EIO Unexpected system status returned during operation.

TCPware Socket Library

478

ENETDOWN Network was shut down.

ENETUNREACH There is no routing information to reach the peer.

ETIMEDOUT Connection timed out.

The vaxc$errno variable is valid for EADDRINUSE, ECONNREFUSED, EIO, ENETDOWN, ENETUNREACH, or

ETIMEDOUT.

TCPware Socket Library

479

getdomainname / gethostname
Gets the local host's domain name or hostname.

Format

len = getdomainname(name, namelen)

len = gethostname(name, namelen)

Arguments

int len

Length of the domain name string (or 0 if none available).

char *name

Address of an ASCII (null-terminated) string in which to return the domain name, or that contains the domain

name.

int namelen

Maximum length of character string name (passed to the subroutines).

Description

The user process getdomainname or gethostname subroutine reads the system logical name

TCPWARE_DOMAINNAME.

See Also

setdomainname

sethostname

Status

• If no name is available, returns 0

• Otherwise, returns the length of the domain name string

TCPware Socket Library

480

gethostbyaddr
Returns the host name or alias for an internet address.

Format

he = gethostbyaddr(addr, len, type)

Arguments

struct hostent *he

Address of the returned hostent structure, or 0 (NULL) if no match is found. (See the hostent subsection for

the hostent structure definition.)

The returned structure is in a static area, so you must copy it to save it.

char *addr

Address of the host's four-byte internet address, in network byte order.

int len

Length of an internet address (must be 4).

int type

Address type (must be AF_INET = 2). AF_INET is defined in SOCKET.H.

Description

Uses the DNS Name Server or cached-in-memory version of your local Hosts database to locate the host name

or alias of the given internet address. A process reloads the Hosts database into memory every 10 minutes by

default if modifications exist. The database is in the TCPWARE:HOSTS. file.

See the gethostbyname subroutine for more details on the Hosts database.

See Also

gethostbyname

TCPware Socket Library

481

gethostbyname
Returns the internet address for a named host or alias.

Format

he = gethostbyname(name)

Arguments

struct hostent *he

Address of the returned hostent structure, or 0 (NULL) if no match is found. (See the hostent subsection for

the hostent structure definition.)

The returned structure is in a static area, so you must copy it to save it.

char *name

Address of an ASCII (null-terminated) string containing the name or alias of the host. The string is not case-

sensitive.

Description

Uses the DNS Name Server or cached version of your local Hosts database to locate the internet address of the

host name or alias entry. A process reloads the Hosts database into memory every 10 minutes by default if

modifications exist. The database is in the TCPWARE:HOSTS. file.

The TCPWARE_SVCORDER logical name contains the list of services used in the order specified. The valid

values for the logical are:

local Uses the HOSTS. file.

bind Uses DNS (provided the TCPWARE_NAMESERVERS and

TCPWARE_DOMAINNAME logicals are properly defined).

You can also use the values "bind,local" (the default if the logical is not defined) and "local,bind"

(which uses DNS if the Hosts database lookup fails).

If you do not use DNS and want to read from the HOSTS. files, edit it in the proper format. Each entry must be

address hostname [aliases], where address is the host internet address, hostname the official host name, and

aliases a list of alias names separated by spaces. Comments can appear prefixed by a #. If you want to read the

HOSTS. file, use the sethostent, gethostent, and endhostent subroutines:

sethostent(int stayopen) opens (or rewinds) the database; if the stayopen

value is non-zero, the database remains open

struct hostent

*gethostent()
returns the next entry's hostent structure address, or

zero if all entries were read

endhostent() closes the database (unless stayopen is non-zero)

TCPware Socket Library

482

gethostbyname returns every entry satisfying the search criteria. Therefore, avoid equating a host with a

standard alias, defining a hostname by an existing alias, and equating more than one host with the same alias.

TCPware Socket Library

483

gethostid
Returns the local host's internet address.

Format

hostid = gethostid()

Argument

int hostid

Returned internet address for the local host in byte reversed order. (Returns -1 if no address is available.)

Description

Returns one of the local internet addresses for a network interface.

See Also

gethostname

sethostname

TCPware Socket Library

484

getnetbyaddr
Returns the netent structure for a network number.

Format

ne = getnetbyaddr(net, type)

Arguments

struct netent *ne

Address of the returned netent structure, or 0 (NULL) if no match is found. (See the netent subsection for the

netent structure definition.)

The returned structure is in a static area, so you must copy it to save it.

long net

Network number, in host byte order (such as the value returned by inet_network).

int type

Address type (must be AF_INET = 2). AF_INET is defined in SOCKET.H.

Description

Uses the cached-in-memory version of your local Networks database to locate the entry for the given network

address. A process reloads the Networks database into memory every 10 minutes by default if modifications

exist. The database is in the TCPWARE:NETWORKS. file.

See thegetnetbyname subroutine for more details on the Networks database.

See Also

getnetbyname

TCPware Socket Library

485

getnetbyname
Returns the netent structure for a named network.

Format

ne = getnetbyname(name)

Arguments

struct netent *ne

Address of the returned netent structure, or 0 (NULL) if no match is found. (See the netent subsection for the

netent structure definition.)

The returned structure is in a static area, so you must copy it to save it.

char *name

Address of an ASCII (null-terminated) string containing the name or alias of the network. The network name

string is case-sensitive.

Description

Uses the cached-in-memory version of your local Networks database to locate the entry for the given network

name or alias. A process reloads the Networks database into memory every 10 minutes by default if

modifications exist. The database is in the TCPWARE:NETWORKS. file.

If you want to read from the NETWORKS. files, edit it in the proper format. Each entry must be name number

[aliases], where name is the official name for the network, number the network number, and aliases a list of

alias names separated by spaces. Comments can appear in the file prefixed by a #. If you want to read the

NETWORKS. file, use the setnetent, getnetent, and endnetent subroutines:

setnetent

(int stayopen)
opens (or rewinds) the database; if the stayopen value is non-zero, the

database remains open

struct netent

*getnetent
returns the next entry's netent structure address, or zero if all entries

were read

endnetent() closes the database (unless stayopen is non-zero)

TCPware Socket Library

486

getpeername
Returns the peer's internet address and port number for a socket.

Format

status= getpeername(s, name, namelen)

Arguments

int s

Socket descriptor (as returned by socket). (See the sockaddr_in subsection for the sockaddr_in structure

definition.)

struct sockaddr_in *name

Address of the sockaddr_in structure in which to return the peer's internet address and port number.

int *namelen

Address of the length of the sockaddr_in structure (passed to and returned by getpeername).

Description

Returns the peer's internet address and port number stored in the socket structure. Note that this information is

set by connect and accept.

Status

Returns 0 for success and -1 for failure. For a failure status, the errno variable contains the reason for the error

as follows:

EBADF Socket structure is not valid.

EINVAL namelen value is incorrect. It must be sizeof(struct

sockaddr_in).

ENOTCONN Socket is not connected.

TCPware Socket Library

487

getprotobyname
Returns the protocol number for a named protocol or alias.

Format

pe = getprotobyname(name)

Arguments

struct protoent *pe

Address of the returned protoent structure, or 0 (NULL) if no match is found. (See the protoent subsection

for the protoent structure definition.) The returned structure is in a static area, so you must copy it to save it.

char *name

Address of an ASCII (null-terminated) string containing the protocol name (such as TCP or UDP) or alias. The

string is not case-sensitive.

Description

Scans the TCPWARE:PROTOCOLS. file and returns the entry for the given protocol name or alias. A process

checks the file for modifications by default every 10 minutes and then reloads it into memory if modifications

exist.

You must format the PROTOCOLS. file properly for the subroutine to work. Format each entry as protocol port

[aliases], where protocol is the protocol name, port the decimal port number, and aliases a list of alias names

separated by spaces. Comments may appear in the file prefixed by a #.

The PROTOCOLS. file, as supplied, contains standard Internet protocols. Changes to this file may affect the

operation of your application and TCPware as well. To avoid conflict, be sure when adding a name or an alias

that it is not already in use.

To read the PROTOCOLS. file, use the setprotoent, getprotoent, and endprotoent subroutines:

setprotoent(int stayopen) opens (or rewinds) the database; if the stayopen

value is non-zero, the database remains open

struct protoent

*getprotoent
returns the next entry's protoent structure address, or

zero if all entries were read

endprotoent() closes the database (unless stayopen is non-zero)

See Also

getprotobynumber

TCPware Socket Library

488

getprotobynumber
Returns the protocol name or alias for a protocol number.

Format

pe = getprotobynumber(proto)

Arguments

struct protoent *pe

Address of the returned protoent structure, or 0 (NULL) if no match found. (See the protoent subsection for

the protoent structure definition.)

The returned structure is in a static area, so you must copy it to save it.

int proto

Protocol number of the desired protocol name or alias.

Description

Scans the TCPWARE:PROTOCOLS. file and returns the entry for the given protocol name. A process checks

the file for modifications by default every 10 minutes and then reloads it into memory if modifications exist.

You must format the PROTOCOLS. file properly for the subroutine to work. Format each entry as protocol port

[aliases], where protocol is the protocol name, port the decimal port number, and aliases a list of alias names

separated by spaces. Comments may appear in the file prefixed by a #.

The PROTOCOLS. file, as supplied, contains standard Internet protocols. Changes to this file may affect the

operation of your application and TCPware as well. To avoid conflict, be sure when adding a name or an alias

that it is not already in use. To read from the PROTOCOLS. file, use the setprotoent, getprotoent, and

endprotoent subroutines:

setprotoent(int stayopen) opens (or rewinds) the database; if the stayopen

value is non-zero, the database remains open

struct protoent

*getprotoent
returns the next entry's protoent structure address or

zero if all entries were read

endprotoent() closes the database (unless stayopen is non-zero)

See Also

getprotobyname

TCPware Socket Library

489

getservbyname
Returns the port number for a named service.

Format

se = getservbyname(name, proto)

Arguments

struct servent *se

Address of the returned servent structure, or 0 (NULL) if no match found. (See the servent subsection for the

servent structure definition.) The returned structure is in a static area, so you must copy it to save it. Only the

Internet services and protocols are understood.

char *name

Address of an ASCII (null-terminated) string containing the service name (such as FTP) or alias. The string is

not case-sensitive.

char *proto

Address of an ASCII (null-terminated) string containing the protocol name (such as TCP or UDP) or alias. The

string is not case-sensitive.

Description

Uses the cached-in-memory version of your local Services database to locate the entry for the given service

name. A process reloads the Services database into memory every 10 minutes by default if modifications exist.

The database is in the TCPWARE:SERVICES. file. The database is reloaded into memory by default every 10

minutes.

If you want to read from the SERVICES. files, edit it in the proper format. Each entry must be service

port/protocol [aliases], where: service is the service name, port the decimal port number followed after a slash

(/) by protocol, the protocol (TCP or UDP), and aliases a list of alias names separated by spaces. Comments

can appear in the file prefixed by a #. If you want to read the SERVICES. file, use the setservent,

getservent, and endservent subroutines:

setservent(int stayopen) opens (or rewinds) the database; if the stayopen value

is non-zero, the database remains open

struct servent

*getservent
returns the next entry's servent structure address, or

zero if all entries were read

endservent() closes the database (unless stayopen is non-zero)

See Also

getservbyport

TCPware Socket Library

490

getservbyport
Returns the service name or alias for a port number.

Format

se = getservbyport(port, proto)

Arguments

struct servent *se

Address of the returned servent structure, or 0 (NULL) if no match found. (See the servent subsection for the

servent structure definition.)

The returned structure is in a static area, so you must copy it to save it. Only the Internet services and protocols

are understood.

int port

Port number of the desired service name. Passed in byte reversed order (use the htons subroutine).

char *proto

Address of an ASCII (null-terminated) string containing the protocol name (such as TCP or UDP) or alias. The

string is not case-sensitive.

Description

Uses the cached-in-memory version of your local Services database to locate the entry for the given port

number. A process reloads the Services database into memory every 10 minutes by default if modifications

exist. The database is in the TCPWARE:SERVICES. file. The database is reloaded into memory by default

every 10 minutes.

If you want to read from the SERVICES. files, edit it in the proper format. Each entry must be service

port/protocol [aliases], where:service is the service name, port the decimal port number followed after a slash

(/) by protocol, the protocol (TCP or UDP), and aliases a list of alias names separated by spaces. Comments

can appear in the file prefixed by a #. If you want to read the SERVICES. file, use the setservent,

getservent, and endservent subroutines:

setservent(int stayopen) opens (or rewinds) the database; if the stayopen value

is non-zero, the database remains open

struct servent

*getservent
returns the next entry's servent structure address, or

zero if all entries were read

endservent() closes the database (unless stayopen is non-zero)

See Also

getservbyname

TCPware Socket Library

491

getsockname
Returns the local internet address and port number for a socket.

Format

status= getsockname(s, name, namelen)

Arguments

int s

Socket descriptor (as returned by socket).

struct sockaddr_in *name

Address of the sockaddr_in structure in which to return the peer's internet address and port number.

(See the sockaddr_in subsection for the sockaddr_in structure definition.)

int *namelen

Address of the length of the sockaddr_in structure (passed to and returned by getsockname).

Description

Returns the local internet address and port number stored in the socket structure. This information is set by

bind.

Status

Returns 0 for success and -1 for failure. For a failure status, the errno variable contains the reason for the error

as follows:

EBADF Socket structure is not valid.

EINVAL namelen value is incorrect. It must be a pointer to an integer

whose value is the size of the sockaddr_in subroutine.

TCPware Socket Library

492

getsockopt
Returns option information regarding a socket.

The SOCKET.H file contains definitions for the socket-level options. The IN.H file contains definitions for the

IPPROTO_IP level options.

Format

status= getsockopt(s, level, optname, optval, optlen)

Arguments

int s

Socket descriptor (as returned by the socket).

int level

SOL_SOCKET to return socket options, or IPPROTO_IP to return IP options (which requires a SYSTEM UIC, or

the SYSPRV or BYPASS privilege).

int optname

Option code to return.

See thesetsockopt description for the currently supported options.

char *optval

Address of the value for the option (if the option requires a value).

int *optlen

On input, length of the optval buffer. On return, amount of data returned to the optval buffer.

Description

The specified socket option value is returned.

Status

Returns 0 for success and -1 for failure. For a failure status, the errno variable contains the reason for the error

as follows:

EBADF Invalid socket structure.

EINVAL Invalid optname, optval, or optlen.

TCPware Socket Library

493

HNS_LOOKUPHOST
Designed for use by FORTRAN programs to return the internet address for a host name.

C programmers should use the gethostbyname subroutine.

Format

status = HNS_LOOKUPHOST(host-name, internet-address)

Arguments

CHARACTER*(*) host-name

Address of the string descriptor for the host name (or an ASCII internet address).

INTEGER*4 internet-address

Address of an INTEGER*4 to which the internet address is returned in network byte order.

Description

Calls the gethostbyname subroutine to obtain the internet address for the host.

Status

Returns the following status codes:

SS$_NORMAL Success. Internet address for the host name has been returned.

SS$_NOSUCHNODE No translation for the host name to an internet address could

be found.

TCPware Socket Library

494

HNS_LOOKUPIA
Designed for use by FORTRAN programs to return the host name for an internet address.

C programmers should use the gethostbyaddr subroutine.

Format

status = HNS_LOOKUPIA(host-name, internet-address)

Arguments

CHARACTER*(*) host-name

Address of the string descriptor to which the host name is returned.

INTEGER*4 internet-address

Address of an INTEGER*4 containing the internet address for the host, in network byte order.

Description

Calls the gethostbyaddr subroutine to obtain the host name for the internet address.

Status

Returns the following status codes:

SS$_NORMAL Success. Host name has been returned.

SS$_NOSUCHNODE No host name could be found for the internet

address.

TCPware Socket Library

495

htonl
Swaps the byte order of a four-byte integer from VAX byte order to network byte order.

Programmers can use this function to develop programs independent of the hardware architectures.

Format

retval = htonl(val)

Arguments

int retval

Byte-swapped integer corresponding to val.

int val

Four-byte integer to convert to network byte order.

Description

Converts between 32-bit (long) host byte order and network byte order.

Requires the TYPES.H and IN.H header files.

Status

Returns the byte-swapped integer that corresponds to val. For example, if val is 0xc029e401, the returned

value is 0x01e429c0.

TCPware Socket Library

496

htons
Swaps the byte order of a two-byte integer from VAX byte order to network byte order.

Programmers can use this function to develop programs independent of the hardware architectures.

Format

retval = htons(val)

Arguments

int retval

Byte-swapped integer corresponding to val.

int val

Two-byte integer to convert to network byte order.

Description

Converts between 16-bit (short) host byte order and network byte order.

Requires the TYPES.H and IN.H header files.

Status

Returns the byte-swapped integer that corresponds to val. For example, if val is 0x0017, the returned value is

0x1700.

TCPware Socket Library

497

inet_
The inet_ subroutines:

• Convert internet addresses from text to binary form and vice versa

• Build internet addresses when given a network number and local address

• Return the network or local portions of the internet address when given a complete address

The inet_ subroutines are defined in the INET.H header file.

Format

int = inet_addr(cp)

net = inet_network(cp)

cp = inet_ntoa(in)

flg = inet_aton(cp, &in)

in = inet_makeaddr(net, lna)

lna = inet_lnaof(in)

net = inet_netof(in)

ALPHA and I64

The subroutine names are prefixed with tcpware_ to prevent name conflicts with the C language RTL.

Arguments

struct in_addr in

Internet address in binary form in network byte order. This structure is defined as follows:

struct in_addr {

 unsigned long s_addr;

};

char *cp

ASCII character string containing an internet address in standard a.b.c.d format. A program calling these

subroutines can specify all ASCII numbers as decimal, octal, or hexadecimal (as specified in C language).

int flg

Flag that returns 1 if cp is a valid ASCII representation of an IP address, and 0 if it is not.

long net

Network number in VAX byte order.

int lna

Host address in VAX byte order.

TCPware Socket Library

498

Description

inet_addr Converts an internet address from an ASCII string to binary form. Returns

-1 if the address is invalid.

Supports decimal, hexadecimal, and octal values for the internet address

components using standard C notation (that is, the 0x prefix before

hexadecimal values and a leading 0 before octal values).

inet_network Converts an ASCII network number (a, a.b, or a.b.c) to a binary value in

VAX byte order. Returns -1 if the address is invalid. For example, a

network number of 192.9.200 would be returned as 0X00C009C8.

inet_ntoa Converts an internet address in network order from a binary string to

ASCII text format. Returns a pointer to the string in a.b.c.d format.

inet_aton Checks an ASCII internet address for validity and converts it to a binary

address. Returns 1 if valid, 0 if invalid. Replaces inet_addr since

inet_addr cannot distinguish between a failure and a local address.

inet_makeaddr Returns an internet address when given a network number and a local

address.

inet_lnaof Returns the host address portion of an internet address. The returned value

is in VAX byte order.

inet_netof Returns the network portion of an internet address. The returned value is in

VAX byte order.

You must use the INET.H header file to define these subroutines. The in_addr structure is defined in the IN.H

header file.

Status

The inet_addr and inet_network subroutines return -1 if the address is invalid. The program cannot

distinguish between an error condition and the 255.255.255.255 internet address.

TCPware Socket Library

499

ipso_getauthbyname
Returns the bit mask value corresponding to an IPSO authority name.

Format

mask = ipso_getauthbyname (name)

Arguments

unsigned long mask

Mask corresponding to the name provided, or 0 if no match if found.

char *name

Address of the ASCII string containing the name of the IPSO authority field. See Table A-3 for a list of valid

IPSO protection authorities.

Description

This subroutine uses the TCPWARE:IPSO_AUTHORITIES. file to match the name against a bit mask. The

IPSO_AUTHORITIES. file must be properly formatted for the subroutine to work. See Example A-1 for

sample contents of this file.

Requires the IPSO.H header file.

Table A-3 IPSO Protection Authorities

Protection

Authority

Hexadecimal

Value

Point of Contact

GENSER %X80 Designated Approving Authority per DOD 5200.28

SIOP-ESI %X40 DoD Joint Chiefs of Staff

SCI %X20 Director of Central Intelligence

NSA %X10 National Security Agency

DOE %X08 Department of Energy

Example A-1 Sample IPSO_AUTHORITIES. File

!GENSER 0x80

!SIOP-ESI 0x40

!SCI 0x20

!NSA 0x10

!DOE 0x08

!

!SITE-SPECIFIC:

ALPHA 0x30 !SCI+NSA

BETA 0x50 !SIOP-ESI+NSA

GAMMA 0x18 !NSA+DOE

DELTA 0x58 !SIOP-ESI+NSA+DOE

TCPware Socket Library

500

ipso_getauthbynumber
Returns the IPSO authority name corresponding to a bit mask value.

Format

char *name = ipso_getauthbynumber (mask)

Arguments

char *name

Address of the ASCII string to contain the name of the IPSO authority field. See Sample

IPSO_AUTHORITIES. File for a list of valid IPSO protection authorities.

unsigned long mask

Mask for the name.

Description

This subroutine uses the TCPWARE:IPSO_AUTHORITIES. file to match the name against a bit mask. The

IPSO_AUTHORITIES. file must be properly formatted for the subroutine to work. See Sample

IPSO_AUTHORITIES. File for sample contents of this file.

Requires the IPSO.H header file.

TCPware Socket Library

501

ipso_getlevelbyname
Returns the bit mask value corresponding to an IPSO security level.

Format

mask = ipso_getlevelbyname (name)

Arguments

unsigned long mask

Mask corresponding to the name provided, or 0 if no match if found.

char *name

Address of the ASCII string containing the name of the IPSO security level. See IPSO Security Levels for a list

of valid IPSO security levels.

Description

This subroutine searches a list of the IPSO classifications for a name and returns the corresponding bit mask

value. See Table A-4 for a list of valid IPSO security levels.

Requires the IPSO.H header file.

Table A-4 IPSO Security Levels

Security Level Hexadecimal Value

Top_Secret %X3D

Secret %X5A

Confidential %X96

Unclassified %XAB

TCPware Socket Library

502

ipso_getlevelbynumber
Returns the IPSO security level corresponding to a bit mask value.

Format

char *name = ipso_getlevelbynumber (mask)

Arguments

char *name

Address of the ASCII string to contain the name of the IPSO security level. See IPSO Security Levels for a list

of valid IPSO security levels.

unsigned long mask

Mask for the name.

Description

This subroutine searches a list of the IPSO classifications for a name and returns the corresponding bit mask

value. See IPSO Security Levels for a list of valid IPSO security levels.

Requires the IPSO.H header file.

TCPware Socket Library

503

listen
Makes it possible to listen for connections on a port number. It is only valid for stream sockets and is usually

used by the server end of an application.

Format

status = listen(s, backlog)

Arguments

int s

Socket descriptor (as returned by the socket).

int backlog

Maximum number of outstanding connections that can be queued.

Description

The value of backlog determines the value of the TCPDRIVER passive open access control parameter. If

backlog is greater than 1, non-exclusive access is requested. The value of backlog must be between 1 and 16,

inclusive. Call the accept subroutine to accept a connection.

The channel associated with the socket is deassigned by listen since the channel will not be used (only the local

internet address, port number, and backlog values from the socket structure are used by accept).

See Also

accept

select

Status

Returns 0 for success and -1 for failure. For a failure status, the errno variable contains the reason for the error

as follows:

EACCES Insufficient privilege.

EBADF Socket structure is not valid.

EINVAL Value of backlog is not valid or the socket is already in use.

EOPNOTSUPP Not a stream socket.

TCPware Socket Library

504

ntohl
Swaps the byte order of a four-byte integer from network byte order to VAX byte order.

Programmers can use this function to develop programs independent of the hardware architectures.

Format

retval = ntohl(val)

Arguments

int retval

Byte-swapped integer corresponding to val.

int val

Four-byte integer to convert to network byte order.

Description

Converts between 32-bit (long) network byte order and host byte order.

Requires the TYPES.H and IN.H header files.

Status

Returns the byte-swapped integer that corresponds to val. For example, if val is 0x01e429c0, the returned

value is 0xc029e401.

TCPware Socket Library

505

ntohs
Swaps the byte order of a two-byte integer from network byte order to VAX byte order.

Programmers can use this function to develop programs independent of the hardware architectures.

Format

retval = ntohs(val)

Arguments

int retval

Byte-swapped integer corresponding to val.

int val

Two-byte integer to convert to network byte order.

Description

Converts between 16-bit (short) network byte order and host byte order.

Requires the TYPES.H and IN.H header files.

Status

Returns the byte-swapped integer that corresponds to val. For example, if val is 0x1700, the returned value is

0x0017.

TCPware Socket Library

506

pneterror
Displays the error message for the error status returned by a Socket Library subroutine.

This subroutine has the same inputs and format as perror; however, it will print the text for network errors

(see SOCKERR.H).

Format

status = pneterror(s)

Argument

char *s

Address of an ASCII (null-terminated) character string to be displayed before the error text.

Description

Displays the error message for the error code in the errno variable.

Status

Displays the error message for the error status returned by a Socket Library subroutine. If the error code is not a

known network error code, the standard VAX C error subroutine is called.

TCPware Socket Library

507

recvfrom
Reads data from an unconnected or connected socket.

Format

msglen = recvfrom(s, buffer, buflen, flags, from, fromlen)

Arguments

int msglen

-1 for error, 0 for connection closed by peer and no more data available, >0 for the number of bytes of data read.

int s

Socket descriptor (as returned by socket).

char *buffer

Address of the buffer into which the data is to be received.

int buflen

Length of the buffer into which data is to be received.

int flags

Flag bits for operation. The supported flag bits are:

Flag Bit Description

MSG_NONBLOCKING returns immediately if no data is available (EWOULDBLOCK

is returned in errno if no data is available).

MSG_PEEK lets you peek at the data without removing it from the data

stream.

MSG_TRUNCATE returns truncated datagrams (otherwise ENOMEM is returned if

the datagram is larger than the buffer). This flag is only used by

datagram (UDP) sockets.

MSG_TIME limits the time to wait for a datagram to be received. The time

limit for the receive is set using the setsockopt subroutine.

This flag is only used by datagram (UDP) sockets.

All other flags are ignored.

char *from

Address of the sockaddr_in structure (or 0) to be filled with peer's internet address and port number. (See the

sockaddr_in subsection for the sockaddr_in structure definition.)

int *fromlen

Address of the length of the from argument.

TCPware Socket Library

508

QIO Function Performed

• IO$_READVBLK on the socket's channel

• IO$M_NOW modifier if specifying MSG_NONBLOCKING

• IO$M_DATACHECK modifier if specifying MSG_PEEK (see flags)

See Also

select, if your application handles multiple connections simultaneously

Status

Returns -1 for failure. For a failure status, the errno variable contains the reason for the error as follows:

EBADF Socket structure is not valid.

ECONNRESET Connection is reset by the peer.

EINVAL fromlen value is invalid (for recvfrom only).

EIO Unexpected system status returned during operation.

ENETDOWN Network was shut down.

ENOMEM Buffer was too small for the datagram and MSG_TRUNCATE was not

specified. Note that the truncated datagram is in the buffer.

ENOTCONN Socket is not connected.

ETIMEDOUT Connection timed-out or the request timed-out (if MSG_TIME set for

a datagram socket).

EWOULDBLOCK MSG_NONBLOCKING flag is set and no data is available.

The vaxc$errno variable contains the system service or I/O status code for ECONNRESET, EIO, ENETDOWN,

ETIMEDOUT, or EWOULDBLOCK.

TCPware Socket Library

509

resolver
The resolver subroutines create, send, and interpret packets to DNS servers. DNS is primarily a host name

and address lookup service for the Internet, allowing client systems to obtain host names and addresses from

DNS servers.

For more information on DNS, see Chapter 6, Domain Name Services, in the Management Guide.

The resolver subroutines:

• Initialize the routines

• Store a standard query message in a buffer

• Send a query to the DNS servers and return an answer

• Compress and expand the domain name

Format

res_init()

res_mkquery(op, dn, class, type, data, datal, newrr, buf, bufl)

res_send(msg, msglen, answer, anslen)

dn_comp(exp-dn, comp-dn, length, dnptrs, lastdnptr)

dn_exp(msg, eomorig, comp-dn, exp-dn, length)

Arguments

int op

Opcode. Usually QUERY, but can be any of the query types defined in the NAMESER.H header file.

char *dn

Pointer to the domain name. If dn consists of a single label and the RES_DEFNAMES flag is enabled (the

default), dn is appended with the current domain name, which is defined by the TCPWARE_DOMAINNAME

logical name.

int class

Address class, which is typically C_IN (for Internet).

int type

Query type, which is typically T_A for a host name lookup.

char *data

Pointer to the resource record data.

int datal

Length in bytes of the resource record data.

struct rrec *newrr

Address of the new resource record data structure for modify or append operations.

char buf

Buffer in which the routine places the standard query message data.

TCPware Socket Library

510

int bufl

Length in bytes of the buffer in which the routine places the standard query message data.

char *msg

Pointer to the beginning of the message.

int msglen

Length in bytes of the message.

char *answer

Pointer to the answer to the standard query.

int anslen

Length in bytes of the answer to the standard query.

char *exp_dn

Pointer to a buffer of the expanded domain name.

char *comp-dn

Buffer for the compressed domain name for the expand routine (dn_comp).

int length

Size in bytes of the array to which comp-dn points. In the case of dn_expand, length refers to the length in

bytes of the resulting expansion buffer.

char **dnptrs

List of pointers to previously compressed names in the current message. The first pointer points to the

beginning of the message and the list ends with NULL.

char **lastdnptr

Pointer to the end of the array to which dnptrs points. Also updates the list of pointers for labels inserted into

the message by dn_comp as the name is compressed. If dnptrs is NULL, the names are not compressed; if

lastdnptr is NULL, the list is not updated.

char *eomorig

Pointer to the first byte after the message.

Description

res_init Initializes the routines by getting the default domain name and internet

address of the initial host running the name server. The domain name is

defined by the TCPWARE_DOMAINNAME logical. The name servers are

defined by the TCPWARE_NAMESERVERS logical.

res_mkquery Makes a standard query message and places it in buf. The routine returns the

size of the query or -1 if the query is larger than bufl.

res_send Sends a query to the DNS servers and returns an answer. The routine calls the

res_init routine. The length of the message is returned or -1 if there were

errors.

TCPware Socket Library

511

dn_comp Compresses the domain name and stores it in a buffer (comp_dn). The size of

the compressed name is returned, or -1 if there were errors.

dn_expand Expands the compressed domain name (dn_comp) to a full domain name.

Expanded names are converted to uppercase. The size of the compressed

name is returned, or -1 if there was an error.

The TYPES.H, IN.H, NAMESER.H, and RESOLV.H header files define the structures and constants needed by

the resolver routines.

Global information used by the resolver routines is stored in the _res structure. Most of the values have

reasonable defaults. The options are a simple bit mask and are OR-ed in to enable. The options are stored in

_res.options and the mask values are defined in TCPWARE_INCLUDE:RESOLV.H. The options are as

follows:

RES_INIT Initial name server address and default domain names are initialized.

RES_DEBUG Print debugging messages.

RES_AAONLY Accept authoritative messages only.

RES_USEVC Use TCP connections (virtual circuits) instead of UDP connections for

queries.

RES_STAYOPEN Used with RES_USEVC to keep the TCP connection open.

RES_RECURSE Set the recursion desired bit in queries (the default). The res_send routine

does not do iterative queries and expects the BIND server to handle

recursion.

RES_DEFNAMES Append the default domain name to single-label queries (the default).

TCPware Socket Library

512

select
Allows for synchronous I/O multiplexing.

Format

nfound = select(nchan, readds, writeds, exceptds, timeout)

Arguments

int nfound

Contains -1 for error, 0 for timeout, or the number of sockets ready for reading (>0).

int nchan

If not using the FD_SET, FD_CLR, FD_ZERO macros to build the list of descriptors (see below), nchan must

be 0. If using FD_SET, FD_CLR, FD_ZERO, specify FD_SETSIZE for nchan.

int *readds

Address of the descriptor set for the sockets to be checked if ready for reading (if connected) or ready to be

accepted (if listening).

The following macros are provided for manipulating the descriptor set:

FD_ZERO (&fdset) initializes the fdset descriptor set to the null set

FD_SET (s, &fdset) includes the socket s in the set

FD_CLR (s,&fdset) removes the socket s from the set

FD_ISSET (s,&fdset) is non-zero if s is a member of the set

Use the fd_set typedef to declare a descriptor set. The FD_SETSIZE symbol defines the maximum number of

sockets that may be specified in a descriptor set. If not explicitly defined by the user before including the

TYPES.H header file, a default value of 64 is used.

Note! It is recommended that you use FD_SET, FD_CLR, FD_ZERO, and FD_ISSET macros as they improve

portability and support future revisions to the socket library. Code that directly builds the currently used zero-

terminated array of integers (one socket descriptor per integer) should be modified to make use of these

macros as soon as possible.

int *writeds

Ignored. For future use (to determine which sockets are ready for writing).

int *exceptds

Ignored. For future use (to determine which sockets have had exceptions).

struct {long tv_sec, tv_usec;} *timeout

Maximum time (in seconds and microseconds) to wait for one or more sockets to be ready.

TCPware Socket Library

513

Description

Checks whether any socket in the readds list is ready to be read or accepted, have timed out, or were reset or

closed by the peer. The number of sockets ready is returned in nfound.

If timeout is a nonzero pointer and the time values are 0, a poll is affected and select returns immediately. If

timeout is a zero pointer, select returns only after at least one socket is ready. If one or more sockets are

ready, the readds list is updated to reflect those sockets that are ready.

A socket may be ready for reading. However, this does not mean a read will complete immediately, because a

push may not have been received and more bytes may have been requested than were actually received. We

recommend that you do a non-blocking read on the socket.

See the socket_recv routine.

User-written AST routines can call the select_wake() subroutine to wake up a select. select will return

0 (the timeout status) in this case. Calling select_wake when no select is active will cause the next select

to return 0 (the timeout status). The subroutine also allows for a sleep state (select(0,0,0,0,&time)) and

an infinite wait state (select(0,0,0,0,0)).

Requirements

Uses the following system resources:

• One buffered-I/O request for each socket (the BUFIO quota must be sufficient for the application)

• One event flag (allocated and freed using LIB$GET_EF and LIB$FREE_EF, respectively)

• One timer (if a timeout points to a nonzero value)

Also, you must enable ASTs if a timer is required.

Status

Returns 0 in nfound for a timeout, -1 for a failure, or the number of sockets ready (>0). For a failure status, the

errno variable contains the reason for the error as follows:

EBADF Invalid or duplicate socket is specified.

EINVAL Socket list is not specified or the time out value is negative.

EIO Unexpected system status returned during operation.

ENOTCONN Socket is not in a valid state. Only connected or listening

sockets may be specified in the readds list.

The vaxc$errno variable contains the system service status code for EIO.

TCPware Socket Library

514

sendto
Sends data over an unconnected or connected socket.

Format

cc = sendto(s, buffer, buflen, flags, to, tolen)

Arguments

int cc

Number of bytes sent or -1 for failure.

int s

Socket descriptor (as returned by socket).

char *buffer

Address of the buffer which contains the data to be sent.

int buflen

Length of the buffer which contains the data to be sent.

int flags

Flag bits for operation. The supported flag bits are:

MSG_OOB to send urgent data (for stream sockets only).

All other flags are ignored.

char *to

Address of sockaddr_in structure (defined in IN.H) containing peer's internet address and port number or 0 if

none. (See the sockaddr_in subsection for the sockaddr_in structure definition.)

int tolen

Length of the to buffer.

Description

An IO$_WRITEVBLK QIO function is issued on the socket's channel. The IO$M_URGENT modifier is used

if MSG_OOB is specified (see flags).

If sendto is called on an unconnected stream (TCP) socket and you specify a to structure, an implicit connect

is done before sending the data.

TCPware Socket Library

515

Status

Returns -1 for failure. For a failure status, the errno variable contains the reason for the error as follows:

EAFNOSUPPORT Address family specified in the to argument of the

socket_send/socket_write routine is not AF_INET.

EBADF Socket structure is not valid.

ECONNRESET Connection is reset by the peer.

EINVAL tolen value is invalid (for sendto only).

EIO Unexpected system status returned during operation.

EMSGSIZE Buffer size is too large or invalid.

ENETDOWN Network was shut down.

ENOTCONN Socket is not connected and no to structure was provided to connect the

socket.

EPIPE Connection was closed or reset.

ETIMEDOUT Connection timed out.

The vaxc$errno variable contains the system service or I/O status code for ECONNRESET, EIO, EMSGSIZE,

ENETDOWN, EPIPE, or ETIMEDOUT.

TCPware Socket Library

516

setdomainname / sethostname
Sets the local host's domain name.

Format

status= setdomainname(name, namelen)

status= sethostname(name, namelen)

Arguments

int len

Length of the domain name string (or 0 if none available).

char *name

Address of an ASCII (null-terminated) string that contains the domain name.

int namelen

Length of the character string.

Description

These routines require sufficient privileges to define a system logical name because they set the

TCPWARE_DOMAINNAME system logical name.

See Also

getdomainname

gethostname

Status

Returns 0 for success and -1 for failure. For a failure status, the errno variable contains the reason for the error

as follows:

EPERM Returned if the call to SYS$CRELNM fails with the SS$_NOPRIV status.

EVMSERR Returned if the call to SYS$CRELNM fails with any status other than

SS$_NOPRIV.

The vaxc$errno variable contains the status code returned by SYS$CRELNM.

TCPware Socket Library

517

setsockopt
Sets socket processing options.

The SOCKET.H file contains definitions for the socket-level options. The IN.H file contains definitions for the

IPPROTO_IP level options.

Format

status= setsockopt(s, level, optname, optval, optlen)

Arguments

int s

Socket descriptor (as returned by socket).

int level

SOL_SOCKET to change socket options, or IPPROTO_IP to change IP options (which requires system UIC,

SYSPRV, or BYPASS privilege).

int optname

Option code to change. See Table A-5 for the SOL_SOCKET option values and Table A-6 for the

IPPROTO_IP option values.

char *optval

Address of the value for the option (if the option requires a value).

int optlen

Length of optval (if the option requires a value).

Description

The specified socket option is changed.

Status

Returns 0 for success and -1 for failure. For a failure status, the errno variable contains the reason for the error

as follows:

EADDRNOTAVAIL Address not available for use.

EADDRINUSE Address already in use.

EBADF Socket structure is not valid.

EINVAL Invalid optname is specified or the optlen or optval arguments are

invalid.

ENOBUFS Insufficient memory for requests.

ETOOMANYREFS Too many multicast memberships requested.

TCPware Socket Library

518

Table A-5 Optname Argument Values for SOL_SOCKET Level

SOL_SOCKET

Option

Description

SO_IOCHAN Obtains the socket's OpenVMS I/O channel number. optval is the address of a short to

receive the I/O channel number.

SO_RCVTIMEO Sets the timeout value for datagram (UDP) sockets when the MSG_TIME flag is used

in socket_recv or recvfrom calls. The optval option is the address of a short

containing the timeout time (in seconds); optlen = sizeof (short). The default value (set

by socket) is 5 seconds.

SO_REUSEADDR Enables shared access mode on the local port for datagram (UDP) sockets. The optval

and optlen arguments are ignored.

SO_SNDTIMEO Sets the timeout value for stream (TCP) sockets. The optval option is the address of a

short containing the timeout time (in seconds); optlen = sizeof (short). The default

value (set by socket) is 120 seconds. The minimum value is 20 seconds.

Table A-6 Optname Argument Values for IPPROTO_IP Level

IPPROTO_IP Option Description

IP_OPTIONS (1) Gets or sets IP options to be sent in subsequent datagrams

IP_TOS (3) Gets or sets the IP type of service (TOS) to sent in subsequent datagrams

IP_TTL (4) Gets or sets the IP time-to-live (TTL) to sent in subsequent datagrams

IP_MULTICAST_IF (16) Gets or sets the interface used for sending multicast datagrams

IP_MULTICAST_TTL (17) Gets or sets the IP time-to-live (TTL) to sent in subsequent datagrams

IP_MULTICAST_LOOP (18) Gets or sets whether sent multicast datagrams should be looped back

locally

IP_ADD_MEMBERSHIP (19) Adds a multicast group membership for an interface

IP_DROP_MEMBERSHIP

(20)

Drops a multicast group membership from an interface

TCPware Socket Library

519

shutdown
Closes or aborts the connection for a socket.

Format

status= shutdown(s, how)

Arguments

int s

Socket descriptor (as returned by socket).

int how

0 to close the receive side (ignored for stream sockets), 1 to close the sending side (ignored for datagram

sockets), and 2 to abort the connection.

Description

The operation specified by the how argument is performed.

To close a connection fully, use the socket_close subroutine.

Note! Always call the socket_close subroutine to clean up a socket.

QIO Function Performed

Depending on the value of the how argument, one of the following QIO functions is issued on the channel:

• IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN

• IO$_SETMODE | IO$M_CTRL | IO$M_SHUTDOWN | IO$M_ABORT

See Also

socket_close

Status

Returns 0 for success and -1 for failure. For a failure status, the errno variable contains the reason for the error

as follows:

EBADF Socket structure is not valid.

EINVAL Socket is not in a valid state or the value for how is not valid.

TCPware Socket Library

520

socket
Creates a socket structure.

Must be called to allocate a socket structure before calling bind, connect, listen, accept, socket_send

or sendto, socket_recv or recvfrom, shutdown, or socket_close.

Format

s = socket(af, type, protocol)

Arguments

int s

Socket descriptor or -1. This socket descriptor is the address of the socket structure maintained by the Socket

Library subroutines. This socket structure is defined in SOCKETVAR.H.

int af

Address family (must be AF_INET = 2). AF_INET is defined in SOCKET.H.

int type

SOCK_STREAM (for TCP), SOCK_DGRAM (for UDP), or SOCK_RAW (for IP). These constants are defined in

SOCKET.H.

int protocol

Must be 0 for SOCK_STREAM and SOCK_DGRAM. For SOCK_RAW, protocol is the IP protocol number.

Description

A socket structure is allocated using LIB$GET_VM and added to the linked list of socket structures. The socket

structure is initialized and a TCP, UDP, or IP channel is assigned.

The socket structure returned by socket is deallocated by calling the socket_close subroutine.

Status

Returns -1 for failure. For a failure status, the errno variable contains the reason for the error as follows:

EAFNOSUPPORT

EINVAL

ESOCKTNOSUPPORT

Input parameter is invalid.

ENETDOWN Call to SYS$ASSIGN failed. vaxc$errno contains the status

code returned by SYS$ASSIGN.

ENOBUFS Call to LIB$GET_VM failed. vaxc$errno contains the status

code returned by LIB$GET_VM.

TCPware Socket Library

521

socket_close
Closes and deallocates a socket.

Note! Under UNIX, the standard close subroutine is used. The VAX C close subroutine cannot be used with

sockets.

Format

status= socket_close(s)

Argument

int s

Socket descriptor (as returned by socket).

Description

This subroutine closes the connection and receives (and discards) any data not yet read. The channel for the

socket is deassigned and the socket structure is then deallocated (using LIB$FREE_VM).

Status

Returns 0 for success and -1 for failure. For a failure status, the errno variable contains the reason for the error

as follows:

EBADF Socket structure is not

valid.

TCPware Socket Library

522

socket_ioctl
Performs several control functions on a socket.

The IOCTL.H file contains definitions for this subroutine.

Format

status= socket_ioctl(s, request, argp)

Arguments

int s

Socket descriptor (as returned by socket).

int request

Request code for the control function. Supported request codes are:

Supported Request

Codes Description

FIOASYNC Sets or clears asynchronous I/O. If argp=1, descriptor is set for

asynchronous I/O. If 0, descriptor is cleared for asynchronous I/O.

FIONREAD Returns the number of bytes available for reading on the socket to

the longword specified by argp.

SIOCATMARK Returns whether the stream socket is at the out-of-band mark. If at

the out-of-band mark, 1 is returned to the longword specified by

argp. Otherwise, 0 is returned.

SIOCDARP

SIOCGARP

SIOCSARP

Used to Delete, Get, or Set an ARP table entry. The argp argument

points to an arpreq structure (see the IF_ARP.H file for the

definition of this structure).

SIOCGIFADDR

SIOCGIFBRDADDR

SIOCGIFDSTADDR

SIOCGIFFLAGS

SIOCGIFMETRIC

SIOCGIFNETMASK

SIOCGIFMTU

Used to obtain information about a network The argp argument

points to a ifreq structure (see the IF.H file for the definition of this

structure).

SIOCGIFCONF Used to obtain a list of the available network interfaces. The argp

argument points to an ifconf structure (see the IF.H file for the

definition of this structure).

TCPware Socket Library

523

SIOCADDRT

SIOCDELRT

Used to Add or Delete a routing table entry. The argp argument

points to an rtentry structure (see the ROUTE.H file for the

definition of this structure).

char *argp

Address of the buffer to receive the information or that contains information, depending on the request.

Status

Returns 0 for success and -1 for failure. For a failure status, the errno variable contains the reason for the error

as follows:

EBADF Socket structure is not valid.

EINVAL Input request or buffer address is invalid.

TCPware Socket Library

524

socket_read / socket_recv
Read data from a connected socket.

Note that under UNIX, socket_read is called read and socket_recv is called recv.

Format

msglen = socket_read(s, buffer, buflen)

msglen = socket_recv(s, buffer, buflen, flags)

Arguments

int msglen

-1 for error, 0 for connection closed by peer and no more data available, >0 for the number of bytes of data

read.

int s

Socket descriptor (as returned by socket).

char *buffer

Address of the buffer into which the data is to be received.

int buflen

Length of the buffer into which data is to be received.

int flags

Flag bits for operation. The supported flag bits are:

Flag Bit Description

MSG_NONBLOCKING returns immediately if no data is available (EWOULDBLOCK is

returned in errno if no data is available).

MSG_PEEK lets you peek at the data without removing it from the data

stream.

MSG_TRUNCATE returns truncated datagrams (otherwise ENOMEM is returned if

the datagram is larger than the buffer). This flag is only used by

datagram (UDP) sockets.

MSG_TIME limits the time to wait for a datagram to be received. The time

limit for the receive is set using the setsockopt subroutine.

This flag is only used by datagram (UDP) sockets.

All other flags are ignored.

TCPware Socket Library

525

QIO Function Performed

• IO$_READVBLK on the socket's channel

• IO$M_NOW modifier if specifying MSG_NONBLOCKING

• IO$M_DATACHECK modifier if specifying MSG_PEEK (see flags)

See Also

select, if your application handles multiple connections simultaneously

Status

Returns -1 for failure. For a failure status, the errno variable contains the reason for the error as follows:

EBADF Socket structure is not valid.

ECONNRESET Connection is reset by the peer.

EIO Unexpected system status returned during operation.

ENETDOWN Network was shut down.

ENOMEM Buffer was too small for the datagram and MSG_TRUNCATE was not

specified. Note that the truncated datagram is in the buffer.

ENOTCONN Socket is not connected.

ETIMEDOUT Connection timed-out or the request timed-out (if MSG_TIME set for a

datagram socket).

EWOULDBLOCK MSG_NONBLOCKING flag is set and no data is available.

The vaxc$errno variable contains the system service or I/O status code for ECONNRESET, EIO, ENETDOWN,

ETIMEDOUT, or EWOULDBLOCK.

TCPware Socket Library

526

socket_send / socket_write
Send data over a connected socket.

Note! Under UNIX, socket_send is called send and socket_write is called write.

Format

cc = socket_send(s, buffer, buflen, flags)

cc = socket_write(s, buffer, buflen)

Arguments

int cc

Number of bytes sent or -1 for failure.

int s

Socket descriptor (as returned by socket).

char *buffer

Address of the buffer which contains the data to be sent.

int buflen

Length of the buffer which contains the data to be sent.

int flags

Flag bits for operation. The supported flag bits are MSG_OOB to send urgent data (for stream sockets only).

All other flags are ignored.

QIO Function Performed

• IO$_WRITEVBLK is issued on the socket's channel

• IO$M_URGENT modifier is used if MSG_OOB is specified (see flags)

Status

Returns -1 for failure. For a failure status, the errno variable contains the reason for the error as follows:

EAFNOSUPPORT Address family specified in the to argument of the sendto routine is not

AF_INET.

EBADF Socket structure is not valid.

ECONNRESET Connection is reset by the peer.

EIO Unexpected system status returned during operation.

EMSGSIZE Buffer size is too large or invalid.

ENETDOWN Network was shut down.

TCPware Socket Library

527

ENOTCONN Socket is not connected and no to structure was provided to connect the

socket.

EPIPE Connection was closed or reset.

ETIMEDOUT Connection timed out.

The vaxc$errno variable contains the system service or I/O status code for ECONNRESET, EIO, EMSGSIZE,

ENETDOWN, EPIPE, or ETIMEDOUT.

TCPware Socket Library

528

tcpware_atolineid
Returns the numeric TCPware line ID for the ASCII (null-terminated) string.

Format

lineid =tcpware_atolineid(name)

Arguments

unsigned long lineid

Numeric line ID of the character string or 0 if the character string is not a valid line ID. For a description of the

line ID values, see the description of IO$_SENSEMODE | IO$M_CTRL in the IPDRIVER Services chapter in

this guide.

char *name

Line ID character string. For a description of valid TCPware line IDs, see the description of START/IP in the

NETCU Command Reference.

TCPware Socket Library

529

tcpware_gettimezone
Returns the current timezone information.

Format

status = tcpware_gettimezone(seconds, name)

Arguments

int *seconds

Longword into which to return the offset, in seconds, from universal time.

char **name

Address to which to return the address of the time zone string.

See Also

tcpware_settimezone

Status

A standard OpenVMS status code is returned to the caller.

TCPware Socket Library

530

tcpware_lineidtoa
Converts the numeric line ID (lineid) into an ASCII (null-terminated) string.

Format

retval = tcpware_lineidtoa(lineid, name)

Arguments

char *retval

Address of ASCII string corresponding to lineid (address of name string).

unsigned long lineid

Numeric line ID to be converted into string format.

char *name

Address of a character string in which tcpware_lineidtoareturns the line ID. This string should be at least

16 characters in length.

TCPware Socket Library

531

tcpware_server
Gets the I/O channel number or creates a socket for a server connection (TCP or UDP) that was initiated by the

master server (NETCP).

Format

status = tcpware_server(option, argument)

Arguments

int option

If option equals... The subroutine returns a...

1 channel number in argument.

2 socket descriptor in argument.

int *argument

Address of an integer that receives a channel or socket number.

Description

Server processes that are created by the master server (NETCP) call this subroutine. Provides the server process

with the socket descriptor or OpenVMS I/O channel number that is associated with the connection. Obtains

these values from NETCP through mailbox communication.

Status

Returns 0 for success or -1 for failure. For a failure status, the errno variable describes the reason for the error

as follows:

EINVAL Option argument is invalid.

EIO Unexpected system status returned during operation.

ENODEV NETCP did not create the server process.

TCPware Socket Library

532

tcpware_settimezone
Sets the current time zone information.

Requires SYSNAM and OPER privileges.

Format

status = tcpware_settimezone(seconds, name)

Arguments

int seconds

Offset, in seconds, from universal time.

char *name

Address of the time zone string. Specify 0 if no time zone name.

Description

This routine defines the TCPWARE_TIMEZONE system logical name. In addition, tcpware_settimezone

also sets the IPDRIVER's universal time (UT) offset value.

The TCPWARE_TIMEZONE logical can have two equivalence strings:

4. hhmmss hh are the hours

mm are the minutes

ss are the seconds

offset from the universal time (UT).

Note! + is for east of the central meridian, - is for west. For example:

+04:00:00 is four hours east of the central meridian at Greenwich.

Another example: eastern standard time (EST) is five hours west of UT, so

the offset is -0500.

5. name an optional name for the time zone. For example: EDT for Eastern Daylight

time. Can be one of the following:

Universal Time—UT, UTC or GMT

North American Time—EST, EDT, CST, CDT, MST, MDT, PST, PDT

Military Time—Any single uppercase letter A through Z except J (this format

is not recommended)

Any other character sequence

The name is not validated and may be used by applications to report the local

time zone.

TCPware Socket Library

533

Sample Discard Protocol Programs

These programs are in TCPWARE_COMMON:[TCPWARE.EXAMPLES]DISCARD.C and DISCARDD.C.

The latter calls the tcpware_server subroutine to implement the Discard Protocol (DISCARDD). Under this

protocol, the server listens for a connection on TCP port 9. Once the server establishes a connection, it throws

away any data it receives. It does not send a response. This continues until the client closes the connection.

Example A-2 shows the NETCU command you can use to enable DISCARDD.

Example A-2 NETCU Command to Enable DISCARDD

ADD SERVICE DISCARD TCP TCPWARE:DISCARDD-

 /PROCESS_NAME=DISCARDD-

 /NOACCOUNTING-

 /NOAUTHORIZE-

 /INPUT=NLA0:-

 /OUTPUT=NLA0:-

 /ERROR=NLA0:-

 /UIC=[SYSTEM]-

 /AST_LIMIT=10-

 /BUFFER_LIMIT=10240-

 /ENQUEUE_LIMIT=6-

 /EXTENT=500-

 /FILE_LIMIT=20-

 /IO_BUFFERED=6-

 /IO_DIRECT=6-

 /MAXIMUM_WORKING_SET=300-

 /PAGE_FILE=10000-

 /PRIORITY=4-

 /PRIVILEGES=(NOSAME,NETMBX,TMPMBX)-

 /QUEUE_LIMIT=8-

 /WORKING_SET=200-

 /SUBPROCESS_LIMIT=0

Chapter 2 in the NETCU Command Reference explains how to use the ADD SERVICE command.

For an additional program using the tcpware_server subroutine, see the

TCPWARE_COMMON:[TCPWARE.EXAMPLES]DAYTIMED.C file.

	Contents
	Preface
	Introducing This Guide
	What You Need to Know Beforehand
	How This Guide Is Organized
	Online Help
	Obtaining Customer Support
	License Information
	Maintenance Services
	Reader's Comments Page
	Documentation Set
	Conventions Used

	Chapter 1 Network Programming Overview
	Introduction
	TCP/IP Programming Concepts
	Connection-Oriented Services and TCP
	Connectionless Services and UDP
	Socket Concepts
	Naming Communication Endpoints

	Data Representation and Exchange
	Data Encoding Schemes
	Native Byte Order and Network Byte Order

	Programming Services Options
	Device Drivers
	VAX C and DEC C Socket Library and UCX Compatibility Services
	TCPware Socket Library
	System Queue Input/Output (QIO) Calls
	BGDRIVER
	TCPDRIVER, UDPDRIVER, and IPDRIVER
	INETDRIVER

	FTP Library Routines
	TELNET Library Routines
	ONC RPC Services

	Network Programming with Sockets
	Using Socket Calls in Network Programming
	Socket System Calls
	BSD Socket Data Structures
	sockaddr_in Structure
	hostent Structure
	servent Structure

	Multicasting
	Sending IP Multicast Datagrams
	Receiving IP Multicast Datagrams

	Writing Application Programs
	Writing a Stream Client
	Writing a Stream Server
	Writing a Datagram Client
	Writing a Datagram Server
	Writing Servers

	Chapter 2 UCX Compatibility Services
	Introduction
	Multicasting
	Logicals
	Sample Programs
	Debugging and Tracing

	Chapter 3 TCPDRIVER Services
	Introduction
	Sequence of Operations
	Other Operations
	TCPDRIVER System Service Call Format
	TCPDRIVER System Service Call Arguments
	TCPDRIVER System Service Call Function Codes
	Sample Programs
	C Programs
	FINGER
	FINGERD

	FORTRAN Program
	ALPHA and I64
	VAX

	Chapter 4 UDPDRIVER Services
	Introduction
	Sequence of Operations
	Other Operations
	User Datagram Protocol Implementation Notes
	UDPDRIVER System Service Call Format
	UDPDRIVER System Service Call Arguments
	UDPDRIVER System Service Call Function Codes
	/
	Status

	Sample Programs
	C Programs
	FORTRAN Program
	VAX
	Alpha and I64

	Chapter 5 IPDRIVER Services
	Introduction
	/
	Sequence of Operations
	Other Operations
	Internet Protocol Implementation Notes
	IPDRIVER System Service Call Format
	IPDRIVER System Service Call Arguments
	IPDRIVER User Interface System Service Call Function Codes
	Reading Extended Characteristics
	Reading Network Device Information
	Reading the Routing Table
	Reading the ARP Table Function

	IPDRIVER External Interface
	I/O Functions for the External Interface
	Sequence of Operations for the Network Interface Program
	IPDRIVER External Interface System Service Call Codes

	Chapter 6 INETDRIVER Services
	Introduction
	Sequence of Operations
	Client Operations
	/
	Server Operations

	/
	Multicasting
	Other Operations
	INETDRIVER Socket Library
	INETDRIVER System Service Call Format
	INETDRIVER System Service Call Arguments
	INETDRIVER System Service Call Function Codes
	Sample Programs

	Chapter 7 FTP Library
	Introduction
	Building an FTP Client
	Connection Control Block
	Transferring Files
	Error Status Codes
	Library Routines

	Chapter 8 Socket Library
	Introduction
	Transitioning to the C Socket Library: Include (Header) Files
	Transitioning to the C Socket Library: Linking Applications
	Sample Programs
	Debugging programs that use the C socket library

	Chapter 9 TELNET Library
	Introduction
	Connection Control Block
	Library Routines Reference
	User Command Processing

	Chapter 10 SNMP Extendible Agent API Routines
	Introduction
	Requirements
	Linking the Extension Agent Image
	Installing the Extension Agent Image
	Sample Code and Data Structures
	Debugging Code
	Subroutine Reference

	Chapter 11 Token Authentication API Functions
	Introduction
	Supported Languages
	How to Use Functions
	Header Files
	Activating Program Shareable Image
	Function Reference

	Chapter 12 ONC RPC Fundamentals
	Introduction
	What Are ONC RPC Services?
	TCPware Implementation
	Distributed Applications

	Components of ONC RPC Services
	Run-Time Libraries (RTLs)
	RPCGEN Compiler
	Port Mapper
	RPCINFO Command

	Client-Server Relationship
	External Data Representation (XDR)
	ONC RPC Processing Flow
	/
	Local Calls versus Remote Calls
	Handling System Crashes
	Handling Errors
	Call Semantics

	Programming Interface
	High-Level Routines
	Mid-Level Routines
	Low-Level Routines

	Transport Protocols
	XID Cache
	Cache Entries
	Cache Size
	Execution Guarantees
	Enabling XID Cache

	Active Cache
	Broadcast RPC
	ONC RPC Batch Facilities
	Batch Requirements

	Identifying Remote Programs and Procedures
	Remote Program Numbers
	Remote Version Numbers
	Remote Procedure Numbers

	Additional Terms

	Chapter 13 Building Distributed Applications with RPC
	Introduction
	Distributed Application Components
	What You Need to Do
	Step 1: Design the Application
	Step 2: Write and Compile the Interface Definition
	Step 3: Write the Necessary Code
	Building a Structure

	Step 4: Compile All Files
	Step 5: Link the Object Code
	Step 6: Start the Port Mapper
	Step 7: Execute the Client and Server Programs
	Using Asynchronous Transports
	Writing an Asynchronous Server
	Before You Begin
	Writing the Code
	How Asynchronous Transports Affect Memory
	Asynchronous System Traps

	RPCINFO Utility
	Requesting a Program Listing
	Calling a NULL Routine

	Chapter 14 RPCGEN Compiler
	Introduction
	What Is RPCGEN?
	Software Requirements
	Input Files
	Output Files
	Preprocessor Directives
	Invoking RPCGEN
	Creating All Output Files at Once
	Creating Specific Output Files
	Examples:
	Creating Server Stubs for TCP or UDP Transports

	Error Handling
	Restrictions

	Chapter 15 RPC RTL Management Routines
	Introduction
	Management Routines
	Routine Name Conventions
	Header Files
	Boolean Values
	TCPware/Sun Implementation Differences
	Management Routines

	Chapter 16 ONC RPC RTL Client Routines
	Introduction
	Common Arguments
	Client Routines

	Chapter 17 ONC RPC RTL Port Mapper Routines
	Introduction
	Port Mapper Routines
	Port Mapper Arguments
	Routine Descriptions

	Chapter 18 ONC RPC RTL Server Routines
	Introduction
	Server Routines
	Routine Descriptions

	Chapter 19 ONC RPC RTL XDR Routines
	Introduction
	XDR Routines
	What XDR Routines Do
	When to Call XDR Routines

	Quick Reference
	Routine Descriptions
	Diagnostics

	Chapter 20 ONC RPC Sample Programs
	Introduction
	Introducing Sample Programs
	Running Sample Programs
	Running GETSYI Client
	Running PRINT Client
	Running SYSINFO Client

	Miscellaneous Clients and Servers
	Batch RPC Sample Programs
	Broadcast RPC Sample Programs
	Appendix A TCPware Socket Library

	Introduction
	Include (Header) Files
	Linking Applications
	Sample Programs
	Subroutine Categories
	Socket Operations
	Lookup Operations
	Byte Order Conversion Operations
	Byte String Operations
	Internet Address Conversion Subroutines
	Server Operation

	Subroutine Data Structures
	WIN/TCP Socket Library Support
	Using WIN/TCP Applications Under TCPware
	Recompiling and Linking WIN/TCP Applications

	Socket Library Reference
	Sample Discard Protocol Programs

