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Bayesian Filtering Defined 
Just a few short years ago, Bayes’ Formula was found mostly in university-level statistics textbooks. 

This whitepaper gives a basic explanation of what Bayes’ Formula is, and how it can be used to keep 

spam out of your Inbox. In its simplified form, Bayes’ Formula is: 

 

𝑃(𝐸𝑗|𝐹)  =  
𝑃(𝐹|𝐸𝑗) 𝑃(𝐸𝑗)

∑ 𝑃(𝐹|𝐸𝑖) 𝑃(𝐸𝑖)
 

 

So what does that formula do in simple terms?  It lets us combine the probability of multiple 

independent events into one number.  For example, suppose I know that when my car makes a loud 

clicking sound, there’s a 75% chance it’s going to break down.  I also know that if it’s more than 80 

degrees Fahrenheit outside, my car only has a 15% chance of breaking down.  If it’s more than 80 

degrees outside and my car is making a loud clicking sound, I can use Bayes’ Formula to figure out 

how likely it is that I’m going to be walking to work that morning (34.6%, if you’re curious).  Since 

most people get rid of a car when it breaks down as much as mine does (rather than figuring out how 

often it’s going to break down), we’re going to use the formula to figure out the probability that a 

message is spam based on the words appearing in it. 

Our goal is to have our filter: 

1. List every word in an incoming mail message 

2. Determine the odds of each word appearing in a spam message, and  

3. Use those odds as input to Bayes’ Formula to determine if the message is spam or not. 

The first thing we need to do is teach our filter the difference between spam and non-spam messages.  

When we humans accidentally read a spam message, we almost immediately recognize it as spam 

because of certain key words (such as “viagra” and “mortgage”) or phrases (such as “Get your free 

porn here!”).  Instinctively, we know that a message containing these words or phrases is spam 

because of our experience in dealing with junk mail.  The opposite is true as well – we can almost 

instantly look at a message from our mother (containing phrases such as “When are you going to get 

married so I can have grandchildren?”) or our boss (containing phrases such as “Less computer 

solitaire and more work if you want a paycheck this Friday”) and know they’re not spam. 

Our filter doesn’t have the benefit of our years of experience, so we have to teach it what spam 

messages look like, and how they differ from non-spam messages.  We “train” the filter by showing it 

a bunch of mail messages, and telling it whether the message is spam.  Whenever we show a message 

to the filter, it finds every word in the message and stores it (along with how many times it occurred) 

in a database. 
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Separate databases are kept for spam and non-spam messages.  The filter uses a looser definition of 

a word than humans do – a word (more properly called a token) can also be an IP address, a host 

name, an HTML tag, or a price (such as “$99.99”).  The things a token can’t be are random strings, 

words less than three characters long, and numbers.  

As a simple example, let’s train the filter on these three very short spam messages: 

Get Viagra here without a prescription. 

Click here to get your free porn! 

Free mortgage consultations available now. 

Our spam token database should now look a little like this: 

# PreciseMail Token Database Msg Count: 3 
available 1 
click 1 
consultations 1 
free 2 
get 2 
here 2 
mortgage 1 
now 1 
porn 1 
prescription 1 
viagra 1 
without 1 
your 1 

 

Now let’s train it on these three short non-spam messages: 

Important meeting today at noon. 

When is the next time you’re coming home to visit? 

Let’s all meet at the diner for breakfast. 

After we do that, our non-spam token database should look a little like this: 

# PreciseMail Token Database Msg Count: 3 
all 1 
breakfast 1 
coming 1 
diner 1 
home 1 
important 1 
let’s 1 
meet 1 
meeting 1 
next 1 
noon 1 



Introduction to Bayesian Filtering 
 

© Process Software Page 4 

time 1 
today 1 
visit 1 
when 1 
you’re 1 

 

At this point, the filter is very minimally trained – using it to filter spam would be like letting a 3-year 

old drive on a major highway.  (In real life, our filter is smart enough to know when it’s been 

sufficiently trained.)  It’s important that you train the filter with approximately equal amounts of 

spam and non-spam messages, as we’re doing in this example.  Many people (including several 

software vendors that really should know better) tend to train their Bayesian filter only on spam 

messages.  There’s an old saying that goes something like: “If the only tool you have is a hammer, 

every problem looks like a nail.”  With a Bayesian filter, if it’s only been trained with spam messages, 

every message looks like spam. 

It’s also important that the Bayesian filter be trained on spam and non-spam messages from your 

site, and your site only.  If a Bayesian filter is pre-trained on messages from another site, it won’t be 

able to identify features specific to messages destined for your site.  This can easily lead to large 

numbers of false positives and a low spam detection accuracy.  Even with this knowledge, many 

people choose to use pre-trained products because they don’t want to take the time and effort to 

properly train their own Bayesian filter.  To counter this, several new products on the market, 

including Process Software’s PreciseMail Anti-Spam Gateway, can automatically train the built-in 

Bayesian filter on spam and non-spam messages.  This lets the systems administrator “install and 

forget” the Bayesian component of the spam filtering system. 

Now we’re going to let the filter try to decide if a message is spam or not, based on what we’ve told it 

about what spam looks like and how it differs from non-spam.  Let’s pretend a mail message is sent 

to the filter, which looks like this: 

Hi, 

Just a reminder: don’t forget your allergy prescription when you visit New York 

City today. 

 

Mom  

The filter scans through the message, creating a list of every word it knows about (in other words, 

every word in the message that’s also in the token databases).  In this example, the words it knows 

about are “prescription”, “when”, “today”, “visit”, and “your”.  Once the filter has the list of words it 

knows about, for each word it calculates the probability that the word appears in spam based on the 

frequency data in the token databases. 

This probability value assigned to each word is commonly referred to as spamicity, and ranges from 

0.0 to 1.0.  A spamicity value greater than 0.5 means that a message containing the word is likely to 

be spam, while a spamicity value less than 0.5 indicates that a message containing the word is likely 
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to be ham.  A spamicity value of 0.5 is neutral, meaning that it has no effect on the decision as to 

whether a message is spam or not. 

In simplest terms, the spamicity is based on the number of times a word occurs in spam messages as 

opposed to the number of times it occurs in non-spam messages.  For example, if a word has occurred 

50 times in spam messages but only 2 times in non-spam messages, a message that contains it has a 

good chance of being spam.  The opposite is true as well – if a word appears 50 times in non-spam 

messages but only 2 times in spam messages, a message that contains it isn’t very likely to be spam.  

Common words, such as “for” and “what”, tend to occur about equally often in both spam and non-

spam messages, so they have neutral spamicities. 

Back to our example: after looking at the token databases, our filter comes up with the following 

spamicities for each of the known words in the incoming message: 

prescription 0.990000 

today   0.010000 

when   0.010000 

visit   0.010000 

your   0.990000 

Now that we have a spamicity value for each word, the filter is going to use Bayes’ Formula to 

combine them all together to get an overall spamicity for the whole message.  In the case of our 

example, the overall spamicity is 0.00.  Since this is certainly less than 0.5, the filter has decided that 

the message isn’t spam, and allows the mail server to deliver it to the intended recipient.   

A key point to take away from this example is that a couple words with a high spamicity don’t 

automatically doom an incoming message to be branded as spam – there have to be enough words 

with a high spamicity to outweigh the words with a low spamicity.  This means that a message from 

your spouse discussing taking out a second mortgage on the house to finance some kitchen 

remodeling will most likely make it through, as will a message from your best buddy talking about 

how happy he is now that he’s starting taking Viagra.   

To make sure we don’t accidentally mark a non-spam message as spam, we double the weight of non-

spam words in our calculations.  This means that it takes two words with a high spamicity to outweigh 

one word with a low spamicity.  Doing this doesn’t have much of an effect on the filter’s spam 

detection accuracy (spam messages tend to contain lots of words with high spamicities), but it does 

significantly lower the false positive rate. 

Bayesian Filtering Examples 
Now that we have a basic understanding of how Bayesian filtering works, I’m going to use my 

personal email account for some real-world examples of what Bayesian filtering looks like.  The token 

databases used in the below examples have been trained with around a thousand spam messages 

and a thousand non-spam messages. 
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The first example below is the output from running the Bayesian filter on a message from a friend 

who just moved to the Los Angeles area.  Most of the message is complaints about smog and traffic, 

followed by his new contact information. 

SPAMICITY:   0.002844 

final   0.378383 

leave    0.327315 

area    0.683825 

New    0.740312 

info    0.786698 

here    0.786764 

I'll    0.201614 

contact   0.846948 

his    0.148226 

left    0.853779 

transit   0.121959 

maybe   0.112914 

ext    0.978168 

capped   0.010000 

smog    0.010000 

This particular message has a mix of spam and non-spam words, but the non-spam words outweigh 

the spam words.   

You’ve probably noticed that the output from the filter only contains 15 words – my friend hates 

typing, but he doesn’t hate it so much he only uses 15 words per message.  Our Bayesian filter uses 

only the 15 most “interesting” words to calculate the message’s overall spamicity.  These 15 words 

are the words in the message that have either the highest or lowest spamicity (i.e. are closest to 0 or 

1 in value).  We ignore these other words in the message because they don’t have any real impact 

over and above the 15 most “interesting” words.  This keeps the Bayesian filter running quickly, even 

if somebody feels the urge to send you the complete text of the first act of Hamlet. 

The next example output is from a spam message so obscene it would make anyone blush.  And that 

doesn’t even cover the photos that the spammer thoughtfully included.  This was one of those 

messages that you delete as quickly as possible so someone walking by doesn’t see it on your screen 

and report you to Human Resources. 

SPAMICITY:   1.000000 

great   0.649814 

64.119.221.136  0.990000 

Thank   0.744272 

our    0.766728 

you'll   0.819132 

understanding  0.102168 

offer   0.948124 
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SIZE    0.957696 

privacy   0.989979 

enjoiy   0.990000 

teenies   0.990000 

e.gif   0.990000 

FF0000   0.990000 

TeenParadiso  0.990000 

TEEN    0.990000 

This example demonstrates some interesting features of Bayesian filtering.  Since we look at 

everything in the message, things like IP addresses, HTML attributes, and even image file names are 

included in the Bayesian analysis.  Interesting things of note in this message are: 

 The misspelled word “enjoiy” has a very high spamicity.  As a whole, spammers are shockingly 

bad spellers so misspelled words tend to have high spamicities.  (If you’re a really lousy 

speller, this might be a good time to get in the habit of using a spell checker.) 

 FF0000 is the HTML attribute for the color red.  The human eye is unconsciously drawn to 

the color red, a fact of which spammers are well aware.  Most people never use red text in an 

email message, but spammers use the color more often than sports car manufacturers. 

 The IP address 64.119.221.136 is referenced by the message.  This particular address is used 

by a spammer that sends several messages a day in my direction, so it ends up being a handy 

way to quickly identify a spam message.  Even if the spammer sends me a message that 

contains no words with a high spamicity, the IP address will give him away. 

 An external image file is referenced (e.gif).  Embedded links to images on a web server are 

almost never found in non-spam email, so they quickly become a way for the Bayesian filter 

to differentiate spam messages. 

It’s important to remember that the Bayesian filter adapts itself to your site.  For example, just 

because I never receive non-spam mail containing red text doesn’t mean everyone doesn’t.  If red text 

is common at your site, then the Bayesian filter will learn that and not use it as a way to identify spam. 

The final example is the output from running the Bayesian filter against an email from another friend, 

who’s a medical student.  She’s training to be a forensic pathologist, and likes sending me email 

describing horrible medical conditions in an attempt to make me nauseous.  As a result, mail from 

her tends to contain mostly medical terminology that the filter has never seen before.  As an example, 

here’s the output from running the filter against an email describing how the Ebola virus destroys 

your internal organs: 

SPAMICITY:   0.000000 

Antigen  0.400000 

aerosols   0.400000 

re-insertion  0.400000 

Nosocomial   0.400000 

virus   0.647605 

PCR    0.333311 
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isolation   0.080738 

reaction   0.070790 

polymerase   0.010000 

health-care  0.010000 

secretions   0.010000 

hypothesized  0.010000 

amplification  0.010000 

primates   0.010000 

chimpanzees  0.010000 

This output from the filter contains medical terms that most people have probably never heard 

before, even if they religiously watch medical dramas on television.  Most people don’t casually drop 

words like “antigen” and “nosocomial” in their conversations, and they don’t use them in email 

messages.  As a result, the Bayesian filter has no idea what to do with the word.  This particular 

message presents a unique problem to a Bayesian filter – it’s almost nothing but medical terms and 

very common words that have neutral spamicities. 

Since the Bayesian filter doesn’t have any training data available for these words, it assigns them a 

default spamicity of 0.4.  This value is slightly non-spam, since it’s unusual for a spam message to 

contain a significant number of words that haven’t appeared in previous spam messages.  If a 

spammer uses uncommon words, he’s going to confuse his target audience (namely those who 

respond to spam messages). 

As we’ve seen, when properly used a Bayesian filter can be an extraordinarily accurate way to 

identify and discard spam messages.  Large-scale spammers are starting to learn how effective it is 

the hard way, and they’re busily working on ways to circumvent it. 

The first circumvention technique spammers tried was a modification of the one that rendered 

checksum-based message signature filtering useless: including strings of random text in the message.  

The theory was that enough of these random character strings would increase the size of the token 

databases to the point where they made the filter so slow that it was useless.  In response, smart 

developers of anti-spam filters (i.e. the “Good Guys”) implemented a system that removed 

infrequently used tokens from the token database.  Even though all of the random strings from spam 

messages would be placed in the token database, they would be removed as soon as it was obvious 

that they didn’t appear in other messages.  

The current circumvention technique the spammers are trying is to include obviously non-spam 

words in their spam messages.  For example, last week a spammer sent me an advertisement for 

“penile growth supplements” that included the words “congresswoman” and “soybean” in the subject 

and message body.  The Bayesian filter promptly marked it as spam since the words “penile” and 

“supplements” pretty much condemn any message sent to my account as spam, but the spammer had 

two goals in sending me this message.   
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The first (and obvious) goal was to see if the spammer could sneak the message past the Bayesian 

filter by including obviously non-spam words.  In this, he failed.  The secondary goal was to try to get 

the filter to start recognizing the words “congresswoman” and “soybean” as words with a high 

spamicity.  If spammers can get the filter to assign a high spamicity to enough words that commonly 

appear in non-spam messages, they can render the filter useless. 

Luckily, while spammers may be smart enough to come up with these circumvention ideas, they’re 

not very good at coordinating their efforts.  As long as every spammer that sends me mail doesn’t 

start including the words “congresswoman” and “soybean” in their spam messages, they won’t 

appear often enough in spam to significantly increase their spamicities.  (In my case, I’ve never 

received a mail message containing the words “congresswoman” or “soybean”, so the filter ignored 

them altogether.) 

This circumvention method also has limited utility for another good old-fashioned marketing reason.  

If spammers start including a large pile of legitimate text (such as an article from the CNN website) 

in each message, they’d confuse their target audience.  A spam message advertising penile growth 

supplements that also contains an article about the relative value of the Euro is going to confuse the 

audience so much they just ignore the message. 

Summary 
While other filtering methods may be as effective for now, Bayesian filtering includes an element of 

changeability that makes it very difficult for spammers to circumvent.  Savvy spammers with a lot of 

resources try to buy every anti-spam filtering product they can get their hands on, and test their spam 

messages against it so they can be sure the spam will get through to the recipient.  Since every site 

with a Bayesian filter installed has a different set of tokens in their database, it makes it impossible 

for the spammer to deliberately craft a message that will bypass a site’s Bayesian filter.  Because the 

Bayesian filter is constantly being updated, every sneaky change in message wording made by 

spammers will be quickly identified and rendered ineffective.  This makes Bayesian filtering the bane 

of every spammer, and something every site serious about stopping spam should have. 

About PreciseMail Anti-Spam Gateway 
PreciseMail Anti-Spam Gateway is an enterprise software solution that eliminates spam, phishing 

and virus threats at the Internet gateway or mail server. It has a proven 98% spam detection accuracy 

rate out-of-the-box without filtering legitimate messages. PreciseMail Anti-Spam Gateway has a 

highly sophisticated filtering engine is based on a combination of proven heuristic, DNS blacklisting, 

and Bayesian artificial intelligence technologies, which automatically learn how to separate spam 

messages from legitimate email. As a result, PreciseMail Anti-Spam Gateway can determine whether 

email is spam instead of passively reacting to known spammers by creating rules that block them 

after a spam attack occurs. 
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About Process Software 
Process Software has been a premier supplier of communications software solutions to mission 

critical environments for twenty years. We were early innovators of email software and anti-spam 

technology. Process Software has a proven track record of success with thousands of customers, 

including many Global 2000 and Fortune 1000 companies. 

 

U.S.A.: (800) 722-7770  •  International: (508 879-6994  •  Fax: (508) 879-0042 

E-mail: info@process.com  •  Web: http://www.process.com/ 


