

Introduction to

Bayesian Filtering

Introduction to Bayesian Filtering

© Process Software Page 2

Bayesian Filtering Defined
Just a few short years ago, Bayes’ Formula was found mostly in university-level statistics textbooks.

This whitepaper gives a basic explanation of what Bayes’ Formula is, and how it can be used to keep

spam out of your Inbox. In its simplified form, Bayes’ Formula is:

𝑃(𝐸𝑗|𝐹) =
𝑃(𝐹|𝐸𝑗) 𝑃(𝐸𝑗)

∑ 𝑃(𝐹|𝐸𝑖) 𝑃(𝐸𝑖)

So what does that formula do in simple terms? It lets us combine the probability of multiple

independent events into one number. For example, suppose I know that when my car makes a loud

clicking sound, there’s a 75% chance it’s going to break down. I also know that if it’s more than 80

degrees Fahrenheit outside, my car only has a 15% chance of breaking down. If it’s more than 80

degrees outside and my car is making a loud clicking sound, I can use Bayes’ Formula to figure out

how likely it is that I’m going to be walking to work that morning (34.6%, if you’re curious). Since

most people get rid of a car when it breaks down as much as mine does (rather than figuring out how

often it’s going to break down), we’re going to use the formula to figure out the probability that a

message is spam based on the words appearing in it.

Our goal is to have our filter:

1. List every word in an incoming mail message

2. Determine the odds of each word appearing in a spam message, and

3. Use those odds as input to Bayes’ Formula to determine if the message is spam or not.

The first thing we need to do is teach our filter the difference between spam and non-spam messages.

When we humans accidentally read a spam message, we almost immediately recognize it as spam

because of certain key words (such as “viagra” and “mortgage”) or phrases (such as “Get your free

porn here!”). Instinctively, we know that a message containing these words or phrases is spam

because of our experience in dealing with junk mail. The opposite is true as well – we can almost

instantly look at a message from our mother (containing phrases such as “When are you going to get

married so I can have grandchildren?”) or our boss (containing phrases such as “Less computer

solitaire and more work if you want a paycheck this Friday”) and know they’re not spam.

Our filter doesn’t have the benefit of our years of experience, so we have to teach it what spam

messages look like, and how they differ from non-spam messages. We “train” the filter by showing it

a bunch of mail messages, and telling it whether the message is spam. Whenever we show a message

to the filter, it finds every word in the message and stores it (along with how many times it occurred)

in a database.

Introduction to Bayesian Filtering

© Process Software Page 3

Separate databases are kept for spam and non-spam messages. The filter uses a looser definition of

a word than humans do – a word (more properly called a token) can also be an IP address, a host

name, an HTML tag, or a price (such as “$99.99”). The things a token can’t be are random strings,

words less than three characters long, and numbers.

As a simple example, let’s train the filter on these three very short spam messages:

Get Viagra here without a prescription.

Click here to get your free porn!

Free mortgage consultations available now.

Our spam token database should now look a little like this:

PreciseMail Token Database Msg Count: 3
available 1
click 1
consultations 1
free 2
get 2
here 2
mortgage 1
now 1
porn 1
prescription 1
viagra 1
without 1
your 1

Now let’s train it on these three short non-spam messages:

Important meeting today at noon.

When is the next time you’re coming home to visit?

Let’s all meet at the diner for breakfast.

After we do that, our non-spam token database should look a little like this:

PreciseMail Token Database Msg Count: 3
all 1
breakfast 1
coming 1
diner 1
home 1
important 1
let’s 1
meet 1
meeting 1
next 1
noon 1

Introduction to Bayesian Filtering

© Process Software Page 4

time 1
today 1
visit 1
when 1
you’re 1

At this point, the filter is very minimally trained – using it to filter spam would be like letting a 3-year

old drive on a major highway. (In real life, our filter is smart enough to know when it’s been

sufficiently trained.) It’s important that you train the filter with approximately equal amounts of

spam and non-spam messages, as we’re doing in this example. Many people (including several

software vendors that really should know better) tend to train their Bayesian filter only on spam

messages. There’s an old saying that goes something like: “If the only tool you have is a hammer,

every problem looks like a nail.” With a Bayesian filter, if it’s only been trained with spam messages,

every message looks like spam.

It’s also important that the Bayesian filter be trained on spam and non-spam messages from your

site, and your site only. If a Bayesian filter is pre-trained on messages from another site, it won’t be

able to identify features specific to messages destined for your site. This can easily lead to large

numbers of false positives and a low spam detection accuracy. Even with this knowledge, many

people choose to use pre-trained products because they don’t want to take the time and effort to

properly train their own Bayesian filter. To counter this, several new products on the market,

including Process Software’s PreciseMail Anti-Spam Gateway, can automatically train the built-in

Bayesian filter on spam and non-spam messages. This lets the systems administrator “install and

forget” the Bayesian component of the spam filtering system.

Now we’re going to let the filter try to decide if a message is spam or not, based on what we’ve told it

about what spam looks like and how it differs from non-spam. Let’s pretend a mail message is sent

to the filter, which looks like this:

Hi,

Just a reminder: don’t forget your allergy prescription when you visit New York

City today.

Mom

The filter scans through the message, creating a list of every word it knows about (in other words,

every word in the message that’s also in the token databases). In this example, the words it knows

about are “prescription”, “when”, “today”, “visit”, and “your”. Once the filter has the list of words it

knows about, for each word it calculates the probability that the word appears in spam based on the

frequency data in the token databases.

This probability value assigned to each word is commonly referred to as spamicity, and ranges from

0.0 to 1.0. A spamicity value greater than 0.5 means that a message containing the word is likely to

be spam, while a spamicity value less than 0.5 indicates that a message containing the word is likely

Introduction to Bayesian Filtering

© Process Software Page 5

to be ham. A spamicity value of 0.5 is neutral, meaning that it has no effect on the decision as to

whether a message is spam or not.

In simplest terms, the spamicity is based on the number of times a word occurs in spam messages as

opposed to the number of times it occurs in non-spam messages. For example, if a word has occurred

50 times in spam messages but only 2 times in non-spam messages, a message that contains it has a

good chance of being spam. The opposite is true as well – if a word appears 50 times in non-spam

messages but only 2 times in spam messages, a message that contains it isn’t very likely to be spam.

Common words, such as “for” and “what”, tend to occur about equally often in both spam and non-

spam messages, so they have neutral spamicities.

Back to our example: after looking at the token databases, our filter comes up with the following

spamicities for each of the known words in the incoming message:

prescription 0.990000

today 0.010000

when 0.010000

visit 0.010000

your 0.990000

Now that we have a spamicity value for each word, the filter is going to use Bayes’ Formula to

combine them all together to get an overall spamicity for the whole message. In the case of our

example, the overall spamicity is 0.00. Since this is certainly less than 0.5, the filter has decided that

the message isn’t spam, and allows the mail server to deliver it to the intended recipient.

A key point to take away from this example is that a couple words with a high spamicity don’t

automatically doom an incoming message to be branded as spam – there have to be enough words

with a high spamicity to outweigh the words with a low spamicity. This means that a message from

your spouse discussing taking out a second mortgage on the house to finance some kitchen

remodeling will most likely make it through, as will a message from your best buddy talking about

how happy he is now that he’s starting taking Viagra.

To make sure we don’t accidentally mark a non-spam message as spam, we double the weight of non-

spam words in our calculations. This means that it takes two words with a high spamicity to outweigh

one word with a low spamicity. Doing this doesn’t have much of an effect on the filter’s spam

detection accuracy (spam messages tend to contain lots of words with high spamicities), but it does

significantly lower the false positive rate.

Bayesian Filtering Examples
Now that we have a basic understanding of how Bayesian filtering works, I’m going to use my

personal email account for some real-world examples of what Bayesian filtering looks like. The token

databases used in the below examples have been trained with around a thousand spam messages

and a thousand non-spam messages.

Introduction to Bayesian Filtering

© Process Software Page 6

The first example below is the output from running the Bayesian filter on a message from a friend

who just moved to the Los Angeles area. Most of the message is complaints about smog and traffic,

followed by his new contact information.

SPAMICITY: 0.002844

final 0.378383

leave 0.327315

area 0.683825

New 0.740312

info 0.786698

here 0.786764

I'll 0.201614

contact 0.846948

his 0.148226

left 0.853779

transit 0.121959

maybe 0.112914

ext 0.978168

capped 0.010000

smog 0.010000

This particular message has a mix of spam and non-spam words, but the non-spam words outweigh

the spam words.

You’ve probably noticed that the output from the filter only contains 15 words – my friend hates

typing, but he doesn’t hate it so much he only uses 15 words per message. Our Bayesian filter uses

only the 15 most “interesting” words to calculate the message’s overall spamicity. These 15 words

are the words in the message that have either the highest or lowest spamicity (i.e. are closest to 0 or

1 in value). We ignore these other words in the message because they don’t have any real impact

over and above the 15 most “interesting” words. This keeps the Bayesian filter running quickly, even

if somebody feels the urge to send you the complete text of the first act of Hamlet.

The next example output is from a spam message so obscene it would make anyone blush. And that

doesn’t even cover the photos that the spammer thoughtfully included. This was one of those

messages that you delete as quickly as possible so someone walking by doesn’t see it on your screen

and report you to Human Resources.

SPAMICITY: 1.000000

great 0.649814

64.119.221.136 0.990000

Thank 0.744272

our 0.766728

you'll 0.819132

understanding 0.102168

offer 0.948124

Introduction to Bayesian Filtering

© Process Software Page 7

SIZE 0.957696

privacy 0.989979

enjoiy 0.990000

teenies 0.990000

e.gif 0.990000

FF0000 0.990000

TeenParadiso 0.990000

TEEN 0.990000

This example demonstrates some interesting features of Bayesian filtering. Since we look at

everything in the message, things like IP addresses, HTML attributes, and even image file names are

included in the Bayesian analysis. Interesting things of note in this message are:

 The misspelled word “enjoiy” has a very high spamicity. As a whole, spammers are shockingly

bad spellers so misspelled words tend to have high spamicities. (If you’re a really lousy

speller, this might be a good time to get in the habit of using a spell checker.)

 FF0000 is the HTML attribute for the color red. The human eye is unconsciously drawn to

the color red, a fact of which spammers are well aware. Most people never use red text in an

email message, but spammers use the color more often than sports car manufacturers.

 The IP address 64.119.221.136 is referenced by the message. This particular address is used

by a spammer that sends several messages a day in my direction, so it ends up being a handy

way to quickly identify a spam message. Even if the spammer sends me a message that

contains no words with a high spamicity, the IP address will give him away.

 An external image file is referenced (e.gif). Embedded links to images on a web server are

almost never found in non-spam email, so they quickly become a way for the Bayesian filter

to differentiate spam messages.

It’s important to remember that the Bayesian filter adapts itself to your site. For example, just

because I never receive non-spam mail containing red text doesn’t mean everyone doesn’t. If red text

is common at your site, then the Bayesian filter will learn that and not use it as a way to identify spam.

The final example is the output from running the Bayesian filter against an email from another friend,

who’s a medical student. She’s training to be a forensic pathologist, and likes sending me email

describing horrible medical conditions in an attempt to make me nauseous. As a result, mail from

her tends to contain mostly medical terminology that the filter has never seen before. As an example,

here’s the output from running the filter against an email describing how the Ebola virus destroys

your internal organs:

SPAMICITY: 0.000000

Antigen 0.400000

aerosols 0.400000

re-insertion 0.400000

Nosocomial 0.400000

virus 0.647605

PCR 0.333311

Introduction to Bayesian Filtering

© Process Software Page 8

isolation 0.080738

reaction 0.070790

polymerase 0.010000

health-care 0.010000

secretions 0.010000

hypothesized 0.010000

amplification 0.010000

primates 0.010000

chimpanzees 0.010000

This output from the filter contains medical terms that most people have probably never heard

before, even if they religiously watch medical dramas on television. Most people don’t casually drop

words like “antigen” and “nosocomial” in their conversations, and they don’t use them in email

messages. As a result, the Bayesian filter has no idea what to do with the word. This particular

message presents a unique problem to a Bayesian filter – it’s almost nothing but medical terms and

very common words that have neutral spamicities.

Since the Bayesian filter doesn’t have any training data available for these words, it assigns them a

default spamicity of 0.4. This value is slightly non-spam, since it’s unusual for a spam message to

contain a significant number of words that haven’t appeared in previous spam messages. If a

spammer uses uncommon words, he’s going to confuse his target audience (namely those who

respond to spam messages).

As we’ve seen, when properly used a Bayesian filter can be an extraordinarily accurate way to

identify and discard spam messages. Large-scale spammers are starting to learn how effective it is

the hard way, and they’re busily working on ways to circumvent it.

The first circumvention technique spammers tried was a modification of the one that rendered

checksum-based message signature filtering useless: including strings of random text in the message.

The theory was that enough of these random character strings would increase the size of the token

databases to the point where they made the filter so slow that it was useless. In response, smart

developers of anti-spam filters (i.e. the “Good Guys”) implemented a system that removed

infrequently used tokens from the token database. Even though all of the random strings from spam

messages would be placed in the token database, they would be removed as soon as it was obvious

that they didn’t appear in other messages.

The current circumvention technique the spammers are trying is to include obviously non-spam

words in their spam messages. For example, last week a spammer sent me an advertisement for

“penile growth supplements” that included the words “congresswoman” and “soybean” in the subject

and message body. The Bayesian filter promptly marked it as spam since the words “penile” and

“supplements” pretty much condemn any message sent to my account as spam, but the spammer had

two goals in sending me this message.

Introduction to Bayesian Filtering

© Process Software Page 9

The first (and obvious) goal was to see if the spammer could sneak the message past the Bayesian

filter by including obviously non-spam words. In this, he failed. The secondary goal was to try to get

the filter to start recognizing the words “congresswoman” and “soybean” as words with a high

spamicity. If spammers can get the filter to assign a high spamicity to enough words that commonly

appear in non-spam messages, they can render the filter useless.

Luckily, while spammers may be smart enough to come up with these circumvention ideas, they’re

not very good at coordinating their efforts. As long as every spammer that sends me mail doesn’t

start including the words “congresswoman” and “soybean” in their spam messages, they won’t

appear often enough in spam to significantly increase their spamicities. (In my case, I’ve never

received a mail message containing the words “congresswoman” or “soybean”, so the filter ignored

them altogether.)

This circumvention method also has limited utility for another good old-fashioned marketing reason.

If spammers start including a large pile of legitimate text (such as an article from the CNN website)

in each message, they’d confuse their target audience. A spam message advertising penile growth

supplements that also contains an article about the relative value of the Euro is going to confuse the

audience so much they just ignore the message.

Summary
While other filtering methods may be as effective for now, Bayesian filtering includes an element of

changeability that makes it very difficult for spammers to circumvent. Savvy spammers with a lot of

resources try to buy every anti-spam filtering product they can get their hands on, and test their spam

messages against it so they can be sure the spam will get through to the recipient. Since every site

with a Bayesian filter installed has a different set of tokens in their database, it makes it impossible

for the spammer to deliberately craft a message that will bypass a site’s Bayesian filter. Because the

Bayesian filter is constantly being updated, every sneaky change in message wording made by

spammers will be quickly identified and rendered ineffective. This makes Bayesian filtering the bane

of every spammer, and something every site serious about stopping spam should have.

About PreciseMail Anti-Spam Gateway
PreciseMail Anti-Spam Gateway is an enterprise software solution that eliminates spam, phishing

and virus threats at the Internet gateway or mail server. It has a proven 98% spam detection accuracy

rate out-of-the-box without filtering legitimate messages. PreciseMail Anti-Spam Gateway has a

highly sophisticated filtering engine is based on a combination of proven heuristic, DNS blacklisting,

and Bayesian artificial intelligence technologies, which automatically learn how to separate spam

messages from legitimate email. As a result, PreciseMail Anti-Spam Gateway can determine whether

email is spam instead of passively reacting to known spammers by creating rules that block them

after a spam attack occurs.

Introduction to Bayesian Filtering

© Process Software Page 10

About Process Software
Process Software has been a premier supplier of communications software solutions to mission

critical environments for twenty years. We were early innovators of email software and anti-spam

technology. Process Software has a proven track record of success with thousands of customers,

including many Global 2000 and Fortune 1000 companies.

U.S.A.: (800) 722-7770 • International: (508 879-6994 • Fax: (508) 879-0042

E-mail: info@process.com • Web: http://www.process.com/

