
MultiNet 5.6 Programmer’s
Reference

November 2020

This guide provides information to configure and manage MultiNet for the experienced system

manager. Before using this guide, install and start MultiNet as described in the MultiNet

Installation and Administrator’s Guide.

Operating System/Version: OpenVMS VAX V5.5-2 or later

OpenVMS Alpha V6.2 or later

OpenVMS Itanium V8.2 or later

Software Version: MultiNet 5.6

Process Software

Framingham, Massachusetts

USA

The material in this document is for informational purposes only and is subject to change without

notice. It should not be construed as a commitment by Process Software. Process Software

assumes no responsibility for any errors that may appear in this document.

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in

subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS

252.227-7013.

Third-party software may be included in your distribution of MultiNet, and subject to their

software license agreements. See www.process.com/products/multinet/3rdparty.html for

complete information.

All other trademarks, service marks, registered trademarks, or registered service marks

mentioned in this document are the property of their respective holders.

MultiNet is a registered trademark and Process Software and the Process Software logo are

trademarks of Process Software.

Copyright © Process Software Corporation. All rights reserved. Printed in USA.

If the examples of URLs, domain names, internet addresses, and web sites we use in this

documentation reflect any that actually exist, it is not intentional and should not to be considered

an endorsement, approval, or recommendation of the actual site, or any products or services

located at any such site by Process Software. Any resemblance or duplication is strictly

coincidental.

http://www.process.com/products/multinet/3rdparty.html

Preface

Purpose of this Guide
This guide describes the programming interfaces provided with the MultiNet software: A socket

library based on the UNIX 4.3BSD system calls, and an OpenVMS $QIO interface. All socket

functions documented in this guide are available in the shareable image

MULTINET:MULTINET_SOCKET_LIBRARY.EXE, included in the standard MultiNet

distribution. The include files and example programs are part of the optional MultiNet

Programmers' Kit, and should be installed as described in the MultiNet Installation and

Administrator’s Guide before using the programming interface.

Note: If you are writing socket programs in C, Process Software recommends that you use

the HP C include files for the socket definitions. Your program will then use the TCP/IP

Services for VMS-emulation interface in TCPware and MultiNet. The MultiNet header

files have been updated to work with more current versions of HP C. The MultiNet files

should be used only if you are planning to use the MultiNet INETDRIVER API explicitly.

Document Structure
Read this guide to perform the following tasks:

• Chapter 1, IP Programming Tutorial, to write clients and servers that access the network.

• Chapter 2, Socket Library Functions, to view detailed information about socket library

functions.

• Chapter 3, $QIO Interface, to view detailed information about SYS$QIO calls that you

can use to access the network.

• Chapter 4, SNMP Extensible Agent API Routines.

• Chapter 5, RPC Fundamentals, explains RPC.

• Chapter 6, Building Distributed Applications with RPC, explains what components a

distributed application contains, how to use RPC to develop a distributed application,

step-by-step, and how to get RPC information.

• Chapter 7, RPCGEN Compiler, explains the RPC compiler.

• Chapter 8, RPC RTL Management Routines.

• Chapter 9, RPC RTL Client Routines.

• Chapter 10, RPC RTL Port Mapper Routines.

• Chapter 11, RPC RTL Server Routines.

• Chapter 12, RPC RTL XDR Routines.

Conventions Used
Examples in this guide use the following conventions:

Convention Meaning

host Any computer system on the network. The local host is your computer. A

remote host is any other computer.

monospaced

type
System output or user input. User input is in reversed bold type.

Example: Is this configuration correct? YES

Monospaced type also indicates user input where the case of the entry should

be preserved.

italic type Variable value in commands and examples. For example, username indicates

that you must substitute your actual username. Italic text also identifies

documentation references.

[directory] Directory name in an OpenVMS file specification. Include the brackets in the

specification.

[optional-text] (Italicized text and square brackets) Enclosed information is optional. Do not

include the brackets when entering the information.

Example: START/IP line address [info]

This command indicates that the info parameter is optional.

{value | value} Denotes that you should use only one of the given values. Do not include the

braces or vertical bars when entering the value.

Note Information that follows is particularly noteworthy.

Caution Information that follows is critical in preventing a system interruption or

security breach.

key Press the specified key on your keyboard.

Ctrl+key Press the control key and the other specified key simultaneously.

Return Press the Return or Enter key on your keyboard.

Further Reading
The following references contain additional information about programming under TCP/IP. They

may be useful in learning more about socket programming. Additional titles of recommended

books can be displayed using this command:

$ HELP MULTINET BOOKS

Comer, Douglas. Internetworking with TCP/IP: Principles, Protocols, and Architecture,

Englewood Cliffs, NJ: Prentice-Hall, 1988.

Curry, Donald A. Using C on the UNIX System, O'Reilly and Associates.

Harspool, R. Nigel. C Programming in the Berkeley Unix Environment, Toronto, Canada:

Prentice-Hall, 1986.

Kochan, Stephen G. and Patrick K. Wood, editors. UNIX Networking, Indianapolis, IN: Hatden

Books, 1989.

Leffler, Samuel J., Marshall Kirk McKusick, Michael J. Karels, and John S. Quarterman. The

Design and Implementation of the 4.3BSD UNIX Operating System, Reading, MA: Addison-

Wesley, 1989.

UNIX Programming Manuals, U. C. Berkeley.

1. MultiNet Programming
Tutorial

This chapter contains short tutorials on various aspects of application programming using

MultiNet.

Once you have installed the MultiNet Programmers' Kit, you will find a number of example

programs in the appendices in the directory MULTINET_ROOT:[MULTINET.EXAMPLES].

The following tutorials, together with the example programs, are designed to get you started as

an application programmer using MultiNet.

Sockets
A socket is an endpoint for communication. Two cooperating sockets, one on the local host and

one on the remote host, form a connection. Each of the two sockets has a unique address that is

described generically by the sockaddr C programming language structure. The sockaddr

structure is defined as follows:

struct sockaddr {

 u_char sa_len; /* length of data structure */

 u_char sa_family; /* Address family */

 char sa_data[14]; /* up to 14 bytes of direct address*/

};

The sa_family field specifies the address family for the communications domain to which the

socket belongs. For example, AF_INET for the Internet family. The sa_data field contains up

to 14 bytes of data, the interpretation of which depends on the value of sa_family.

If the sa_family field is AF_INET, the same sockaddr structure can also be interpreted as

a sockaddr_in structure that describes an Internet address. A sockaddr_in structure is

defined as follows:

struct sockaddr_in {

 u_char sin_len;

 u_char sin_family;

 u_short sin_port;

 struct in_addr sin_addr;

 char sin_zero[8];

};

The sin_family field specifies the address family AF_INET. The sin_port field specifies

the TCP (Transmission Control Protocol) or UDP (User Datagram Protocol) port number of the

address. Whether the communication uses TCP or UDP is not determined here, but rather by the

type of socket created with the socket() call: SOCK_STREAM for TCP or SOCK_DGRAM for

UDP. The sin_addr field specifies the Internet address. The sin_zero field must be zero.

Both the sin_port field and the sin_addr field are in network byte order. See the

htons() and htonl() functions in Chapter 3 for further information about network byte

ordering.

The sockaddr and sockaddr_in structures serve as input and output to a number of library

routines. For example, they may be used as input, specifying the address to which to make a

connection or send a packet, or as output, reporting the address from which a connection was

made or a packet transmitted.

Internet addresses are normally manipulated with the gethostbyname(),

gethostbyaddr(), inet_addr(), and inet_ntoa() functions. gethostbyname()

and inet_addr() convert a host name or ASCII representation of an address into the binary

representation for the sockaddr_in structure. gethostbyaddr() and inet_ntoa() are

used to convert the binary representation into the host name or ASCII representation for display.

Port numbers are normally manipulated with the getservbyname() and

getservbyport() functions. getservbyname() converts the ASCII service name to the

numeric value, and getservbyport() converts the numeric value to the ASCII name.

The following example shows a typical program that converts the Internet address and the port

into binary representations.

#include "multinet_root:[multinet.include.sys]types.h"

#include "multinet_root:[multinet.include.sys]socket.h"

#include "multinet_root:[multinet.include]netdb.h"

#include "multinet_root:[multinet.include.netinet]in.h"

main(int argc, char *argv[])

{

 struct sockaddr_in sin;

 struct hostent *hp;

 struct servent *sp;

 /* Zero the sin structure to initialize it */

 bzero((char *) &sin, sizeof(sin));

 sin.sin_family = AF_INET;

 /* Lookup the host and initialize sin_addr */

 hp = gethostbyname(argv[1]);

 if (!hp) /* Perhaps it is an ASCII string */

 {

 sin.sin_addr.s_addr = inet_addr(argv[1]);

 if (sin.sin_addr.s_addr == -1)

 {

 printf("syntax error in IP address\n");

 exit(1);

 }

 }

 else /* Extract the IP address */

 {

 bcopy(hp->h_addr, (char *) &sin.sin_addr, hp->h_length);

 }

 /* Lookup up the name of the SMTP service */

 sp = getservbyname("smtp","tcp");

 if (!sp)

 {

 printf("unable to find smtp service");

 exit(1);

 }

 sin.sin_port = sp->s_port;

 /* Now we are ready to create a socket and pass the address of this

 sockaddr_in structure to the connect() call to connect to the

 remote SMTP port */

}

TCP Client
A TCP client process establishes a connection to a server and uses the socket_read() and

socket_ write() functions to transfer data. Typically, you use the following sequence of

functions to set up the connection:

1. Create a TCP socket:

socket(AF_INET, SOCK_STREAM, 0);

2. Set up a sockaddr_in structure with the address you want to connect to by calling

gethostbyname() and getservbyname().

3. Make a connection to the server with the connect() function.

4. Once connect() completes, the TCP connection is established and you can use

socket_read() and socket_write() to transfer data.

Refer to the sample program TCPECHOCLIENT.C in the MultiNet Programmers' Kit examples

directory. This program sends data to a server and displays what the server sends back.

TCP Server
A TCP server process binds a socket to a well-known port and listens on that port for connection

attempts. When a connection arrives, the server processes it by transferring data using

socket_read() and socket_write(). Typically, you use the following sequence of

functions to set up a server:

1. Create a TCP socket:

socket(AF_INET, SOCK_STREAM, 0);

2. Use the getservbyname() function to get the port number of the service on which

you want to listen for connections.

3. Set up a sockaddr_in structure with the port number and an Internet address of

INADDR_ANY, and bind this address to the socket with the bind() function.

4. Use the listen() function to inform the MultiNet kernel that you are listening for

connections on this socket. Then wait for a connection and accept it with accept().

5. Once accept() completes, the TCP connection is established and you can use

socket_read() and socket_write() to transfer data. When you are done with

the connection, you can close the channel returned by accept() and start a new

accept() call on the original channel to wait for another connection.

Note: When writing a TCP server that will run under the control of the MultiNet_Server

process, you must assign a channel to SYS$INPUT before calling any of the VAX C I/O

routines.

Refer to the sample program TCPECHOSERVER-STANDALONE.C in the MultiNet

Programmers' Kit examples directory for an example of a server program that echoes data sent

to it.

Another way to write a TCP server is to let the MULTINET_SERVER process do the work for

you. The MULTINET_SERVER can perform all of the above steps, and when a connection

request arrives, can use the OpenVMS system service $CREPRC to create a process running your

program. Refer to the sample program TCPECHOSERVER.C in Appendix B and in the MultiNet

Programmers' Kit examples directory for an example of how this is done.

UDP
A UDP program sends and receives packets to and from a remote port using the send() or

sendto() and recv() or recvfrom() functions. UDP is a connectionless transport

protocol. It does not incur the overhead of creating and maintaining a connection between two

sockets, but rather merely sends and receives datagrams. It is not a reliable transport, and does

not provide guaranteed data delivery, packet ordering, or flow control.

Typically, you use the following sequence of functions in a UDP program:

1. Create a UDP socket:

socket(AF_INET, SOCK_DGRAM, 0);

2. Bind the socket to a local port number with the bind() function. Specify the

sin_port field as 0 (zero) if you want MultiNet to choose an unused port number for

you automatically (typical of a client), or specify the sin_port field as the UDP port

number (typical of a server). The sin_addr field is usually specified as INADDR_ANY,

which means that packets addressed to any of the host's Internet addresses are accepted.

3. Optionally, use connect() to specify the remote port and Internet address. If you do

not use connect(), you must use sendto() to specify the remote address when you

send packets, and recvfrom() to learn the address when you receive them.

4. Read and write packets to transfer data using the send() or sendto() and recv()

or recvfrom() functions, respectively.

Note: When writing a UDP server that will run under the control of the MultiNet_Server

process, you must assign a channel to SYS$INPUT before calling any of the VAX C I/O

routines.

Another way to write a UDP server is to let the MULTINET_SERVER process handle the work.

The MULTINET_SERVER can perform all the above steps, and when a packet arrives on a UDP

port, can use the OpenVMS system service $CREPRC to create a process running your program.

Refer to the sample programs in the MultiNet Programmers' Kit examples directory for examples

of UDP clients and servers.

BSD-Specific Tips
The following sections contain information specific to working with BSD code.

BSD Sockets Porting Note
When porting a program written for BSD sockets to MultiNet, observe the following guidelines:

• Change any #include statements to reference files with the same names in the

MULTINET_ ROOT:[MULTINET.INCLUDE...] directory areas.

• Implement your change in the source code using #ifdef statements to enable the use of

MultiNet include files; you can then compile your software in a UNIX environment by

selecting the other side of the #ifdef.

BSD 4.4 TCP/IP Future Compatibility
Considerations
MultiNet supports both BSD 4.3 and BSD 4.4 format sockaddrs.

The BSD 4.4 format is:

struct sockaddr_in

{

 u_char sin_len;

 u_char sin_family;

 u_char sin_port;

 struct in_addr sin_addr;

 char sin_zero[8];

};

The BSD 4.3 format of the sockaddr_in structure is:

struct sockaddr_in

{

 short sin_family;

 u_short sin_port;

 struct in_addr sin_addr;

 char sin_zero[8];

};

MultiNet will accept either format from customer applications. This affects applications that

explicitly check the sin_family field for the value AF_INET. Applications can avoid

incompatibilities by avoiding explicit references or checks of the sin_family field, or by

assuming that it can be in either format. The INET device uses the IO$M_EXTEND modifier to

specify that a BSD 4.4 sockaddr (or current format) is used when IO$M_EXTEND is not used

on the function code, the old (BSD 4.3) format is used. This provides compatibility with prior

versions of MultiNet.

Support for the BSD 4.4 style sockaddr data structure is included in the BGDRIVER (UCX

interface). If the IO$M_EXTEND modifier is set on any one of the following QIO operations, the

sockaddr parameter passed in these operations is assumed to be in BSD 4.4 format.

• IO$_SETMODE/IO$_SETCHAR (socket, bind)

• IO$_ACCESS (connect, listen)

• IO$_SENSEMODE/IO$_SENSECHAR (getsockname, getpeername)

• IO$_READVBLK (recv_from, when P3 is specified for a UDP or raw IP message)

• IO$_WRITEVBLK (send_to, when P3 is specified for a UDP or raw IP message)

When the IO$M_EXTEND modifier is used in the creation of a socket via

IO$_SETMODE/IO$_SETCHAR (socket, bind), the setting is remembered for the lifetime

of the socket and all sockaddr structures passed in are assumed to be in BSD 4.4 format. Refer

to the HP TCP/IP Services for OpenVMS System Services and C Socket Programming manual

for additional information.

Operations that return a sockaddr (READVBLK (recv_from) like accept,

getsockname, and getpeername), return that sockaddr in BSD 4.4 format. Operations

that accept a sockaddr (WRITEVBLK (send_to) like connect and bind) expect the

address family value to be in the position it is in for the BSD 4.4 structure. When a

CONNECT/BIND/ACCEPT operation is done for a TCP connection with the IO$V_EXTEND bit

set, the setting is remembered for the duration of the connection and all specified sockaddr

structures are expected to be in BSD 4.4 format, and operations returning a sockaddr will

return it in BSD 4.4 format.

For IO$_ACCESS (connect) and IO$_SETMODE (bind), if the portion of the sockaddr

structure that is used to specify the address family in BSD 4.4 format is non-zero, then the

sockaddr structure is assumed to be in BSD 4.4 format.

TCP/IP Services (UCX)
Compatibility
MultiNet supports programs written for HP's TCP/IP Services. The C run-time library will

automatically use the compatible entry points in the UCX$IPC_SHR.EXE image included with

MultiNet. MultiNet supports the following IPv6 compatible routines:

getaddrinfo

freeaddrinfo

getnameinfo

gai_strerror

inet_pton

inet_ntop

2. Socket Library
Functions

This chapter describes the purpose and format of each MultiNet socket library function.

The socket functions described in this chapter are available in the shareable image

MULTINET:MULTINET_SOCKET_LIBRARY.EXE, included in the standard MultiNet

distribution. They include files and example programs are part of the optional MultiNet

Programmers' Kit, and should be installed as described in the MultiNet Installation and

Administrator’s Guide before you use the programming interface.

In addition to supporting the MultiNet socket library, applications developed for the OpenVMS

TCPIP Services (UCX) software using the VAX C socket library (UCX$IPC.OLB) will run over

MultiNet, using an emulation of UCX$IPC_SHR.EXE.

Note: To avoid potential conflicts between MultiNet socket library definitions and C

compiler definitions, include a reference to the file

MULTINET_ROOT:[MULTINET.INCLUDE.SYS]TYPES.H before any other header

file references.

Debugging and Tracing
MultiNet provides a call tracing facility that can be used to debug and trace the use of the sockets

API for many applications. This facility works for both the MultiNet socket library and the API

that the newer versions of the C compiler work with. This does NOT log QIO operations. To

enable the tracing define the MULTINET_SOCKET_TRACE logical name. The value of the

logical name can be used in the following ways:

• As a bit mask for types of operations to trace. Bit 0 (zero) signifies control operations, bit

1 signifies read operations and bit 2 signifies write operations. When these values are

used the information is written to SYS$OUTPUT:.

• As a partial or full file name. When used as a partial file name the default name specified

to open the file is: SYS$SCRATCH:MULTINET_SOCKET_process_name.LOG.

Control, read and write operations are logged when logging is done to a file.

AST Reentrancy
The MultiNet socket library is based on the equivalent UNIX programming library, and was

therefore not designed with reentrancy in mind. If you call into the socket library with AST

delivery disabled, some of the library routines will suspend execution and fail to return control to

the caller.

This situation occurs most often when applications try to call those functions from within an

AST routine where AST delivery is not possible.

Any routine that relies on the select() function is subject to this restriction (including the

select() call itself, and most of the domain name resolution routines such as

gethostbyname(), and so on).

Another reentrancy consideration is the socket library's use of static internal data structures,

some of which are passed back to the application, as in the case of the hostent structure

address returned by gethostbyname(). Other functions use these data structures internally to

maintain context.

In either case, it is dangerous to call into these routines from an AST because it is possible to

interrupt a similar call already in progress, using the same static buffer, thereby corrupting the

contents of the buffer.

Another consideration is the use of routines that send and receive data. Every socket in the kernel

contains two fixed-size buffers for sending and receiving data. If an application tries to transmit

data when there is insufficient buffer space, that call will block (or suspend execution) until

buffer space becomes available. This can become an issue if the application blocks while

attempting to transmit a large data buffer, and an AST routine tries to transmit a small data

buffer. The small data buffer is transmitted before the large one.

The same situation applies to the functions that read data from the network. This situation may

also arise if multiple reads and writes are performed on sockets which have been set up to be

non-blocking (NBIO).

 These considerations might seem overly restrictive; however, the MultiNet socket library is a

port of the BSD socket library, which is subject to all of the same restrictions. Applications

which need to perform I/O from within AST routines should use the SYS$QIO system service to

talk directly to the MultiNet device driver.

Therefore, none of the socket routines should be considered AST reentrant.

accept()/accept_44()
Extracts the first connection from the queue of pending connections on a socket, creates a new

socket with the same properties as the original socket, and assigns a new OpenVMS channel to

the new socket. If no pending connections are present on the queue, accept() blocks the caller

until a new connection is present. The original socket remains open and can be used to accept

more connections, but the new socket cannot be used to accept additional connections.

The original socket is created with the socket() function, bound to an address with bind(),

and is listening for connections after a listen().

The accept() function is used with connection-based socket types. Currently the only

connection-based socket is SOCK_STREAM, which, together with AF_INET, constitutes a TCP

socket.

The accept_44() function is the BSD 4.4 sockaddr variant of this call. This call is used

automatically when MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]IN.H is used

and the program is compiled with USE_BSD44_ENTRIES defined.

FORMAT

short New_VMS_Channel = accept(short VMS_Channel, struct sockaddr

*Address, unsigned int AddrLen);

ARGUMENTS

VMS_Channel

A channel to the original socket from which to accept the connection.

Address

The optional Address argument is a result parameter. It is filled in with the address of the

connecting entity, as known to the communications layer. The exact format of the Address

argument is determined by the domain in which the communication is occurring.

AddrLen

On entry, the optional AddrLen argument contains the length of the space pointed to by

Address, in bytes. On return, it contains the actual length, in bytes, of the address returned.

RETURNS

If the accept() is successful, an OpenVMS channel number is returned. If an error occurs, a

value of -1 is returned, and a more specific message is returned in the global variables

socket_errno and vmserrno.

An error code of ENETDOWN can indicate that the program has run out of VMS channels to use

in creating new sockets. This can be due to either the SYSGEN parameter CHANNELCNT being

too low for the number of connections in use by the program, or to a socket leak in the code.

Make sure the code closes the socket (using close()) when it is done with the socket.

bcmp()
Compares a range of memory. This function operates on variable-length strings of bytes and

does not check for null bytes as strcmp() does.

bcmp() is part of the 4.3BSD run-time library, but is not provided by the OS vendor as part of

the VAX C run-time library. It is provided here for compatibility with the 4.3BSD library.

FORMAT

int Status = bcmp(char *String1, char *String2, unsigned int Length);

ARGUMENTS

String1, String2

Pointers to the two buffers to be compared.

Length

The number of bytes to be compared.

RETURNS

The bcmp() function returns zero if the strings are identical. It returns a nonzero value if they

are different.

bcopy()
Copies memory from one location to another. This function operates on variable-length strings of

bytes and does not check for null bytes as strcpy() does.

bcopy() is part of the 4.3BSD run-time library, but is not provided by Hewlett-Packard as part

of the VAX C run-time library. It is provided here for compatibility with the 4.3BSD library.

FORMAT

(void) bcopy(char *String1, char *String2, unsigned int Length);

ARGUMENTS

String1

The source buffer for the copy operation.

String2

The destination buffer for the copy operation.

Length

The number of bytes to be copied.

bind()/bind_44()
Assigns an address to an unnamed socket. When a socket is created with socket(), it exists in

a name space (address family) but has no assigned address. bind() requests that the address be

assigned to the socket.

If the port number specified in the sin_port field of the sockaddr structure is less than

1024, SYSPRV is required to use this function.

The bind_44() function is the BSD 4.4 sockaddr variant of this call. This call is used

automatically when MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]IN.H is used

and the program is compiled with USE_BSD44_ENTRIES defined.

FORMAT

int Status = bind(short VMS_Channel, struct sockaddr *Name, unsigned

int NameLen);

ARGUMENTS

VMS_Channel

A channel to the socket.

Name

The address to which the socket should be bound. The exact format of the Address argument is

determined by the domain in which the socket was created.

NameLen

The length of the Name argument, in bytes.

RETURNS

If the bind() is successful, a value of 0 is returned. If an error occurs, a value of -1 is returned,

and a more specific message is returned in the global variables socket_errno and

vmserrno.

bzero()
Fills memory with zeros.

bzero() is part of the 4.3BSD run-time library, but is not provided as part of the VAX C run-

time library. It is provided here for compatibility with the 4.3BSD library.

FORMAT

(void) bzero(char *String, unsigned int Length);

ARGUMENTS

String

The address of the buffer to receive the zeros.

Length

The number of bytes to be zeroed.

connect()/connect_44()
When used on a SOCK_STREAM socket, connect() attempts to make a connection to another

socket. This function, when used on a SOCK_DGRAM socket, permanently specifies the peer to

which datagrams are sent to and received from. The peer socket is specified by name, which is

an address in the communications domain of the socket. Each communications domain interprets

the name parameter in its own way. If the address of the local socket has not yet been specified

with bind(), the local address is also set to an unused port number when connect() is

called.

The connect_44() function is the BSD 4.4 sockaddr variant of this call. This call is used

automatically when MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]IN.H is used

and the program is compiled with USE_BSD44_ENTRIES defined.

FORMAT

int Status = connect(short VMS_Channel, struct sockaddr *Name,

unsigned int NameLen);

ARGUMENTS

VMS_Channel

A channel to the socket.

Name

The address of the peer to which the socket should be connected. The exact format of the

Address argument is determined by the domain in which the socket was created.

NameLen

The length of the Name argument, in bytes.

RETURNS

If the connect() is successful, a value of 0 is returned. If an error occurs, a value of -1 is

returned, and a more specific message is returned in the global variables socket_errno and

vmserrno.

Domain Name Resolver Routines
The following functions exist for compatibility with UNIX 4.3BSD programs that call the DNS

name resolver directly rather than through gethostbyname(). The arguments and calling

conventions are compatible with BIND Version 4.8.3. They are subject to change and are not

documented here.

The h_errno variable in the MultiNet socket library that contains the error status of the

resolver routine is accessible to C programs.

dn_comp() p_rr()

dn_expand() p_type()

dn_skip() putlong()

dn_skipname() putshort()

fp_query() _res_close()

_getlong() res_init()

_getshort() res_mkquery()

herror() res_query()

p_cdname() res_querydomain()

p_class() res_search()

p_query() res_send()

endhostent()
Tells the DNS Name Resolver to close the TCP connection to the DNS name server that may

have been opened as the result of calling sethostent() with StayOpen set to 1.

FORMAT

(void) endhostent();

endnetent()
Tells the DNS name resolver to close the TCP connection to the DNS name server that may have

been opened as the result of using setnetent() with StayOpen set to 1.

FORMAT

(void) endnetent();

endprotoent()
Tells the host table routines that the scan started by getprotoent() is complete.

endprotoent() is provided only for compatibility with UNIX 4.3BSD, and is ignored by the

MultiNet software.

FORMAT

(void) endprotoent();

endservent()
Tells the host table routines that the scan started by getservent() is complete.

endservent() is provided only for compatibility with UNIX 4.3BSD, and is ignored by the

MultiNet software.

FORMAT

(void) endservent();

getdtablesize()
Returns the maximum number of channels available to a process. This function is normally used

to determine the Width argument to the select() function.

FORMAT

Width = getdtablesize();

RETURNS

The size of the channel table.

gethostbyaddr()/gethostbyaddr_44()
Looks up a host by its address in the binary host table or the DNS Name Server and returns

information about that host. An alternate entry point _gethostbyaddr(), that looks only in

the binary host table, is also available.

Note: The MultiNet socket library is not reentrant. If you call into it from an AST (interrupt)

routine, the results are unpredictable.

The gethostbyaddr_44() function is the BSD 4.4 sockaddr variant of this call. This call

is used automatically when MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]IN.H is

used and the program is compiled with USE_BSD44_ENTRIES defined.

FORMAT

(struct hostent *) gethostbyaddr(char *Addr, unsigned int Length,

unsigned int Family);

(struct hostent *) _gethostbyaddr(char *Addr, unsigned int Length,

unsigned int Family);

ARGUMENTS

Addr

A pointer to the address to look up. The type is dependent on the Family argument. For

Internet (AF_INET family) addresses, Addr is a pointer to an in_addr structure.

Length

The size, in bytes, of the buffer pointed to by Addr.

Family

The address family, and consequently the interpretation of the Addr argument. Normally, this is

AF_INET, indicating the Internet family of addresses.

RETURNS

If gethostbyaddr() succeeds, it returns a pointer to a structure of type hostent. (See

gethostbyname() for more information on the hostent structure.) If this function fails, a

value of 0 is returned, and the global variable h_errno is set to one of the DNS Name Server

error codes defined in the file multinet_root:[multinet.include]netdb.h.

getaddrinfo()
Looks up hostname and/or service name and returns results. This call supports both IPv4 and

IPv6 requests.

FORMAT

int getaddrinfo(char *hostname, char *servname, struct addrinfo

*hints, **res)

ARGUMENTS

hostname

A C-language string containing the name of the host to look up.

servname

A C-language string containing the name of the service to look up.

hints

An addrinfo structure that provides hints on the lookups to be performed.

res

A linked list of addrinfo structures that contain the results of the operation.

RETURNS

An integer value is returned. Zero is success, non-zero is failure. Failure values can be

interpreted with gaistrerror().

struct addrinfo

{

 int ai_flags;

 int ai_family;

 int ai_socktype;

 int ai_protocol;

 size_t ai_addrlen;

 char *ai_canonname;

 struct sockaddr *ai_addr;

 struct addrinfo *ai_next;

};

Use freeaddrinfo(res) to free the chain of data structures returned when the program is

done using it.

getnameinfo()
Returns hostname and/or servicename information from a sockaddr structure. This call can

handle both IPv6 and IPv4 requests.

FORMAT

int getnameinfo(struct sockaddr *sa, size_t salen, char *host, size_t

hostlen, char *serv, size_t servlen, int flags)

ARGUMENTS

sa

A pointer to a sockaddr to obtain information on.

salen

The length of the sockaddr structure.

host

Storage area for a hostname to be returned.

hostlen

The amount of space available in the host string for storing the hostname.

serv

Storage area for a service name to be returned.

servlen

The amount of space available in the serv string for storing the service name

RETURNS

An integer value is returned. Zero is success, non-zero is failure. Failure values can be

interpreted with gaistrerror().

gethostbyname()/gethostbyname_44()
Looks up a host by name in the binary host table or the DNS Name Server and returns

information about that host. An alternate entry point _gethostbyname(), that looks only in

the binary host table, is also available.

Note: The MultiNet socket library is not reentrant. If you call into it from an AST (interrupt)

routine, the results are unpredictable

The gethostbyname_44() function is the BSD 4.4 sockaddr variant of this call. This call

is used automatically when MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]IN.H is

used and the program is compiled with USE_BSD44_ENTRIES defined.

FORMAT

(struct hostent *) gethostbyname(char *Name);

(struct hostent *) _gethostbyname(char *Name);

ARGUMENTS

Name

A C-language string containing the name of the host to look up.

RETURNS

If gethostbyname() succeeds, it returns a pointer to a structure of type hostent. If this

function fails, a value of 0 is returned, and the global variable h_errno is set to one of the DNS

Name Server error codes defined in the file

multinet_root:[multinet.include]netdb.h.

The hostent structure is defined as follows:

struct hostent

{

 char *h_name; /* official name */

 char **h_aliases; /* alias list */

 int h_addrtype; /* host address type */

 int h_length; /* length of address */

 char **h_addr_list; /* list of addresses */

#define h_addr h_addr_list[0] /* address, for compat */

 char *h_cputype; /* cpu type */

 char *h_opsys; /* operating system */

 char **h_protos; /* protocols */

 struct sockaddr *h_addresses; /* sockaddr form */

};

gethostbysockaddr()/gethostbysockaddr_44()
Looks up a host by socket address in the binary host table or the DNS Name Server and returns

information about that host. An alternate entry point _gethostbysockaddr(), that looks

only in the binary host table, is also available. gethostbysockaddr() is identical in

functionality to gethostbyaddr(), but takes its arguments in a different form.

Note: The MultiNet socket library is not reentrant. If you call into it from an AST (interrupt)

routine, the results are unpredictable.

The gethostbysockaddr_44() function is the BSD 4.4 sockaddr variant of this call.

This call is used automatically when

MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]IN.H is used and the program is

compiled with USE_BSD44_ENTRIES defined.

FORMAT

(struct hostent *) gethostbysockaddr(struct sockaddr *Addr, unsigned

int Length);

ARGUMENTS

Addr

A pointer to a sockaddr structure describing the address to look up.

Length

The size, in bytes, of the sockaddr structure pointed to by Addr.

RETURNS

If gethostbysockaddr() succeeds, it returns a pointer to a structure of type hostent.

(See gethostbyname() for more information on the hostent structure.) If this function

fails, a value of 0 is returned, and the global variable h_errno is set to one of the DNS Name

Server error codes defined in the file multinet_root:[multinet.include]netdb.h.

gethostname()
Returns the Internet name of the host it is executed on. This name comes from the logical name

MULTINET_HOST_NAME and can be set using the SET HOST-NAME command in the

MultiNet Network Configuration utility (NET-CONFIG).

FORMAT

Int gethostname(char *String, unsigned int Length);

ARGUMENTS

String

A pointer to a buffer to receive the host name.

Length

The length of the buffer, in bytes. The buffer should be at least 33 bytes long to guarantee that

the complete host name is returned.

RETURNS

If the gethostname() function is successful, it returns a 0. It returns a -1 if it is unable to

translate the logical name.

getnetbyaddr()
Looks up a network by its network number in the binary host table or the DNS Name Server and

returns information about that network. An alternate entry point _getnetbyaddr(), that

looks only in the binary host table, is also available.

FORMAT

(struct netent *) getnetbyaddr(unsigned int Net, unsigned int

Protocol);

(struct netent *) _getnetbyaddr(unsigned int Net, unsigned int

Protocol);

ARGUMENTS

Net

The network number to look up.

Protocol

The address family of the network to look up. For Internet networking, this should be specified

as AF_INET.

RETURNS

If getnetbyaddr() succeeds, it returns a pointer to a structure of type netent. (See

getnetbyname() for more information on the netent structure.) If this function fails, a

value of 0 is returned, and the global variable h_errno is set to one of the DNS Name Server

error codes defined in multinet_root:[multinet.include]netdb.h.

getnetbyname()
Looks up a network by name in the binary host table or the DNS Name Server and returns

information about that network. An alternate entry point _getnetbyname(), that looks only

in the binary host table, is also available.

FORMAT

(struct netent *) getnetbyname(char *Name);

(struct netent *) _getnetbyname(char *Name);

ARGUMENTS

Name

A pointer to a C-language string containing the name of the network.

RETURNS

If getnetbyname() succeeds, it returns a pointer to a structure of type netent. If this

function fails, a value of 0 is returned, and the global variable h_errno is set to one of the DNS

Name Server error codes defined in multinet_root:[multinet.include]netdb.h.

The netent structure is defined as follows:

struct netent

{

 char *n_name; /* official name */

 char **n_aliases; /* alias list */

 int n_addrtype; /* address type */

 unsigned long n_net; /* network # */

 struct sockaddr *n_addresses; /* sockaddr form */

};

getpeername()/getpeername_44()
Returns the name of the peer connected to the specified socket.

The accept_44() function is the BSD 4.4 sockaddr variant of this call. This call is used

automatically when MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]IN.H is used

and the program is compiled with USE_BSD44_ENTRIES defined.

FORMAT

int getpeername(short VMS_Channel, struct sockaddr *Address, unsigned

int *AddrLen);

ARGUMENTS

VMS_Channel

A channel to the socket.

Address

A result parameter. This argument is filled in with the address of the peer, as known to the

communications layer. The exact format of the Address argument is determined by the domain

in which the communication is occurring.

AddrLen

On entry, contains the length of the space pointed to by Address, in bytes. On return, it

contains the actual length, in bytes, of the address returned.

RETURNS

If the getpeername() is successful, a value of 0 is returned. If an error occurs, a value of -1

is returned, and a more specific message is returned in the global variables socket_errno and

vmserrno.

getprotobyname()
Looks up a protocol by name in the binary host table and returns information about that protocol.

FORMAT

(struct protoent *) getprotobyname(char *Name);

ARGUMENTS

Name

A pointer to a C-language string containing the name of the protocol.

RETURNS

If getprotobyname() succeeds, it returns a pointer to a structure of type protoent. If this

function fails, a value of 0 is returned.

The protoent structure is defined as follows:

struct protoent

{

 char *p_name; /* official protocol name */

 char **p_aliases; /* alias list */

 int p_proto; /* protocol # */

};

getprotobynumber()
Looks up a protocol by number in the binary host table and returns information about that

protocol.

FORMAT

(struct protoent *) getprotobynumber(unsigned int Number);

ARGUMENTS

Number

The numeric value of the protocol.

RETURNS

If getprotobynumber() succeeds, it returns a pointer to a structure of type protoent. If

this function fails, a value of 0 is returned.

The protoent structure is defined as follows:

struct protoent

{

 char *p_name; /* official protocol name */

 char **p_aliases; /* alias list */

 int p_proto; /* protocol # */

};

getprotoent()
Returns the next protocol entry from the binary host table. It is used with setprotoent() and

endprotoent() to scan through the protocol table. The scan is initialized with

setprotoent(), run by calling getprotoent() until it returns a 0, and terminated by

calling endprotoent().

FORMAT

(struct protoent *) getprotoent();

RETURNS

The getprotoent() function returns either a 0, indicating that there are no more entries, or a

pointer to a structure of type protoent.

The protoent structure is defined as follows:

struct protoent

{

 char *p_name; /* official protocol name */

 char **p_aliases; /* alias list */

 int p_proto; /* protocol # */

};

getservbyname()
Looks up a service by name in the binary host table and returns information about that service.

The service must be present in the HOSTS.SERVICES or HOSTS.LOCAL file, and the host

table must be compiled into binary form using the host table compiler. See the MultiNet

Installation and Administrator’s Guide for more information about editing and compiling the

host table files.

FORMAT

(struct servent *) getservbyname(char *Name, char *Protocol);

ARGUMENTS

Name

A pointer to a C-language string containing the name of the service.

Protocol

A pointer to a C-language string containing the name of the protocol associated with the service,

such as "TCP".

RETURNS

If getservbyname() succeeds, it returns a pointer to a structure of type servent. If this

function fails, a value of 0 is returned.

The servent structure is defined as follows:

struct servent

{

 char *s_name; /* official service name */

 char **s_aliases; /* alias list */

 int s_port; /* port # */

 char *s_proto; /* protocol to use */

};

getservbyport()
Looks up a service by protocol port in the binary host table and returns information about that

service.

The service must be present in the HOSTS.SERVICES or HOSTS.LOCAL file, and the host

table must be compiled into binary form using the host table compiler. See the MultiNet

Installation and Administrator’s Guide for more information about editing and compiling the

host table files.

FORMAT

(struct servent *) getservbyport(unsigned int Number, char *Protocol);

ARGUMENTS

Number

The numeric value of the service port.

Protocol

A pointer to a C-language string containing the name of the protocol associated with the service,

such as TCP.

RETURNS

If getservbyport() succeeds, it returns a pointer to a structure of type servent. (See

getservbyname() for the format of the servent structure.) If this function fails, a value of

0 is returned.

getservent()
Returns the next server entry from the binary host table. This function is used with

setservent() and endservent() to scan through the service table. The scan is initialized

with setservent(), run by calling getservent() until it returns a 0, and terminated by

calling endservent().

FORMAT

(struct servent*) getservent();

RETURNS

If getservent() succeeds, it returns a pointer to a structure of type servent. (See

getservbyname() for the format of the servent structure.) If this function fails, a value of

0 is returned.

getsockname()/getsockname_44()
Returns the current name of the specified socket.

The getsockname_44() function is the BSD 4.4 sockaddr variant of this call. This call is

used automatically when MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]IN.H is

used and the program is compiled with USE_BSD44_ENTRIES defined.

FORMAT

int getsockname(short VMS_Channel, struct sockaddr *Address, unsigned

int *AddrLen);

ARGUMENTS

VMS_Channel

A channel to the socket.

Address

A result parameter. It is filled in with the address of the local socket, as known to the

communications layer. The exact format of the Address argument is determined by the domain

in which the communication is occurring.

AddrLen

On entry, contains the length of the space pointed to by Address, in bytes. On return, it

contains the actual length, in bytes, of the address returned.

RETURNS

If getsockname() is successful, a ,value of 0 is returned. If an error occurs, a value of -1 is

returned and a more specific message is returned in the global variables socket_errno and

vmserrno.

getsockopt()
Retrieves the options associated with a socket. Options can exist at multiple protocol levels;

however, they are always present at the uppermost socket level.

When manipulating socket options, you must specify the level at which the option resides and

the name of the option. To manipulate options at the socket level, specify Level as

SOL_SOCKET. To manipulate options at any other level, specify the protocol number of the

appropriate protocol controlling the option. For example, to indicate that an option will be

interpreted by the TCP protocol, set Level to the protocol number of TCP, which can be

determined by calling getprotobyname().

OptName and any specified options are passed without modification to the appropriate protocol

module for interpretation. The include file

multinet_root:[multinet.include.sys]socket.h contains definitions for

socket-level options. Options at other protocol levels vary in format and name.

For more information on what socket options may be retrieved with getsockopt(), see

socket options.

FORMAT

int getsockopt(short VMS_Channel, unsigned int Level, unsigned int

OptName, unsigned int OptVal, char *OptLen);

ARGUMENTS

VMS_Channel

A channel to the socket.

Level

The protocol level at which the option will be manipulated. Specify Level as SOL_SOCKET, or

as a protocol number as returned by getprotobyname().

OptName

The option to be manipulated.

OptVal

A pointer to a buffer that will receive the current value of the option. The format of this buffer is

dependent on the option requested.

OptLen

On entry, contains the length of the space pointed to by OptVal, in bytes. On return, it contains

the actual length, in bytes, of the option returned.

RETURNS

If the getsockopt() is successful, a value of 0 is returned. If an error occurs, a value of -1 is

returned, and a more specific message is returned in the global variables socket_errno and

vmserrno.

gettimeofday()
Returns the current time of day in UNIX format. This is the number of seconds and

microseconds elapsed since January 1, 1970.

gettimeofday() is part of the 4.3BSD run-time library, but is not provided by Hewlett-

Packard as part of the VAX C run-time library. It is provided here for compatibility with the

4.3BSD library.

FORMAT

int gettimeofday(timeval *TimeVal);

ARGUMENTS

TimeVal

A pointer to a structure that receives the current time. The timeval structure is defined as

follows:

struct timeval

{

 long tv_sec; /* seconds */

 long tv_usec; /* and microseconds */

};

RETURNS

The gettimeofday() function always returns a value of 0, which indicates it was successful.

hostalias()
Examines the user-specific host alias table (if the user has set one by defining the

MULTINET_HOSTALIASES logical name) to see if the specified host name is a valid alias for

another host name. This is normally called by gethostbyname() and res_search()

automatically.

FORMAT

(char *) hostalias(char *Name);

ARGUMENTS

Name

A C-language string containing the name of the host to look up in the host alias table.

RETURNS

If successful, the hostalias() function returns a pointer to the character string of the

canonical name of the host. Otherwise, it returns a 0 to indicate that no alias exists.

htonl()
Swaps the byte order of a four-byte integer from OpenVMS byte order to network byte order.

This allows you to develop programs that are independent of the hardware architecture on which

they are running.

FORMAT

RetVal = htonl(unsigned long Val);

ARGUMENTS

Val

The four-byte integer to convert to network byte order.

RETURNS

The htonl() function returns the byte-swapped integer that corresponds to Val. For example,

if Val is 0xc029e401, the returned value is 0x01e429c0.

htons()
Swaps the byte order of a two-byte integer from OpenVMS byte order to network byte order.

This allows you to develop programs that are independent of the hardware architecture on which

they are running.

FORMAT

RetVal = htons(unsigned short Val);

ARGUMENTS

Val

The two-byte integer to convert to network byte order.

RETURNS

The htons() function returns the byte-swapped integer that corresponds to Val. For example,

if Val is 0x0017, the returned value is 0x1700.

inet_addr()
Converts Internet addresses represented in the ASCII form xx.yy.zz.ww to a binary

representation in network byte order.

FORMAT

int inet_addr(char *Address);

ARGUMENTS

Address

A pointer to a C-language string containing an ASCII representation of the Internet address to

convert.

RETURNS

If successful, the inet_addr() function returns an integer corresponding to the binary

representation of the Internet address in network byte order. It returns a -1 to indicate that it

could not parse the specified Address string.

inet_lnaof()
Returns the local network address portion of the specified Internet address. For example, the

class A address 0x0a050010 (10.5.0.16) is returned as 0x00050010 (5.0.16).

FORMAT

word inet_lnaof(struct in_addr Address);

ARGUMENTS

Address

The Internet address from which to extract the local network address portion. The Internet

address is specified in network byte order.

RETURNS

The inet_lnaof() function returns the local network address portion of the Internet address

in OpenVMS byte order.

inet_makeaddr()
Builds a complete Internet address from the separate host and network portions.

FORMAT

word inet_makeaddr(unsigned int Network, unsigned int Host);

ARGUMENTS

Network

The network portion of the Internet address to be constructed. The network portion is specified in

OpenVMS byte order.

Host

The host portion of the Internet address to be constructed. The host portion is specified in

OpenVMS byte order.

RETURNS

The inet_makeaddr() function returns the complete Internet address in network byte order.

inet_netof()
Returns the network number portion of the specified Internet address. For example, the class A

address 0x0a050010 (10.5.0.16) is returned as 0x0a (10).

FORMAT

word inet_netof(struct in_addr Address);

ARGUMENTS

Address

The Internet address from which to extract the network number portion. The Internet address is

specified in network byte order.

RETURNS

The inet_netof() routine returns the network portion of the Internet address in OpenVMS

byte order.

inet_network()
Interprets Internet network numbers represented in the ASCII form "xx", "xx.yy", or "xx.yy.zz",

and converts them into a binary representation in OpenVMS byte order.

FORMAT

int inet_network(char *Address);

ARGUMENTS

Address

A pointer to a C-language string containing an ASCII representation of the Internet network

number to convert.

RETURNS

If successful, the inet_network() function returns an integer corresponding to the binary

representation of the Internet network in OpenVMS byte order. It returns a -1 to indicate that it

could not parse the specified string.

inet_ntoa()
Converts an Internet address represented in binary form into an ASCII string suitable for

printing.

FORMAT

(char *) inet_ntoa(struct in_addr Address);

ARGUMENTS

Address

The Internet address in binary form. The Internet address is specified in network byte order.

RETURNS

The inet_ntoa() function returns a pointer to a C- language string corresponding to the

Internet address.

klread()
Used with klseek() and multinet_kernel_nlist() to emulate the UNIX 4.3BSD

nlist() function and the reading of the /dev/kmem device. klread() and klseek()

read OpenVMS kernel memory through an interface that is similar to using read() and

lseek() on the /dev/kmem device.

The OpenVMS CMKRNL privilege is required to use klread().

Before calling klread(), specify the address to read from using klseek().

FORMAT

int klread(char *Buffer, unsigned int Size);

ARGUMENTS

Buffer

The address to which to return the kernel memory.

Size

The number of bytes to read.

RETURNS

If successful, the klread() function returns the number of bytes read. It returns a -1 to indicate

that it failed because the kernel memory was not readable. This usually indicates that the current

position, as set by klseek(), is invalid.

klseek()
Used with klread() and multinet_kernel_nlist() to emulate the UNIX 4.3BSD

nlist() function and reading the /dev/kmem device. klread() and klseek() read

OpenVMS kernel memory through an interface that is similar to using read() and lseek()

on the /dev/kmem device.

Use klseek() to set the current position in the network kernel. This position will be used by

klread() and klwrite() in the next attempt to read or write data.

FORMAT

word klseek(unsigned int Position);

ARGUMENTS

Position

The address in the network kernel to make the current position for the next klread() or

klwrite() call.

RETURNS

The klseek() routine returns the current position as a success status.

klwrite()
Used with klseek() and multinet_kernel_nlist() to emulate the UNIX 4.3BSD

nlist() and writing the /dev/kmem device. klwrite() and klseek() write OpenVMS

kernel memory through an interface that is similar to using write() and lseek() on the

/dev/kmem device.

The OpenVMS CMKRNL privilege is required to use klwrite().

Before calling klwrite(), specify the address to write using klseek().

FORMAT

int klwrite(char *Buffer, unsigned int Size);

ARGUMENTS

Buffer

The address of the data to write into kernel memory.

Size

The number of bytes to write.

RETURNS

If successful, the klwrite() function returns the number of bytes written. It returns a -1 to

indicate that it failed because the kernel memory was not writable. This usually indicates that the

current position, as set by klseek(), is invalid.

listen()
Specifies the number of incoming connections that may be queued waiting to be accepted. This

backlog must be specified before accepting a connection on a socket. The listen() function

applies only to sockets of type SOCK_STREAM.

FORMAT

int listen(short VMS_Channel, unsigned int Backlog);

ARGUMENTS

VMS_Channel

A channel to the socket.

Backlog

The maximum length of the queue of pending connections. If a connection request arrives when

the queue is full, the request is ignored. The backlog queue length is limited to 5.

RETURNS

If listen() is successful, a value of 0 is returned. If an error occurs, a value of -1 is returned,

and a more specific message is returned in the global variables socket_errno and

vmserrno.

multinet_kernel_nlist
A special version of the UNIX 4.3BSD nlist() function that reads the symbol table to the

MultiNet kernel. Unlike the UNIX 4.3BSD kernel, the MultiNet kernel's symbol table must be

relocated before you can use klseek(), klread(), or klwrite() to examine the

networking kernel.

Many of the same kernel symbols available under 4.3BSD are also available under the MultiNet

software. Use of this interface is unsupported, as the symbol names and data types may change in

future releases of the Berkeley TCP/IP networking code and in future releases of the MultiNet

software.

To access the symbol table to the MultiNet image that is currently running, read from the file

indicated by the logical name MULTINET_NETWORK_IMAGE:.

For more information about how to use multinet_kernel_nlist(), see nlist().

nlist()
Examines the symbol table in an executable image or symbol table file.

FORMAT

int nlist(char *Filename, struct nlist nl[]);

ARGUMENTS

Filename

The file name of the executable image or symbol table file to read.

nl

An array of nlist structures. The n_name field of each element specifies the name of the

symbol to look up; the array is terminated by a null name. Each symbol is looked up in the file. If

the symbol is found, the n_type and n_value fields are filled in with the type and value of

the symbol. Otherwise, they are set to 0.

RETURNS

If successful, the nlist() function returns a 0. Otherwise, it returns a -1.

ntohl()
Swaps the byte order of a four-byte integer from network byte order to OpenVMS byte order.

This allows you to develop programs that are independent of the hardware architecture on which

they are running.

FORMAT

int ntohl(unsigned long Val);

ARGUMENTS

Val

The four-byte integer to convert to OpenVMS byte order.

RETURNS

The ntohl() function returns the byte-swapped integer that corresponds to Val. For example,

if Val is 0x01e429c0, the returned value is 0xc029e401.

ntohs()
Swaps the byte order of a two-byte integer from network byte order to OpenVMS byte order.

This allows you to develop programs that are independent of the hardware architecture on which

they are running.

FORMAT

unsigned short ntohs(unsigned short Val);

ARGUMENTS

Val

The two-byte integer to convert to OpenVMS byte order.

RETURNS

The ntohs() function returns the byte-swapped integer that corresponds to Val. For example,

if Val is 0x1700, the returned value is 0x0017.

recv()/recv_44()
Receives messages from a socket. This function is equivalent to a recvfrom() function called

with the From and FromLen arguments specified as zero. The socket_read() function is

equivalent to a recv() function called with the Flags argument specified as zero.

The length of the message received is returned as the status. If a message is too long to fit in the

supplied buffer and the socket is type SOCK_DGRAM, excess bytes are discarded.

If no messages are at the socket, the receive function waits for a message to arrive, unless the

socket is non-blocking (see socket ioctl FIONBIO). In this case, a status of -1 is returned

and the global variable socket_errno is set to EWOULDBLOCK.

The recv_44() function is the BSD 4.4 sockaddr variant of this call. This call is used

automatically when MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]IN.H is used

and the program is compiled with USE_BSD44_ENTRIES defined.

FORMAT

int recv (short VMS_Channel, char *Buffer, int Size, int Flags);

ARGUMENTS

VMS_Channel

A channel to the socket.

Buffer

The address of a buffer in which to place the data read.

Size

The length of the buffer specified by Buffer. The actual number of bytes read is returned in the

Status.

Flags

Control information that affects the recv() function. The Flags argument is formed by ORing

one or more of the following values:

#define MSG_OOB 0x1 /* process out-of-band data */

#define MSG_PEEK 0x2 /* peek at incoming message */

The MSG_OOB flag causes recv() to read any out-of-band data that has arrived on the socket.

The MSG_PEEK flag causes recv() to read the data present in the socket without removing the

data. This allows the caller to view the data, but leaves it in the socket for future recv() calls.

RETURNS

If recv() is successful, a count of the number of characters received is returned. A return value

of 0 indicates an end-of-file; that is, the connection has been closed. A return value of -1

indicates an error occurred. A more specific message is returned in the global variables

socket_errno and vmserrno.

recvfrom()recvfrom_44()
Receives messages from a socket. This function is equivalent to the recv() function, but takes

two additional arguments that allow the caller to determine the remote address from which the

message was received.

The length of the message received is returned as the status. If a message is too long to fit in the

supplied buffer and the socket is type SOCK_DGRAM, excess bytes are discarded.

If no messages are available at the socket, the receive call waits for a message to arrive, unless

the socket is non-blocking (see socket ioctl FIONBIO). In this case, a status of -1 is

returned and the global variable socket_errno is set to EWOULDBLOCK.

The recvfrom_44() function is the BSD 4.4 sockaddr variant of this call. This call is used

automatically when MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]IN.H is used

and the program is compiled with USE_BSD44_ENTRIES defined.

FORMAT

int recvfrom (short VMS_Channel, char *Buffer, int Size, int Flags,

struct sockaddr *From, unsigned int *FromLen);

ARGUMENTS

VMS_Channel

A channel to the socket.

Buffer

The address of a buffer in which to place the data read.

Size

The length of the buffer specified by Buffer. The actual number of bytes read is returned in the

Status.

Flags

Control information that affects the recvfrom() function. The Flags argument is formed by

ORing one or more of the following values:

#define MSG_OOB 0x1 /* process out-of-band data */

#define MSG_PEEK 0x2 /* peek at incoming message */

The MSG_OOB flag causes recvfrom() to read any out-of-band data that has arrived on the

socket.

The MSG_PEEK flag causes recvfrom() to read the data present in the socket without

removing the data. This allows the caller to view the data, but leaves it in the socket for future

recvfrom() calls.

From

On return, this optional argument is filled in with the address of the host that transmitted the

packet, as known to the communications layer. The exact format of the Address argument is

determined by the domain in which the communication is occurring.

FromLen

On entry, this optional argument contains the length of the space pointed to by From, in bytes.

On return, it contains the actual length, in bytes, of the address returned.

RETURNS

If recvfrom() is successful, a count of the number of characters received is returned. A return

value of 0 indicates an end-of-file condition; that is, the connection has been closed. If an error

occurs, a value of -1 is returned, and a more specific message is returned in the global variables

socket_errno and vmserrno.

recvmsg()/recvmsg_44()
Receives messages from a socket. This function is equivalent to the recvfrom() function, but

takes its arguments in a different fashion and can receive into noncontiguous buffers.

The length of the message received is returned as the status. If a message is too long to fit in the

supplied buffer and the socket is type SOCK_DGRAM, excess bytes are discarded.

If no messages are available at the socket, the receive call waits for a message to arrive, unless

the socket is non-blocking (see socket ioctl FIONBIO). In this case, a status of -1 is

returned and the global variable socket_errno is set to EWOULDBLOCK.

The recvmsg_44() function is the BSD 4.4 sockaddr variant of this call. This call is used

automatically when MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]IN.H is used

and the program is compiled with USE_BSD44_ENTRIES defined.

FORMAT

int recvmsg(short VMS_Channel, struct msghdr *Message, unsigned int

Flags);

ARGUMENTS

VMS_Channel

A channel to the socket.

Message

A pointer to a msghdr structure that describes the buffer to be received into. The access rights

portion of the structure is unused.

Flags

Control information that affects the recvmsg() function. The Flags argument is formed by

ORing one or more of the following values:

#define MSG_OOB 0x1 /* process out-of-band data */

#define MSG_PEEK 0x2 /* peek at incoming message */

The MSG_OOB flag causes recvmsg() to read any out-of-band data that has arrived on the

socket.

The MSG_PEEK flag causes recvmsg() to read the data present in the socket without

removing the data. This allows the caller to view the data, but leaves it in the socket for future

recvmsg() calls.

RETURNS

If recvmsg() is successful, a count of the number of characters received is returned. A return

value of 0 indicates an end-of-file condition; that is, the connection has been closed. If an error

occurs, a value of -1 is returned, and a more specific message is returned in the global variables

socket_errno and vmserrno.

select()
Examines the OpenVMS Channel sets whose addresses are passed in ReadFds, WriteFds,

and ExceptFds to see if some of their Channels are ready for reading, ready for writing, or

have an exceptional condition pending. On return, select() replaces the given Channel sets

with subsets consisting of the Channels that are ready for the requested operation. The total

number of ready Channels in all the sets is returned.

The select() function is only useful for NETWORK file descriptors and cannot be used for any

other OpenVMS I/O device.

The Channel sets are stored as bit fields in arrays of integers. The following macros are provided

for manipulating such Channel sets: FD_ZERO(&fdset) initializes a Channel set fdset to

the null set; FD_SET(VMS_Channel, &fdset) includes a particular Channel

VMS_Channel in fdset; FD_CLR(VMS_Channel, &fdset) removes VMS_Channel

from fdset; FD_ISSET(VMS_Channel, &fdset) is nonzero if VMS_Channel is a

member of fdset, otherwise it is zero. The behavior of these macros is undefined if a Channel

value is less than zero or greater than or equal to FD_SETSIZE * CHANNELSIZE, which is

normally at least equal to the maximum number of Channels supported by the system. Make sure

that the definition of these macros comes from the MultiNet types.h file, as the definitions

differ from the UNIX definitions.

Caution! Process Software recommends that you do not change the value of

FD_SETSIZE. However, if you must change it, make sure its value is equal to the

maximum number of channels your system can handle.

Note: The MultiNet socket library is not reentrant. If you call into it from an AST

(interrupt) routine, the results are unpredictable. The select() call must not be used

while ASTs have been disabled. If the select() call is performed with ASTs disabled,

the select() call will never return and will hang the program from which it was called.

Instances when this improper call to select() can occur are as follows:

• A call to select() is performed within an AST routine (that is, executing an AST

routine disables the delivery of other ASTs at the same (user-mode) priority).

• You have explicitly disabled AST delivery in normal (non-AST) code using the

$SETAST system service.

FORMAT

int select(int Width, fd_set *ReadFds, fd_set *WriteFds, fd_set

*ExceptFds, struct timeval *Timeout);

FD_SET (VMS_Channel, &fdset)

FD_CLR (VMS_Channel, &fdset)

FD_ISSET (VMS_Channel, &fdset)

FD_ZERO (&fdset)

ARGUMENTS

Width

The number of bits to be checked in each bit mask that represents a Channel; the Channels from

0 through Width-1 in the Channel sets are examined. Typically, width has the value returned

by getdtablesize for the maximum number of Channels.

ReadFds

A bit-mask of the Channels that select() should test for the ready for reading status. May be

specified as a NULL pointer if no Channels are of interest. Selecting true for reading on a

Channel on which a listen() call has been performed indicates that a subsequent accept()

call on that Channel will not block.

WriteFds

A bit-mask of the Channels that select() should test for the ready for writing status. May be

specified as a NULL pointer if no Channels are of interest.

ExceptFds

A bit-mask of the Channels that select() should test for exceptional conditions pending.

May be specified as a NULL pointer if no Channels are of interest. Selecting true for exception

conditions indicates that out-of-band data is present in the Channel's input buffers.

Timeout

A maximum interval to wait for the selection to complete. If Timeout is a NULL pointer, the

select blocks indefinitely. To effect a poll, the Timeout argument should be a non-NULL

pointer, pointing to a zero-valued timeval structure.

RETURNS

select() returns the number of ready Channels that are contained in the Channel sets, or -1 if

an error occurred. If the time limit expires, select() returns 0. If select() returns with an

error, the Channel sets are unmodified.

select_wake()
Wakes a process waiting in a select() call, aborting the select() operation. This function

may be called from an AST (interrupt) routine, in which case the select() call will be aborted

when the AST routine completes.

FORMAT

select_wake();

send()/send_44()
Transmits a message to another socket. This function is equivalent to a sendto() called with

the To and ToLen arguments specified as zero. The socket_write() function is equivalent

to a send() function called with Flags specified as zero. Use the send() function only

when a socket has been connected with connect(); however, you can use sendto() at any

time.

If no message space is available at the socket to hold the message to be transmitted, send()

blocks unless the socket has been placed in non-blocking I/O mode via the socket ioctl

FIONBIO. If the socket is type SOCK_DGRAM and the message is too long to pass through the

underlying protocol in a single unit, the error EMSGSIZE is returned and the message is not

transmitted.

The send_44() function is the BSD 4.4 sockaddr variant of this call. This call is used

automatically when MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]IN.H is used

and the program is compiled with USE_BSD44_ENTRIES defined.

FORMAT

int send(short VMS_Channel, char *Buffer, int Size[, int Flags]);

If Flags are not specified, then 0 (zero) is used.

ARGUMENTS

VMS_Channel

A channel to the socket.

Buffer

The address of a buffer containing the data to send.

Size

The length of the buffer specified by Buffer.

RETURNS

If the send() function is successful, the count of the number of characters sent is returned. If

an error occurs, a value of -1 is returned, and a more specific message is returned in the global

variables socket_errno and vmserrno.

sendmsg()/sendmsg_44()
Transmits a message to another socket. It is equivalent to sendto(), but takes its arguments in

a different fashion and can send noncontiguous data.

If no message space is available at the socket to hold the message to be transmitted,

sendmsg() blocks unless the socket has been placed in non-blocking I/O mode via the

socket ioctl FIONBIO. If the socket is type SOCK_DGRAM and the message is too long to

pass through the underlying protocol in a single unit, the error EMSGSIZE is returned and the

message is not transmitted.

The sendmsg_44() function is the BSD 4.4 sockaddr variant of this call. This call is used

automatically when MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]IN.H is used

and the program is compiled with USE_BSD44_ENTRIES defined.

FORMAT

int sendmsg(short VMS_Channel, struct msghdr *Message, unsigned int

Flags);

ARGUMENTS

VMS_Channel

A channel to the socket.

Message

A pointer to a msghdr structure that describes the data to be sent and the address to send it to.

The access rights portion of the structure is unused.

Flags

Control information that affects the sendto() function. The Flags argument can be zero or

the following:

#define MSG_OOB 0x1 /* process out-of-band data */

The MSG_OOB flag causes sendto() to send out-of-band data on sockets that support this

operation (such as SOCK_STREAM).

RETURNS

If the sendmsg() function is successful, the count of the number of characters sent is returned.

If an error occurs, a value of -1 is returned, and a more specific message is returned in the global

variables socket_errno and vmserrno.

sendto()/sendto_44
Transmits a message to another socket. It is equivalent to send(), but also allows the caller to

specify the address to which to send the message. The sendto() function can be used on

unconnected sockets, while send() and socket_write() cannot.

If no message space is available at the socket to hold the message to be transmitted, sendto()

blocks unless the socket has been placed in non-blocking I/O mode via the socket ioctl

FIONBIO. If the socket is type SOCK_DGRAM and the message is too long to pass through the

underlying protocol in a single unit, the error EMSGSIZE is returned and the message is not

transmitted.

The sendto_44() function is the BSD 4.4 sockaddr variant of this call. This call is used

automatically when MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]IN.H is used

and the program is compiled with USE_BSD44_ENTRIES defined.

FORMAT

int sendto(short VMS_Channel, char *Buffer, int Size, unsigned short

Flags, struct sockaddr *To, unsigned int ToLen);

ARGUMENTS

VMS_Channel

A channel to the socket.

Buffer

The address of a buffer containing the data to send.

Size

The length of the buffer specified by Buffer.

Flags

Control information that affects the sendto() function. The Flags argument can be zero or

the following:

#define MSG_OOB 0x1 /* process out-of-band data */

The MSG_OOB flag causes sendto() to send out-of-band data on sockets that support this

operation (such as SOCK_STREAM).

To

This optional argument is a pointer to the address to which the packet should be transmitted. The

exact format of the Address argument is determined by the domain in which the

communication is occurring.

ToLen

This optional argument contains the length of the address pointed to by the To argument.

RETURNS

If the sendto() function is successful, the count of the number of characters sent is returned.

If an error occurs, a value of -1 is returned, and a more specific message is returned in the global

variables socket_errno and vmserrno.

sethostent()
Initializes the host table and DNS Name Server routines. It is usually unnecessary to call this

function because the host table and Name Server routines are initialized automatically when any

of the other host table routines are called.

FORMAT

(void) sethostent(unsigned int StayOpen);

ARGUMENTS

StayOpen

Specifies whether the DNS Name Resolver should use TCP or UDP to communicate with the

DNS Name Server. A nonzero value indicates TCP, and a value of 0 (the default if

sethostent() is not called) indicates UDP.

setnetent()
Initializes the host table and DNS Name Server routines. It is usually unnecessary to call this

function because the host table and Name Server routines are initialized automatically when any

of the other host table routines are called.

FORMAT

(void) setnetent(unsigned int StayOpen);

ARGUMENTS

StayOpen

Specifies whether the DNS Name Resolver should use TCP or UDP to communicate with the

DNS Name Server. A nonzero value indicates TCP, and a value of 0 (the default if

setnetent() is not called) indicates UDP.

setprotoent()
Initializes the host table routines and sets the next protocol entry returned by getprotoent()

to be the first entry.

FORMAT

(void) setprotoent(unsigned int StayOpen);

ARGUMENTS

StayOpen

Provided only for compatibility with UNIX 4.3BSD, and is ignored by the MultiNet software.

setservent()
Initializes the host table routines and sets the next service entry returned by getservent() to

be the first entry.

FORMAT

(void) setservent(unsigned int StayOpen);

ARGUMENTS

StayOpen

Provided only for compatibility with UNIX 4.3BSD, and is ignored by the MultiNet software.

setsockopt()
Manipulates options associated with a socket. Options may exist at multiple protocol levels;

however, they are always present at the uppermost socket level.

When manipulating socket options, you must specify the level at which the option resides and

the name of the option. To manipulate options at the socket level, specify Level as

SOL_SOCKET. To manipulate options at any other level, specify the protocol number of the

appropriate protocol controlling the option. For example, to indicate that an option is to be

interpreted by the TCP protocol, set Level to the protocol number of TCP; see

getprotobyname().

OptName and any specified options are passed without modification to the appropriate protocol

module for interpretation. The include file

multinet_root:[multinet.include.sys]socket.h contains definitions for

socket-level options. Options at other protocol levels vary in format and name.

FORMAT

int setsockopt(short VMS_Channel, unsigned int Level, unsigned int

OptName, unsigned int OptVal, char *OptLen);

ARGUMENTS

VMS_Channel

A channel to the socket.

Level

The protocol level at which the option is to be manipulated. Level can be specified as

SOL_SOCKET, or a protocol number as returned by getprotobyname().

OptName

The option that is to be manipulated.

OptVal

A pointer to a buffer that contains the new value of the option. The format of this buffer depends

on the option requested.

OptLen

The length of the buffer pointed to by OptVal.

RETURNS

If the setsockopt() is successful, a value of 0 is returned. If an error occurs, a value of -1 is

returned, and a more specific message is returned in the global variables socket_errno and

vmserrno.

shutdown()
Shuts down all or part of a full-duplex connection on the socket associated with VMS_Channel.

This function is usually used to signal an end-of-file to the peer without closing the socket,

which would prevent further data from being received.

FORMAT

int shutdown(short VMS_Channel, unsigned int How);

ARGUMENTS

VMS_Channel

A channel to the socket.

How

Controls which part of the full-duplex connection to shut down. If How is 0, further receive

operations are disallowed. If How is 1, further send operations are disallowed. If How is 2, further

send and receive operations are disallowed.

RETURNS

If shutdown() is successful, a value of 0 is returned. If an error occurs, a value of -1 is

returned, and a more specific error message is returned in the global variables socket_errno

and vmserrno.

socket()
Creates an end point for communication and returns an OpenVMS channel that describes the end

point.

FORMAT

short socket(unsigned int Address_Family, unsigned int Type, unsigned

int Protocol);

ARGUMENTS

Address_Family

An address family with which addresses specified in later operations using the socket should be

interpreted. The AF_INET format is currently supported; any additional supported formats will

be defined in the include file multinet_root:[multinet.include.sys]socket.h:

Type

The semantics of communication using the created socket. The following types are currently

defined:

• SOCK_STREAM

• SOCK_DGRAM

• SOCK_RAW

A SOCK_STREAM socket provides a sequenced, reliable, two-way connection-oriented byte

stream with an out-of-band data transmission mechanism. A SOCK_DGRAM socket supports

communication by connectionless, unreliable messages of a fixed (typically small) maximum

length. SOCK_RAW sockets provide access to internal network interfaces. The type SOCK_RAW

is available only to users with SYSPRV privilege.

The Type argument, together with the Address_Family argument, specifies the protocol to

be used. For example, a socket created with AF_INET and SOCK_STREAM is a TCP socket, and

a socket created with AF_INET and SOCK_DGRAM is a UDP socket.

Protocol

A particular protocol to be used with the socket. Normally, only a single protocol exists to

support a particular socket type using a given address format. However, it is possible that many

protocols may exist, in which case a particular protocol must be specified by Protocol. The

protocol number to use depends on the communication domain in which communication will

take place.

For TCP and UDP sockets, the protocol number MUST be specified as 0. For SOCK_RAW

sockets, the protocol number should be the value returned by getprotobyname().

RETURNS

If the socket() is successful, an OpenVMS channel is returned. If an error occurs, a value of -

1 is returned, and a more specific error message is returned in the global variables

socket_errno and vmserrno.

socket_close()
Deassigns the OpenVMS channel from the MultiNet INET: device. When the last channel

assigned to the device is deassigned, the device and attached socket are deleted.

If the SO_LINGER socket option is set and data remains in the socket's output queue,

socket_close() deletes only the device. The attached socket remains in the system until the

data is sent, after which it is deleted. Once socket_close() is called, there is no way to

reference this socket.

Normally, channels are automatically deassigned at image exit. However, because there is a limit

on the number of open channels per process, the socket_close() function is necessary for

programs that deal with many connections.

FORMAT

int socket_close(short VMS_Channel);

ARGUMENTS

VMS_Channel

A channel to the socket to close.

RETURNS

If the socket_close() is successful, a value of 0 is returned. If an error occurs, a value of -1

is returned, and a more specific error message is returned in the global variables

socket_errno and vmserrno.

socket_ioctl()
Performs a variety of functions on the network. In particular, it manipulates socket

characteristics, routing tables, ARP tables, and interface characteristics. A socket_ioctl()

request has encoded in it whether the argument is an input or output parameter, and the size of

the argument, in bytes. Macro and define statements used in specifying a socket_ioctl()

request are located in the file multinet_root:[multinet.include.sys]ioctl.h.

FORMAT

int socket_ioctl(short VMS_Channel, unsigned int Request, char *ArgP);

ARGUMENTS

VMS_Channel

A channel to the socket.

Request

Which socket_ioctl() function to perform.

ArgP

A pointer to a buffer whose format and function depend on the Request specified.

RETURNS

If the socket_ioctl() is successful, a value of 0 is returned. If an error occurs, a value of -1

is returned, and a more specific error message is returned in the global variables

socket_errno and vmserrno.

For a list of the socket_ioctl() functions supported by MultiNet, see the following pages.

socket ioctl FIONBIO
Controls nonblocking I/O on a socket. If nonblocking I/O is enabled and another function is

called that would have to wait for a connection, for data to arrive, or for data to be transmitted,

the function completes with a -1 error return, and the global variable socket_errno is set to

EWOULDBLOCK.

FORMAT

int socket_ioctl(VMS_Channel, FIONBIO, unsigned int *Enable);

ARGUMENTS

Enable

A pointer to an integer that specifies whether nonblocking I/O is enabled or disabled. A value of

1 enables nonblocking I/O, and a value of 0 disables nonblocking I/O. By default, nonblocking

I/O is disabled when a socket is created.

socket ioctl FIONREAD
Retrieves the number of bytes waiting to be read. A return of 0 indicates that no data is buffered.

FORMAT

int socket_ioctl(VMS_Channel, FIONREAD, unsigned int *Count);

ARGUMENTS

Count

A pointer to an integer buffer that will receive a count of the number of characters waiting to be

read.

socket ioctl SIOCADDRT
Adds routing information to the network routing tables. This function does not modify the socket

itself, but rather modifies the operation of the network in general. It does not matter what the

state of the socket is. Normally, to modify Internet routing tables, you use a socket created with

the AF_INET and SOCK_DGRAM arguments.

FORMAT

int socket_ioctl(VMS_Channel, SIOCADDRT, struct rtentry *Route);

ARGUMENTS

Route

A pointer to the address of a rtentry structure that describes the route to be added. The

rtentry structure is defined in

multinet_root:[multinet.include.net]route.h as follows:

struct rtentry

{

 u_long rt_hash;

 struct sockaddr rt_dst;

 struct sockaddr rt_gateway;

 short rt_flags;

 short rt_refcnt;

 u_long rt_use;

 struct ifnet *rt_ifp;

};

Field Description

rt_hash, rt_refcnt,

rt_use, and rt_ifp

Are ignored by SIOCADDRT and should be set to zero.

rt_dst Specifies the address of the destination host or network.

rt_gateway Specifies the address of the local gateway to this host or network.

rt_flags Specifies one or more of the following flags that affect a routing

entry:

#define RTF_UP 0x1 /* route useable */

#define RTF_GATEWAY 0x2 /* destination is a

gateway */

#define RTF_HOST 0x4 /* host entry (net

otherwise)*/

RTF_UP - Indicates that the route is usable. It should always be

specified.

RTF_GATEWAY - Indicates that the next hop to the destination is a

gateway, so that the output routines know to address the gateway

rather than the destination directly.

RTF_HOST - Indicates that the address specified in rt_dst is an

Internet host, rather than an Internet network (the default).

socket ioctl SIOCDELRT
Deletes routing information from the network routing tables. This function does not modify the

socket itself, but rather modifies the operation of the network in general. It does not matter what

the state of the socket is. Normally, to modify Internet routing tables, you use a socket created

with the AF_INET and SOCK_DGRAM arguments.

It is impossible to obtain a list of the routes installed via socket_ioctl(). To delete a route,

you must either know it already exists or use multinet_kernel_nlist() to read the

routing tables directly from the networking kernel.

FORMAT

int socket_ioctl(VMS_Channel, SIOCDELRT, struct rtentry *Route);

ARGUMENTS

Route

A pointer to the address of a rtentry structure that describes the route to be deleted. The

rtentry structure is defined in

multinet_root:[multinet.include.net]route.h as follows:

struct rtentry

{

 u_long rt_hash;

 struct sockaddr rt_dst;

 struct sockaddr rt_gateway;

 short rt_flags;

 short rt_refcnt;

 u_long rt_use;

 struct ifnet *rt_ifp;

};

Field Description

rt_hash, rt_refcnt,

rt_use, and rt_ifp

Are ignored by SIOCDELRT and should be set to zero.

rt_dst Specifies the address of the destination host or network.

rt_gateway Specifies the address of the local gateway to this host or network.

rt_flags Specifies one or more of the following flags that affect a routing

entry:

#define RTF_UP 0x1 /* route useable */

#define RTF_GATEWAY 0x2 /* destination is a

gateway */

#define RTF_HOST 0x4 /* host entry (net

otherwise) */

RTF_UP - Indicates that the route is usable. It should always be

specified.

RTF_GATEWAY - Indicates that the next hop to the destination is a

gateway, so that the output routines know to address the gateway

rather than the destination directly.

RTF_HOST - Indicates that the address specified in rt_dst is an

Internet host, rather than an Internet network (the default).

socket ioctl SIOCATMARK
Retrieves an indication as to whether the next byte in the stream coincides with an out-of-band or

URGENT data mark.

FORMAT

int socket_ioctl(VMS_Channel, SIOCATMARK, unsigned int *AtMark);

ARGUMENTS

AtMark

A pointer to an integer buffer that will receive the indication. The buffer is set to 0 if the socket

is not at the out-of-band mark. It is set to nonzero if the socket is at the out-of-band mark.

socket ioctl SIOCDARP
Deletes an entry from the ARP table. This format is compatible with the UNIX 4.3BSD function

of the same name.

FORMAT

int socket_ioctl(VMS_Channel, SIOCDARP, struct arpreq *ARP_Req);

ARGUMENTS

ARP_Req

The address of an arpreq structure that contains the protocol address and the hardware address.

The arpreq structure is defined in

multinet_root:[multinet.include.net]if_arp.h as follows:

struct arpreq

{

 struct sockaddr arp_pa; /* protocol address */

 struct sockaddr arp_ha; /* hardware address */

 int arp_flags; /* flags */

};

/* arp_flags and at_flags field values */

#define ATF_INUSE 0x01 /* entry in use */

#define ATF_COM 0x02 /* completed entry (enaddr valid) */

#define ATF_PERM 0x04 /* permanent entry */

#define ATF_PUBL 0x08 /* publish entry (respond for other

host) */

#define ATF_USETRAILERS 0x10 /* has requested trailers */

#define ATF_PROXY 0x20 /* Do PROXY arp */

The arp_pa field is a sockaddr field that is set to the IP address the remote interface uses.

The arp_ha.sa_data field is 6 bytes of binary data that represents the Ethernet address of

the remote interface.

socket ioctl SIOCGARP
Displays an entry in the ARP table. This function is compatible with the UNIX 4.3BSD function

of the same name.

FORMAT

int socket_ioctl(VMS_Channel, SIOCGARP, struct arpreq *ARP_Req);

ARGUMENTS

ARP_Req

The address of an arpreq structure that contains the protocol address and the hardware address.

The arpreq structure is defined in

multinet_root:[multinet.include.net]if_arp.h as follows:

struct arpreq

{

 struct sockaddr arp_pa; /* protocol address */

 struct sockaddr arp_ha; /* hardware address */

 int arp_flags; /* flags */

};

/* arp_flags and at_flags field values */

#define ATF_INUSE 0x01 /* entry in use */

#define ATF_COM 0x02 /* completed entry (enaddr valid) */

#define ATF_PERM 0x04 /* permanent entry */

#define ATF_PUBL 0x08 /* publish entry (respond for other

host) */

#define ATF_USETRAILERS 0x10 /* has requested trailers */

#define ATF_PROXY 0x20 /* Do PROXY arp */

The arp_pa field is a sockaddr field that is set to the ip address the remote interface uses.

The arp_ha.sa_data field is 6 bytes of binary data that represents the Ethernet address of

the remote interface.

socket ioctl SIOCSARP
Adds an entry to the ARP table. This function is compatible with the UNIX 4.3BSD function of

the same name.

FORMAT

int socket_ioctl(VMS_Channel, SIOCSARP, struct arpreq *ARP_Req);

ARGUMENTS

ARP_Req

The address of an arpreq structure that contains the protocol address and the hardware address.

The arpreq structure is defined in

multinet_root:[multinet.include.net]if_arp.h as follows:

struct arpreq

{

 struct sockaddr arp_pa; /* protocol address */

 struct sockaddr arp_ha; /* hardware address */

 int arp_flags; /* flags */

};

/* arp_flags and at_flags field values */

#define ATF_INUSE 0x01 /* entry in use */

#define ATF_COM 0x02 /* completed entry (enaddr valid) */

#define ATF_PERM 0x04 /* permanent entry */

#define ATF_PUBL 0x08 /* publish entry (respond for other

host) */

#define ATF_USETRAILERS 0x10 /* has requested trailers */

#define ATF_PROXY 0x20 /* Do PROXY arp */

The arp_pa field is a sockaddr field that is set to the IP address the remote interface uses.

The arp_ha.sa_data field is 6 bytes of binary data that represents the Ethernet address of

the remote interface.

socket ioctl SIOCGIFADDR
Retrieves the Internet address of a network interface. This function does not modify the socket

itself, but rather examines the operation of the network in general. It does not matter what the

state of the socket is. Normally, to examine Internet addresses, you use a socket created with the

AF_INET and SOCK_DGRAM arguments.

FORMAT

int socket_ioctl(VMS_Channel, SIOCGIFADDR, struct ifreq

*Interface_Req);

ARGUMENTS

Interface_Req

The address of an ifreq structure that describes the interface from which to retrieve the

address. The ifreq structure is defined in

multinet_root:[multinet.include.net]if.h as follows:

struct ifreq

{

 char ifr_name[16];

 struct sockaddr ifr_addr;

};

The ifr_name field is a null-terminated string specifying the name of the interface to be

examined, such as se0.

The ifr_addr field is a sockaddr structure that is set to the address of the interface.

socket ioctl SIOCSIFADDR
Sets the Internet address of a network interface. Normally, this is done using the MULTINET

SET/INTERFACE command. This function does not modify the socket itself, but rather

modifies the operation of the network in general. It does not matter what the state of the socket

is. Normally, to modify Internet addresses, you use a socket created with the AF_INET and

SOCK_DGRAM arguments.

FORMAT

int socket_ioctl(VMS_Channel, SIOCSIFADDR, struct ifreq

*Interface_Req);

ARGUMENTS

Interface_Req

The address of an ifreq structure that describes the address to be set. The ifreq structure is

defined in multinet_root:[multinet.include.net]if.h as follows:

struct ifreq

{

 char ifr_name[16];

 struct sockaddr ifr_addr;

};

The ifr_name field is a null-terminated string specifying the name of the interface to be

modified, such as se0.

The ifr_addr field is a sockaddr structure specifying the address to be set.

socket ioctl SIOCGIFBRDADDR
Retrieves the Internet broadcast address of a network interface. This function does not modify

the socket itself, but rather examines the operation of the network in general. It does not matter

what the state of the socket is. Normally, to examine Internet broadcast addresses, you use a

socket created with the AF_INET and SOCK_DGRAM arguments.

FORMAT

int socket_ioctl(VMS_Channel, SIOCGIFBRDADDR, struct ifreq

*Interface_Req);

ARGUMENTS

Interface_Req

The address of an ifreq structure that describes the interface from which to retrieve the

broadcast address. The ifreq structure is defined in

multinet_root:[multinet.include.net]if.h as follows:

struct ifreq

{

 char ifr_name[16];

 struct sockaddr ifr_broadaddr;

};

The ifr_name field is a null-terminated string specifying the name of the interface to be

examined, such as se0.

The ifr_broadaddr field is a sockaddr structure that is set to the broadcast address of the

interface.

socket ioctl SIOCSIFBRDADDR
Sets the Internet broadcast address of a network interface. Normally, this is done using the

MULTINET SET/INTERFACE command. This function does not modify the socket itself, but

rather modifies the operation of the network in general. It does not matter what the state of the

socket is. Normally, to modify Internet broadcast addresses, you use a socket created with the

AF_INET and SOCK_DGRAM arguments.

FORMAT

int socket_ioctl(VMS_Channel, SIOCSIFBRDADDR, struct ifreq

*Interface_Req);

ARGUMENTS

Interface_Req

The address of an ifreq structure that describes the interface on which to set the broadcast

address. The ifreq structure is defined in

multinet_root:[multinet.include.net]if.h as follows:

struct ifreq

{

 char ifr_name[16];

 struct sockaddr ifr_broadaddr;

};

The ifr_name field is a null-terminated string specifying the name of the interface to be

modified, such as se0.

The ifr_broadaddr field is a sockaddr structure specifying the broadcast address to be

set.

socket ioctl SIOCGIFCONF
Retrieves the list of network interfaces from the networking kernel for further examination by the

other SIOCGxxxx functions. This function does not modify the socket itself, but rather

examines the operation of the network in general. It does not matter what the state of the socket

is. Normally, to examine the network configuration, you use a socket created with the AF_INET

and SOCK_DGRAM arguments.

FORMAT

int socket_ioctl(VMS_Channel, SIOCGIFCONF, struct ifconf

*Interface_Config);

ARGUMENTS

Interface_Config

The address of an ifconf structure describing a buffer in which to return the interface

configuration. The ifconf structure is defined in

multinet_root:[multinet.include.net]if.h as follows:

struct ifconf

{

 int ifc_len; /* size of buffer */

 union

 {

 caddr_t ifcu_buf;

 struct ifreq *ifcu_req;

 } ifc_ifcu;

 #define ifc_buf ifc_ifcu.ifcu_buf /* buffer address */

 #define ifc_req ifc_ifcu.ifcu_req /* array of structures */

};

The ifc_len field should be set to the length of the buffer specified by ifc_buf. Upon

return, the ifc_len field contains the actual number of bytes written into the buffer.

The ifc_buf field should be set to a buffer large enough to hold the entire network

configuration. Upon return, if VMS_Channel is an AF_INET socket the ifc_req buffer

contains an array of ifreq structures, one for each interface and address. If VMS_Channel is

an AF_INET6 socket, then the ifc_req buffer contains an array of ifreq6 structures, one

for each address present. The array of ifreq6 structures may contain both IPv4 and IPv6

addresses.

The following short fragment of C-language code prints all Internet family interfaces and shows

how to decode the ifconf structure:

n = ifc.ifc_len/sizeof(struct ifreq);

for (ifr = ifc.ifc_req; n > 0; n--, ifr++)

{

 if (ifr->ifr_addr.sa_family != AF_INET)

 continue;

 printf("%s\n",ifr->ifr_name);

}

The ifreq6 structure is defined in multinet_root:[multinet.include.net]if.h

as follows:

struct ifreq6

{

 char ifr_name[16];

 struct sockaddr_in6 ifr_addr;

};

socket ioctl SIOCGIFDSTADDR
Retrieves the destination Internet address of a point-to-point network interface. This function

does not modify the socket itself, but rather examines the operation of the network in general. It

does not matter what the state of the socket is. Normally, to examine Internet addresses, you use

a socket created with the AF_INET and SOCK_DGRAM arguments.

FORMAT

int socket_ioctl(VMS_Channel, SIOCGIFDSTADDR, struct ifreq

*Interface_Req);

ARGUMENTS

Interface_Req

The address of an ifreq structure that describes the interface from which to retrieve the

destination address. The ifreq structure is defined in

multinet_root:[multinet.include.net]if.h as follows:

struct ifreq

{

 char ifr_name[16];

 struct sockaddr ifr_dstaddr;

};

The ifr_name field is a null-terminated string specifying the name of the interface to be

examined, such as se0.

The ifr_dstaddr field is a sockaddr structure that is set to the destination address of the

interface.

socket ioctl SIOCSIFDSTADDR
Sets the destination Internet address of a point-to-point network interface. Normally, this is done

using the MULTINET SET/INTERFACE command. This function does not modify the socket

itself, but rather modifies the operation of the network in general. It does not matter what the

state of the socket is. Normally, to modify Internet addresses, you use a socket created with the

AF_INET and SOCK_DGRAM arguments.

FORMAT

int socket_ioctl(VMS_Channel, SIOCSIFDSTADDR, struct ifreq

*Interface_Req);

ARGUMENTS

Interface_Req

The address of an ifreq structure that describes the interface on which to set the destination

address. The ifreq structure is defined in

multinet_root:[multinet.include.net]if.h as follows:

struct ifreq

{

 char ifr_name[16];

 struct sockaddr ifr_dstaddr;

};

The ifr_name field is a null-terminated string specifying the name of the interface to be

modified, such as se0.

The ifr_dstaddr field is a sockaddr structure specifying the destination address to be set.

socket ioctl SIOCGIFFLAGS
Retrieves various control flags from a network interface. This function does not modify the

socket itself, but rather examines the operation of the network in general. It does not matter what

the state of the socket is. Normally, to examine interface flags, you use a socket created with the

AF_INET and SOCK_DGRAM arguments.

FORMAT

int socket_ioctl(VMS_Channel, SIOCSIFFLAGS, struct ifreq

*Interface_Req);

ARGUMENTS

Interface_Req

The address of an ifreq structure that describes the state of the flags. The ifreq structure is

defined in multinet_root:[multinet.include.net]if.h as follows:

struct ifreq

{

 char ifr_name[16];

 short ifr_flags;

 char Xfill[14];

};

The ifr_name field is a null-terminated string specifying the name of the interface to be

examined, such as se0.

The ifr_flags field receives the state of the interface flags. The following flag bits are valid:

#define IFF_UP 0x1 /* interface is up */

#define IFF_BROADCAST 0x2 /* broadcast address valid */

#define IFF_DEBUG 0x4 /* turn on debugging */

#define IFF_LOOPBACK 0x8 /* is a loopback net */

#define IFF_POINTOPOINT 0x10 /* interface is ptp link */

#define IFF_NOTRAILERS 0x20 /* avoid use of trailers */

#define IFF_RUNNING 0x40 /* resources allocated */

#define IFF_NOARP 0x80 /* no ARP protocol */

socket ioctl SIOCSIFFLAGS
Sets various control flags on a network interface. Normally this is done using the MULTINET

SET/INTERFACE command.

To modify the state of a flag, first call the SIOCGIFFLAGS socket_ioctl() function,

change whichever bits are necessary, and then reset the flags by calling SIOCSIFFLAGS

socket_ioctl().

This function does not modify the socket itself, but rather modifies the operation of the network

in general. It does not matter what the state of the socket is. Normally, to modify interface flags,

you use a socket created with the AF_INET and SOCK_DGRAM arguments.

FORMAT

int socket_ioctl(VMS_Channel, SIOCSIFFLAGS, struct ifreq

*Interface_Req);

ARGUMENTS

Interface_Req

The address of an ifreq structure that describes the new state of the flags. The ifreq

structure is defined in multinet_root:[multinet.include.net]if.h as follows:

struct ifreq

{

 char ifr_name[16];

 short ifr_flags;

 char Xfill[14];

};

The ifr_name field is a null-terminated string specifying the name of the interface to be

modified, such as se0.

The ifr_flags field specifies the new state of the interface flags. The following flags can be

set or cleared:

#define IFF_UP 0x1 /* interface is up */

#define IFF_DEBUG 0x4 /* turn on debugging */

#define IFF_NOTRAILERS 0x20 /* avoid use of trailers */

#define IFF_NOAR 0x80 /* no ARP protocol */

socket ioctl SIOCGIFMETRIC
Retrieves the network interface metric, or cost. The interface metric is ignored by the MultiNet

software, and is not documented further here.

socket ioctl SIOCSIFMETRIC
Sets the network interface metric, or cost. The interface metric is ignored by the MultiNet

software, and is not documented further here.

socket ioctl SIOCGIFNETMASK
Retrieves the Internet address mask of a network interface. This function does not modify the

socket itself, but rather examines the operation of the network in general. It does not matter what

the state of the socket is. Normally, to examine Internet address masks, you use a socket created

with the AF_INET and SOCK_DGRAM arguments.

FORMAT

int socket_ioctl(VMS_Channel, SIOCGIFNETMASK, struct ifreq

*Interface_Req);

ARGUMENTS

Interface_Req

The address of an ifreq structure that describes the interface from which to retrieve the address

mask. The ifreq structure is defined in

multinet_root:[multinet.include.net]if.h as follows:

struct ifreq

{

 char ifr_name[16];

 struct sockaddr ifr_addr;

};

The ifr_name field is a null-terminated string specifying the name of the interface to be

examined, such as se0.

The ifr_addr field is a sockaddr structure that is set to the address mask of the interface.

socket ioctl SIOCSIFNETMASK
Sets the Internet address mask of a network interface. Normally, this is done using the

MULTINET SET/INTERFACE command. This function does not modify the socket itself, but

rather modifies the operation of the network in general. It does not matter what the state of the

socket is. Normally, to modify Internet address masks, you use a socket created with the

AF_INET and SOCK_DGRAM arguments.

FORMAT

int socket_ioctl(VMS_Channel, SIOCSIFNETMASK, struct ifreq

*Interface_Req);

ARGUMENTS

Interface_Req

The address of an ifreq structure that describes the interface on which to set the address mask.

The ifreq structure is defined in multinet_root:[multinet.include.net]if.h

as follows:

struct ifreq

{

 char ifr_name[16];

 struct sockaddr ifr_addr;

};

The ifr_name field is a null-terminated string specifying the name of the interface to be

modified, such as se0.

The ifr_addr field is a sockaddr structure specifying the address mask to be set.

socket option SO_BROADCAST
Enables transmission of broadcast messages on the specified socket.

FORMAT

int setsockopt(VMS_Channel, SOL_SOCKET, SO_BROADCAST, struct ifreq

*On, sizeof(*On));

ARGUMENTS

On

A pointer to an integer buffer that specifies whether the transmission of broadcast messages is

enabled or disabled. A nonzero value enables the transmission of broadcast messages, a value of

0 disables the transmission.

socket option SO_DEBUG
Controls the recording of debugging information by the MultiNet networking kernel.

FORMAT

int setsockopt(VMS_Channel, SOL_SOCKET, SO_DEBUG, unsigned int *On,

sizeof(*On));

ARGUMENTS

On

A pointer to an integer buffer that specifies whether debugging is enabled or disabled. A nonzero

value enables debugging. A value of 0 disables debugging.

socket option SO_DONTROUTE
Indicates that outgoing messages bypass the standard routing facilities. Instead, messages are

directed to the appropriate network interface, as determined by the network portion of the

destination address.

FORMAT

int setsockopt(VMS_Channel, SOL_SOCKET, SO_DONTROUTE, unsigned int

*On, sizeof(*On));

ARGUMENTS

On

A pointer to an integer buffer that specifies whether SO_DONTROUTE is enabled or disabled. A

nonzero value enables SO_DONTROUTE. A value of 0 disables SO_DONTROUTE.

socket option SO_ERROR
Retrieves and clears any error status pending on the socket. This function is only valid with the

getsockopt() function.

FORMAT

int getsockopt(VMS_Channel, SOL_SOCKET, SO_ERROR, unsigned int *Value,

unsigned int *Length);

ARGUMENTS

Value

A pointer to an integer buffer that receives the value of errno (the error number) that is

pending on the socket.

Length

On entry, contains the length of the space pointed to by Value, in bytes. On return, it contains

the actual length, in bytes, of the Value returned.

socket option SO_KEEPALIVE
Enables periodic transmission of messages on an idle connected socket. If the connected party

fails to respond to these messages, the connection is considered broken and processes using the

socket are notified via an error returned by a read.

Keepalives are a questionable use of the network in that they cause idle connections to add

network traffic by constantly probing their peer. Avoid keepalives if another mechanism is

available to detect the loss of a peer, such as timeouts.

FORMAT

int setsockopt(VMS_Channel, SOL_SOCKET, SO_KEEPALIVE, unsigned int

*On, sizeof(*On));

ARGUMENTS

On

A pointer to an integer buffer that specifies whether keepalives are enabled or disabled. A

nonzero value enables keepalives. A value of 0 disables keepalives.

socket option SO_LINGER
Controls the action taken when unsent messages are queued on a socket and a

socket_close() function call is issued. If the socket promises reliable delivery of data and

SO_LINGER is set, socket_close() deletes only the device. The attached socket remains in

the system until this data is sent or until it determines that it cannot deliver the information (a

timeout period, termed the linger interval, is specified in the setsockopt() function). Only

then is the attached socket deleted.

FORMAT

int setsockopt(VMS_Channel, SOL_SOCKET, SO_LINGER, struct linger

*Linger, sizeof(*Linger));

ARGUMENTS

Linger

A pointer to a structure describing whether the SO_LINGER option is enabled or disabled.

struct linger

{

 int l_onoff; /* option on/off */

 int l_linger; /* linger time */

};

When the l_onoff field is nonzero, SO_LINGER is enabled. When it is 0, SO_LINGER is

disabled. If SO_LINGER is being enabled, the l_linger field specifies the timeout period, in

seconds.

socket option SO_OOBINLINE
Enables receipt of out-of-band data along with the regular data stream. You can use this option

instead of specifying the MSG_OOB flag to the recv() or recvfrom() functions.

FORMAT

int setsockopt(VMS_Channel, SOL_SOCKET, SO_OOBINLINE, unsigned int

*On, sizeof(*On));

ARGUMENTS

On

A pointer to an integer buffer that specifies whether the SO_OOBINLINE option is enabled or

disabled. A nonzero value enables SO_OOBINLINE. A value of 0 disables SO_OOBINLINE.

socket option SO_RCVBUF
Specifies the amount of buffer space that can be used to buffer received data on the socket. The

default value is 6144. You can specify this option to raise the TCP window size, increase the

maximum size of UDP datagrams that can be received, or increase buffer space in general.

FORMAT

int setsockopt(VMS_Channel, SOL_SOCKET, SO_RCVBUF, unsigned int

*Value, sizeof(*Value));

ARGUMENTS

Value

A pointer to an integer buffer that specifies the new size of the receive buffer, in bytes.

socket option SO_RCVLOWAT
This option exists only for compatibility with UNIX 4.3BSD and has no effect on MultiNet

sockets.

socket option SO_RCVTIMEO
This option exists only for compatibility with UNIX 4.3BSD and has no effect on MultiNet

sockets.

socket option SO_REUSEADDR
Specifies how to reuse local addresses.

When SO_REUSEADDR is enabled, bind() allows a local port number to be used even if

sockets using the same local port number already exist, provided that these sockets are connected

to a unique remote port. This option allows a server to bind() to a socket to listen for new

connections, even if connections are already in progress on this port.

FORMAT

int setsockopt(VMS_Channel, SOL_SOCKET, SO_REUSEADDR, unsigned int

*On, sizeof(*On));

ARGUMENTS

On

A pointer to an integer buffer that specifies whether SO_REUSEADDR is enabled or disabled. A

nonzero value enables SO_REUSEADDR. A value of 0 disables SO_REUSEADDR.

socket option SO_SNDBUF
Specifies the amount of buffer space that can be used to buffer transmitted data on the socket.

The default value is 6144 for TCP and 2048 for UDP. You can specify this option to raise the

TCP window size, increase the maximum size of UDP datagrams that can be transmitted, or

increase buffer space in general.

FORMAT

int setsockopt(VMS_Channel, SOL_SOCKET, SO_SNDBUF, unsigned int

*Value, sizeof(*Value));

ARGUMENTS

Value

A pointer to an integer buffer that specifies the new size of the transmit buffer, in bytes.

socket option SO_SNDLOWAT
This option exists only for compatibility with UNIX 4.3BSD and has no effect on MultiNet

sockets.

socket option SO_SNDTIMEO
This option exists only for compatibility with UNIX 4.3BSD and has no effect on MultiNet

sockets.

socket option SO_TYPE
Retrieves the socket type (such as SOCK_DGRAM or SOCK_STREAM). This function is only

valid with the getsockopt() function.

FORMAT

unsigned int *getsockopt(VMS_Channel, SOL_SOCKET, SO_TYPE,

sizeof(*Value));

Returns

A pointer to an integer buffer that receives the socket type.

socket option TCP_KEEPALIVE
Lets you specify how long an idle socket remains open if the SO_KEEPALIVE option is

enabled.

If SO_KEEPALIVE is enabled, TCP_KEEPALIVE lets you specify:

Idle time The amount of time a TCP socket should remain idle before sending the first

keepalive packet.

Probe

interval

The amount of time between keepalive packets.

Probe count The number of keepalive packets to be sent before the connection is closed.

This feature is available to both the INETDRIVER and the UCXDRIVER, although it is usually

accessed through the UCXDRIVER.

FORMAT

int setsockopt(VMS_Channel, IPPROTO_TCP, TCP_KEEPALIVE, struct

tcp_keepalive *keepalive, sizeof(struct tcp_keepalive));

ARGUMENTS

Keepalive

A pointer to a structure specifying the keepalive parameter values idle_time,

probe_intvl, and probe_count.

The structure TCP_KEEPALIVE definition can be found in the include file TCP.H, as follows:

struct tcp_keepalive

{

 int idle_time; /*Time before first probe */

 int probe_intvl; /*Time between probes */

 int probe_count; /*Number of probes before closing connection */

};

The idle_time and probe_intvl values are specified in seconds; probe_count is the

number of probes to send before closing the connection.

The minimum value for idle_time is 75 seconds. If a value less than 75 is specified, 75 is

used.

If a value of 0 (zero) is specified for any of the entries in the structure, the current value is

retained.

Note: The system default values are an idle_time value of 120 minutes, a

probe_intvl value of 75 seconds, and a probe_count value of 8.

socket option TCP_NODELAY
Disables the Nagle algorithm (RFC 896) which causes TCP to have, at most, one outstanding

unacknowledged small segment. By default, the Nagle algorithm is enabled, delaying small

segments of output data up to 200 ms so that they can be packaged into larger segments. If you

enable TCP_NODELAY, TCP sends small segments as soon as possible, without waiting for

acknowledgments from the receiver or for the 200 ms TCP fast timer to expire.

FORMAT

int setsockopt(VMS_Channel, IPPROTO_TCP, TCP_NODELAY, unsigned int

*On, sizeof(*On));

ARGUMENTS

On

A pointer to an integer buffer that specifies whether the TCP_NODELAY option is enabled or

disabled. A value of 0 disables TCP_NODELAY.

socket_perror()
Formats and prints the error code that is placed in the global variables socket_errno and

vmserrno when an error occurs in one of the other socket functions. The error message is

printed on the OpenVMS equivalent to the UNIX stdout device (normally SYS$OUTPUT),

and is prefixed by the specified string.

A typical use of socket_perror() might be the following:

if (connect(s, &sin, sizeof(sin)) < 0)

{

 socket_perror("connect failed");

 exit(1);

}

FORMAT

(void) socket_perror(char *String);

ARGUMENTS

String

A C-language string with information about the last call to fail. This is printed as a prefix to the

error message.

socket_read()
Reads messages from a socket. See also recv() and recvfrom(). This function is equivalent

to a recv() function called with Flags specified as zero. The length of the message received

is returned as the status. If a message is too long to fit in the supplied buffer and the socket is

type SOCK_DGRAM, excess bytes are discarded.

If no messages are available at the socket, the receive call waits for a message to arrive, unless

the socket is non-blocking (see socket_ioctl()). In this case, a status of -1 is returned, and

the global variable socket_errno is set to EWOULDBLOCK.

FORMAT

int socket_read (short VMS_Channel, char *Buffer, int Size);

ARGUMENTS

VMS_Channel

A channel to the socket.

Buffer

The address of a buffer into which to place the data read.

Size

The length of the buffer specified by Buffer. The actual number of bytes read is returned in the

Status.

RETURNS

If the socket_read() routine is successful, the count of the number of characters received is

returned. A return value of 0 indicates an end-of-file condition; that is, the connection has been

closed. If an error occurs, a value of -1 is returned, and a more specific message is returned in the

global variables socket_errno and vmserrno.

socket_write()
Writes a message to another socket. This function is equivalent to a send() function called

with Flags specified as zero.

This function can be used only when a socket has been connected with connect().

If no message space is available at the socket to hold the message to be transmitted,

socket_write() blocks unless the socket has been placed in non-blocking I/O mode via the

socket ioctl FIONBIO. If the socket is type SOCK_DGRAM and the message is too long to

pass through the underlying protocol in a single unit, the error EMSGSIZE is returned and the

message is not transmitted.

FORMAT

int socket_write (short VMS_Channel, char *Buffer, int Size);

ARGUMENTS

VMS_Channel

A channel to the socket.

Buffer

The address of a buffer containing the data to send.

Size

The length of the buffer specified by Buffer.

RETURNS

If the socket_write() routine is successful, the count of the number of characters sent is

returned. If an error occurs, a value of -1 is returned, and a more specific error message is

returned in the global variables socket_errno and vmserrno.

vms_errno_string()
Formats a string corresponding to the error code that is placed in socket_errno and

vmserrno when an error occurs in one of the other socket functions.

FORMAT

(char *) vms_errno_string();

RETURNS

The vms_errno_string() function returns a pointer to the string.

SCTP

Support for SCTP (Stream Control Transport Protocol) has been added to the MultiNet C socket

library, with the shareable image MULTINET:TCPIP$SCTP_SHR.EXE. SCTP provides end-

to-end guaranteed delivery without the potential of blocking that TCP can encounter. SCTP also

allows for multiple streams within a conventional pairing of sockets between two IP addresses.

Messages on one stream can be sent and received independently of other streams on the

connection. See RFC 4960 for more information about SCTP.

Definitions for routines and constants are in

MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]SCTP.H

MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]SCTP_CONSTANTS.H

MULTINET_ROOT:[MULTINET.INCLUDE.NETINET]SCTP_UIO.H.

To use SCTP create a socket with the following parameters:

socket(AF_INET, SOCK_STREAM, IPPROTO_SCTP)

The following routines are supported:

sctp_opt_info()

Description

A wrapper library function that can be used to get SCTP level options on a socket.

FORMAT

int sctp_opt_info(int sd, sctp_assoc_t id, int opt, void *arg, short

*size);

Parameter Usage

sd

The socket descriptor for which the option is requested.

id

For one-to-many style sockets, id specifies the association to query. For one-to-one style

sockets, id is ignored.

opt

Specifies the SCTP socket option to get.

arg

An option-specific structure buffer provided by the caller.

size

Aa value-result parameter, initially containing the size of the buffer pointed to by arg and

modified on return to indicate the actual size of the value returned.

Returns

On success, sctp_opt_info() returns 0 and on failure -1 is returned with errno set to the

appropriate error code.

Supported Options:

SCTP_RTOINFO

SCTP_ASSOCINFO

SCTP_INITMSG

SCTP_NODELAY

SCTP_AUTOCLOSE

SCTP_PRIMARY_ADDR

SCTP_DISABLE_FRAGMENTS

SCTP_PEER_ADDR_PARAMS

SCTP_EVENTS

SCTP_I_WANT_MAPPED_V4_ADDR

SCTP_MAXSEG

SCTP_STATUS

SCTP_GET_PEER_ADDR_INFO

sctp_bindx()

Description

This function adds or removes a set of bind addresses passed in the array addrs to/from the

socket sd. addrcnt is the number of addresses in the array and the flags parameter indicates if

the addresses need to be added or removed.

An application can use the SCTP_BINDX_ADD_ADDR option to associate additional addresses

with an endpoint after calling bind(). The SCTP_BINDX_REM_ADDR option directs SCTP to

remove the given addresses from the association. A caller may not remove all addresses from an

association. It will fail with EINVAL.

FORMAT

int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, int

flags)

Parameter Usage

If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. If sd is an IPv6 socket, the

addresses passed can be either IPv4 or IPv6 addresses.

addrs is a pointer to an array of one or more socket addresses. Each address is contained in its

appropriate structure (i.e. struct sockaddr_in or struct sockaddr_in6). The

family of the address type must be used to distinguish the address length.

The caller specifies the number of addresses in the array with addrcnt.

The flags parameter can be either SCTP_BINDX_ADD_ADDR or SCTP_BINDX_REM_ADDR.

Return Value

On success, 0 is returned. On failure, -1 is returned, and errno is set appropriately.

Errors

EBADF sd is not a valid descriptor.

ENOTSOCK sd is a descriptor for a file, not a socket.

EFAULT Error while copying in or out from the user address space.

EINVAL Invalid port or address or trying to remove all addresses from an association.

EACCES The address is protected, and the user is not the super-user.

sctp_getpaddrs()

Description

sctp_getpaddrs returns all peer addresses in an association. On return, addrs will point to a

dynamically allocated packed array of sockaddr structures of the appropriate type for each

address. The caller should use sctp_freepaddrs to free the memory. Note that the in/out parameter

addrs must not be NULL.

FORMAT

int sctp_getpaddrs(int sd, sctp_assoc_t id, struct sockaddr **addrs)

Parameter Usage

If sd is an IPv4 socket, the addresses returned will be all IPv4 addresses. If sd is an IPv6 socket,

the addresses returned can be a mix of IPv4 or IPv6 addresses.

For one-to-many style sockets, id specifies the association to query. For one-to-one style sockets,

id is ignored.

sctp_freepaddrs frees all the resources allocated by sctp_getpaddrs.

Return Value

On success, sctp_getpaddrs returns the number of peer addresses in the association. If there is no

association on this socket, 0 is returned and the value of *addrs is undefined. On error,

sctp_getpaddrs returns -1 and the value of *addrs is undefined.

sctp_getladdrs()

Description

This function returns all locally bound addresses on a socket. On return, addrs will point to a

dynamically allocated packed array of sockaddr structures of the appropriate type for each

local address. The caller should use sctp_freeladdrs() to free the memory. Note that the

in/out parameter addrs must not be NULL.

FORMAT

void sctp_getladdrs(int sd, sctp_assoc_t id, struct sockaddr **addrs);

Parameter Usage

If sd is an IPv4 socket, the addresses returned will be all IPv4 addresses. If sd is an IPv6 socket,

the addresses returned can be a mix of IPv4 or IPv6 addresses.

For one-to-many style sockets, id specifies the association to query. For one-to-one style

sockets, id is ignored.

If the id field is set to 0, then the locally bound addresses are returned without regard to any

particular association.

sctp_freeladdrs() frees all the resources allocated by sctp_getladdrs().

Return Value

On success, sctp_getladdrs() returns the number of local addresses bound to the socket. If

the socket is unbound, 0 is returned and the value of *addrs is undefined. On error,

sctp_getladdrs() returns -1 and the value of *addrs is undefined.

sctp_freeladdrs() / sctp_freepaddrs()

Description

The sctp_freepaddrs() and sctp_freeladdrs() functions are used to release the

memory allocated by previous calls to sctp_getpaddrs() or sctp_getladdrs()

respectively.

FORMAT

void sctp_freeladdrs(struct sockaddr *addrs);

void sctp_freepaddrs(struct sockaddr *addrs);

sctp_connectx()

Description

This function initiates a connection to a set of addresses passed in the array addrs to/from the

socket sd. addrcnt is the number of addresses in the array.

FORMAT

int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt);

Paramter Usage

If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. If sd is an IPv6 socket, the

addresses passed can be either IPv4 or IPv6 addresses.

addrs is a pointer to an array of one or more socket addresses. Each address is contained in its

appropriate structure (i.e. struct sockaddr_in or struct sockaddr_in6). The

family of the address type must be used to distinguish the address length.

The caller specifies the number of addresses in the array with addrcnt.

Return Value

On success, 0 is returned. On failure, -1 is returned, and errno is set appropriately.

Errors

EBADF sd is not a valid descriptor.

ENOTSOCK sd is a descriptor for a file, not a socket.

EFAULT Error while copying in or out from the user address space.

EINVAL Invalid port or address.

EACCES The address is protected, and the user is not the super-user.

EISCONN The socket is already connected.

ECONNREFUSED No one listening on the remote address.

ETIMEDOUT Timeout while attempting connection. The server may be too busy to accept

new connections. Note that for IP sockets the timeout may be very long when

syncookies are enabled on the server.

ENETUNREACH Network is unreachable.

EADDRINUSE Local address is already in use.

EINPROGRESS The socket is non-blocking and the connection cannot be completed

immediately. It is possible to select() or poll() for completion by

selecting the socket for writing. After select indicates writability, use

getsockopt() to read the SO_ERROR option at level SOL_SOCKET to

determine whether connect completed successfully (SO_ERROR is zero) or

unsuccessfully (SO_ERROR is one of the usual error codes listed here,

explaining the reason for the failure).

EALREADY The socket is non-blocking and a previous connection attempt has not yet

been completed.

EAGAIN No more free local ports or insufficient entries in the routing cache.

EAFNOSUPPORT The passed address didn't have the correct address family in its sa_family

field.

EACCES,

EPERM
The user tried to connect to a broadcast address without having the socket

broadcast flag enabled or the connection request failed because of a local

firewall rule.

sctp_getassocid()

Description

This function attempts to look up the specified socket address addr and find the respective

association identification.

FORMAT

sctp_assoc_t sctp_getassocid(int sd, struct sockaddr *addr);

Return Values

The call returns the association identification upon success, and 0 is returned upon failure.

Errors

This function can return the following errors:

ENOENT The address does not have an association setup to it.

EBADF The argument s is not a valid descriptor.

ENOTSOCK The argument s is not a socket.

sctp_getaddrlen()

Description

This function returns the size of a specific address family. This function is provided for

application binary compatibility since it provides the application with the size the operating

system thinks the specific address family is. Note that the function will actually create an SCTP

socket and then gather the information via a getsockopt() system calls. If for some reason a

SCTP socket cannot be created or the getsockopt() call fails, an error will be returned with

errno set as specified in the socket() or getsockopt() system call.

FORMAT

int sctp_getaddrlen(int family)

Return Values

The call returns the number of bytes that the operating system expects for the specific address

family or SOCKET_ERROR (-1).

Errors

This function can return the following errors:

EINVAL The address family specified does NOT exist.

3. $QIO Interface

The $QIO interface allows programmers to use more sophisticated programming techniques than

available with the socket library. Using the $QIO interface, you can perform fully asynchronous

I/O to the network and receive Asynchronous System Traps (ASTs) when out-of-band data

arrives (similar to the UNIX SIGURG signal). In general, there is a one-to-one mapping between

the socket library functions and $QIO calls.

The $QIO interface returns an OpenVMS error code in the first word of the Input/Output Status

Block (IOSB). If the low bit of the OpenVMS error code is clear, an error has been returned by

the network. The OpenVMS error code is generated from the UNIX errno code by multiplying

the UNIX code by 8 (eight) and logical ORing it with 0x8000.

You can mix and match the socket library function and the $QIO calls. For example, you can use

socket() and connect() to establish a connection, then use IO$_SEND and

IO$_RECEIVE to send and receive data on it.

Note: If more than one $QIO operation is pending on a socket at any one time, there is no

guarantee that the $QIO calls will complete in the order they are queued. In particular, if

more than one read or write operation is pending at any one time, the data may be

interleaved. You do not need to use multiple read or write operations concurrently on the

same socket to increase performance because of the network buffering.

The function codes for the MultiNet-specific $QIO functions are defined in the include file

multinet_root:[multinet.include.vms]inetiodef.h.

If the compile time constant USE_BSD44_ENTRIES is defined, then the BSD 4.4 variant of the

IO$_ACCEPT, IO$_BIND, IO$_CONNECT, IO$_GETPEERNAME, IO$_GETSOCKNAME,

IO$_RECEIVE, IO$_SEND is selected.

IO$_ACCEPT
Extracts the first connection from the queue of pending connections on a socket, creates a new

socket with the same properties as the original socket, and associates an OpenVMS channel to

the new socket. IO$_ACCEPT is equivalent to the accept() socket library function.

Normally, instead of calling IO$_ACCEPT to wait for a connection to become available,

IO$_ACCEPT_WAIT is used. This allows your process to wait for the connection without

holding the extra network channel and tying up system resources. When the

IO$_ACCEPT_WAIT completes, it indicates that a connection is available. IO$_ACCEPT is

then called to accept it.

FORMAT

int SYS$QIOW(Efn, New_VMS_Channel, IO$_ACCEPT, IOSB, AstAdr, AstPrm,

Address, AddrLen, VMS_Channel, 0, 0, 0);

ARGUMENTS

New_VMS_Channel

An OpenVMS channel to a newly-created INET device. Create this channel by using

SYS$ASSIGN to assign a fresh channel to INET0: before issuing the IO$_ACCEPT call. The

accepted connection is accessed using this channel.

VMS_Channel

The OpenVMS channel to the INET: device on which the IO$_LISTEN call was performed.

After accepting the connection, this device remains available to accept new connections.

Address

An optional pointer to a structure that, following the completion of the IO$_ACCEPT call,

contains the address of the socket that made the connection. This structure is defined as follows:

struct

{

 unsigned long Length;

 struct sockaddr Address;

};

AddrLen

The length of the buffer pointed to by the Address argument, in bytes. It must be at least 20

bytes.

IO$_ACCEPT_WAIT
Used to wait for an incoming connection without accepting it. This allows your process to wait

for the connection without holding the extra network channel and tying up system resources.

When the IO$_ACCEPT_WAIT call completes, it indicates that a connection is available.

IO$_ACCEPT is then called to accept it.

The IO$_ACCEPT_WAIT call takes no function-specific parameters.

FORMAT

int SYS$QIOW(Efn, VMS_Channel, IO$_ACCEPT_WAIT, IOSB, AstAdr, AstPrm,

0, 0, 0, 0, 0, 0);

ARGUMENTS

VMS_Channel

The OpenVMS channel to the INET: device on which the IO$_LISTEN call was performed.

IO$_BIND
Assigns an address to an unnamed socket. When a socket is created with IO$_SOCKET, it exists

in a name space (address family) but has no assigned address. IO$_BIND requests that the

address be assigned to the socket. IO$_BIND is equivalent to the bind() socket library

function.

FORMAT

int SYS$QIOW(Efn, VMS_Channel, IO$_BIND, IOSB, AstAdr, AstPrm, Name,

NameLen, 0, 0, 0, 0);

ARGUMENTS

VMS_Channel

A channel to the socket.

Name

The address to which the socket should be bound. The exact format of the Address argument is

determined by the domain in which the socket was created.

NameLen

The length of the Name argument, in bytes.

IO$_CONNECT
When used on a SOCK_STREAM socket, this function attempts to make a connection to another

socket. When used on a SOCK_DGRAM socket, this function permanently specifies the peer to

which datagrams are sent to and received from. The peer socket is specified by name, which is

an address in the communications domain of the socket. Each communications domain interprets

the name parameter in its own way. IO$_CONNECT is equivalent to the connect() socket

library function.

If the address of the local socket has not yet been specified with IO$_BIND, the local address is

also set to an unused port number when IO$_CONNECT is called.

FORMAT

int SYS$QIOW(Efn, VMS_Channel, IO$_CONNECT, IOSB, AstAdr, AstPrm,

Name, NameLen, 0, 0, 0, 0);

ARGUMENTS

VMS_Channel

A channel to the socket.

Name

The address of the peer to which the socket should be connected. The exact format of the

Address argument is determined by the domain in which the socket was created.

NameLen

The length of the Name argument, in bytes.

IO$_GETPEERNAME
Returns the name of the peer connected to the specified socket. It is equivalent to the

getpeername() socket library function.

FORMAT

int SYS$QIOW(Efn, VMS_Channel, IO$_GETPEERNAME, IOSB, AstAdr, AstPrm,

Address, AddrLen, 0, 0, 0, 0);

ARGUMENTS

VMS_Channel

A channel to the socket.

Address

A result parameter filled in with the address of the peer, as known to the communications layer.

The exact format of the Address argument is determined by the domain in which the

communication is occurring.

AddrLen

On entry, contains the length of the space pointed to by Address, in bytes. On return, it

contains the actual length, in bytes, of the address returned.

IO$_GETSOCKNAME
Returns the current name of the specified socket. Equivalent to the getsockname() socket

library function.

FORMAT

int SYS$QIOW(Efn, VMS_Channel, IO$_GETSOCKNAME, IOSB, AstAdr, AstPrm,

Address, AddrLen, 0, 0, 0, 0);

ARGUMENTS

VMS_Channel

A channel to the socket.

Address

A result parameter filled in with the address of the local socket, as known to the communications

layer. The exact format of the Address argument is determined by the domain in which the

communication is occurring.

AddrLen

On entry, contains the length of the space pointed to by Address, in bytes. On return, it

contains the actual length, in bytes, of the address returned.

IO$_GETSOCKOPT
Retrieves options associated with a socket. It is equivalent to the getsockopt() library

routine. Options can exist at multiple protocol levels; however, they are always present at the

uppermost socket level.

When manipulating socket options, you must specify the level at which the option resides and

the name of the option. To manipulate options at the socket level, specify level as

SOL_SOCKET. To manipulate options at any other level, specify the protocol number of the

appropriate protocol controlling the option. For example, to indicate that an option is to be

interpreted by the TCP protocol, set Level to the protocol number of TCP, as determined by

calling getprotobyname().

OptName and any specified options are passed without modification to the appropriate protocol

module for interpretation. The include file

multinet_root:[multinet.include.sys]socket.h contains definitions for

socket-level options. Options at other protocol levels vary in format and name.

For more information on what socket options may be retrieved with IO$_GETSOCKOPT, see

the Socket Option sections.

FORMAT

int SYS$QIOW(Efn, VMS_Channel, IO$_GETSOCKOPT, IOSB, AstAdr, AstPrm,

Level, OptName, OptVal, OptLen, 0, 0);

ARGUMENTS

VMS_Channel

A channel to the socket.

Level

The protocol level at which the option will be manipulated. Specify Level as SOL_SOCKET or

a protocol number as returned by getprotoent().

OptName

The option that is to be manipulated.

OptVal

A pointer to a buffer that is to receive the current value of the option. The format of this buffer is

dependent on the option requested.

OptLen

On entry, contains the length of the space pointed to by OptVal, in bytes. On return, it contains

the actual length, in bytes, of the option returned.

IO$_IOCTL
Performs a variety of functions on the network; in particular, it manipulates socket

characteristics, routing tables, ARP tables, and interface characteristics. The IO$_IOCTL call is

equivalent to the socket_ioctl() library routine.

A IO$_IOCTL request has encoded in it whether the argument is an input or output parameter,

and the size of the argument, in bytes. Macro and define statements used in specifying an

IO$_IOCTL request are located in the file

multinet_root:[multinet.include.sys]ioctl.h.

FORMAT

int SYS$QIOW(Efn, VMS_Channel, IO$_IOCTL, IOSB, AstAdr, AstPrm,

Request, ArgP, 0, 0, 0, 0);

ARGUMENTS

VMS_Channel

A channel to the socket.

Request

Which IO$_IOCTL function to perform. The available IO$_IOCTL functions are documented

in the socket ioctl sections.

ArgP

A pointer to a buffer whose format and function is dependent on the Request specified.

IO$_LISTEN
Specifies the number of incoming connections that may be queued while waiting to be accepted.

This backlog must be specified before accepting a connection on a socket. The IO$_LISTEN

function applies only to sockets of type SOCK_STREAM. The IO$_LISTEN call is equivalent to

the listen() socket library function.

FORMAT

int SYS$QIOW(Efn, VMS_Channel, IO$_LISTEN, IOSB, AstAdr, AstPrm,

BackLog, 0, 0, 0, 0, 0);

ARGUMENTS

VMS_Channel

A channel to the socket.

Backlog

Defines the maximum length of the queue of pending connections. If a connection request

arrives when the queue is full, the request is ignored. The backlog queue length is limited to 5.

IO$_RECEIVE (IO$_READVBLK)
Receives messages from a socket. This call is equivalent to the recvfrom(), recv(), and

socket_read() socket library functions.

The length of the message received is returned in the second and third word of the I/O Status

Block (IOSB). A count of 0 indicates an end-of-file condition; that is, the connection has been

closed. If a message is too long to fit in the supplied buffer and the socket is type SOCK_DGRAM,

excess bytes are discarded.

If no messages are available at the socket, the IO$_RECEIVE call waits for a message to arrive,

unless the socket is nonblocking (see socket_ioctl()).

FORMAT

int SYS$QIOW(Efn, VMS_Channel, IO$_RECEIVE, IOSB, AstAdr, AstPrm,

Buffer, Size, Flags, From, FromLen, 0);

ARGUMENTS

VMS_Channel

A channel to the socket.

Buffer

The address of a buffer in which to place the data read.

Size

The length of the buffer specified by Buffer. The actual number of bytes read is returned in the

Status.

Flags

Control information that affects the IO$_RECEIVE call. The Flags argument is formed by

ORing one or more of the following values:

#define MSG_OOB 0x1 /* process out-of-band data */

#define MSG_PEEK 0x2 /* peek at incoming message */

The MSG_OOB flag causes IO$_RECEIVE to read any out-of-band data that has arrived on the

socket.

The MSG_PEEK flag causes IO$_RECEIVE to read the data present in the socket without

removing the data. This allows the caller to view the data, but leaves it in the socket for future

IO$_RECEIVE calls.

From

An optional pointer to a structure that, following the completion of the IO$_RECEIVE, contains

the address of the socket that sent the packet. This structure is defined as follows:

struct

{

 unsigned short Length;

 struct sockaddr Address;

};

FromLen

The length of the buffer pointed to by the From argument, in bytes. It must be at least 18 bytes.

IO$_SELECT
Examines the specified channel to see if it is ready for reading, ready for writing, or has an

exception condition pending (the presence of out-of-band data is an exception condition).

The UNIX select() system call can be emulated by posting multiple IO$_SELECT calls on

different channels.

Note: IO$_SELECT is only useful for channels assigned to the INET: device. It cannot

be used for any other VMS I/O device.

FORMAT

int SYS$QIOW(Efn, VMS_Channel, IO$_SELECT, IOSB, AstAdr, AstPrm,

Modes, 0, 0, 0, 0, 0);

ARGUMENTS

VMS_Channel

A channel to the socket.

Modes

On input, the Modes argument is a bit mask of one or more of the following values:

#define SELECT_DONTWAIT (1<<0)

#define SELECT_READABLE (1<<1)

#define SELECT_WRITEABLE (1<<2)

#define SELECT_EXCEPTION (1<<3)

If the SELECT_DONTWAIT bit is set, the IO$_SELECT call will complete immediately,

whether or not the socket is ready for any I/O operations. If this bit is not set, the IO$_SELECT

call will wait until the socket is ready to perform one of the requested operations.

If the SELECT_READABLE bit is set, the IO$_SELECT call will check if the socket is ready for

reading or a connecting has been received and is ready to be accepted.

If the SELECT_WRITEABLE bit is set, the IO$_SELECT call will check if the socket is ready

for writing or a connect request has been completed.

If the SELECT_EXCEPTION bit is set, the IO$_SELECT call will check if the socket has out-

of-band data ready to read.

On output, the Modes argument is a bit mask that indicates which operations the socket is ready

to perform. If the SELECT_DONTWAIT operation was specified, the Modes value may be zero;

if SELECT_DONTWAIT is not specified, then one or more of the SELECT_READABLE,

SELECT_WRITABLE, or SELECT_EXCEPTION bits will be set.

IO$_SEND
Transmits a message to another socket. It is equivalent to the sendto(), send(), and

socket_write() socket library functions.

If no message space is available at the socket to hold the message to be transmitted, IO$_SEND

blocks unless the socket has been placed in non-blocking I/O mode via IO$_IOCTL. If the

message is too long to pass through the underlying protocol in a single unit, the error

EMSGSIZE is returned and the message is not transmitted.

FORMAT

int SYS$QIOW(Efn, VMS_Channel, IO$_SEND, IOSB, AstAdr, AstPrm, Buffer,

Size, Flags, To, ToLen, 0);

ARGUMENTS

VMS_Channel

A channel to the socket.

Buffer

The address of a buffer containing the data to send.

Size

The length of the buffer specified by Buffer.

Flags

Control information that affects the IO$_SEND call. The Flags argument can be zero or the

following:

#define MSG_OOB 0x1 /* process out-of-band data */

The MSG_OOB flag causes IO$_SEND to send out-of-band data on sockets that support this

operation (such as SOCK_STREAM).

To

An optional pointer to the address to which the packet should be transmitted. The exact format of

the Address argument is determined by the domain in which the communication is occurring.

ToLen

An optional argument that contains the length of the address pointed to by the To argument.

IO$_SENSEMODE
Reads the active connections status and returns status information for all of the active and

listening connections.

FORMAT

int SYS$QIO(efn, chan, IO$_SENSEMODE, iosb, astadr, astprm, buffer,

address, conn_type, 0, 0, 0);

ARGUMENTS

buffer

Optional address of the 8-byte device characteristics buffer. Data returned is: the device class

(DC$_SCOM) in the first byte, the device type (0) in the second byte, and the default buffer size,

which is the maximum datagram size, in the high-order word of the first longword.

IO$_SENSEMODE returns the second longword as 0.

address

Address of the descriptor for the buffer to receive the status information on the active

connections.

value

0 to get information about TCP connections, non-zero to get information about UDP

connections. The below diagram shows the 22 bytes of information returned for each connection.

Protocol type Word value is 4 for INETDRIVER stream sockets, and 5 for BGDRIVER

stream sockets.

Unit number Word value is the INETDRIVER, or BGDRIVER device unit number for the

connection.

Receive queue Word value is the number of bytes received from the peer waiting to be

delivered to the user through the IO$_READVBLK function.

Send queue Word value is the number of bytes waiting to be transmitted to or to be

acknowledged by the peer.

Local internet

address

Longword value is the local internet address (or 0 if the connection is not open

and no local internet address was specified for the connection).

Local port

number

Word value is the local port number.

Peer internet

address

Longword value is the peer's internet address (or 0 if the connection is not

open and no peer internet address was specified for the connection).

Peer port

number

Word value is the peer's port number, or 0 if the connection is not open and

you did not specify a peer port number for the connection.

TCP state Word value is the Transmission Control Protocol connection state mask. See

Table 3-1for the mask value definitions.

Returns

SS$_BUFFEROVF Buffer too small for all connections, truncated buffer returned.

SS$_DEVINACT Device not active. Contact system manager why MultiNet (or

INETDRIVER) not started.

SS$_NORMAL Success; status information returned

The byte count for the status information buffer is returned in the high-order word of the first

longword of the I/O status block. This may be less than the bytes requested. See the below table

for more information.

The size in bytes of each connection's record (22 bytes) is returned in the low order word of the

second longword of the I/O status block.

The total number of active connections is returned in the high-order word of the second

longword of the I/O status block. This can be greater than the number of reported connections if

the buffer is full.

Mask Value State Mask Value State Mask Value State

1 LISTEN 16 FIN-WAIT-1 256 LAST-ACK

2 SYN-SENT 32 FIN-WAIT-2 512 TIME-WAIT

4 SYN-RECEIVED 64 CLOSE-WAIT 1024 CLOSED

8 ESTABLISHED 128 CLOSING

IO$_SENSEMODE | IO$M_CTRL
The byte count for the characteristics buffer is returned in the high-order word of the first

longword of the I/O status block. This may be less than the bytes requested. The number of bytes

in the receive queue is returned in the low order word of the second longword in the I/O status

block. The number of bytes in the read queue is returned in the high-order word of the second

longword in the I/O status block. The below diagram shows the I/O Status Block.

Note: You can use the SYS$GETDVI system service to obtain the local port number, peer

port number, and peer internet address. The DEVDEPEND field stores the local port number

(low order word) and peer port number (high-order word). The DEVDEPEND2 field stores

the peer internet address.

Performs the following functions:

• Reads network device information

• Reads the routing table

• Reads the ARP information

• Reads the IP SNMP information

• Reads the ICMP SNMP information

• Reads the TCP SNMP information

• Reads the UDP SNMP information

FORMAT

int SYS$QIO(efn, chan, IO$_SENSEMODE | IO$M_CTRL, iosb, astadr,

astprm, buffer, address, function, line-id, 0, 0);

ARGUMENTS

buffer

Optional address of the 8-byte device characteristics buffer. The data returned is the device class

(DC$_SCOM) in the first byte, the device type (0) in the second byte, and the default buffer size

(0) in the high-order word of the first longword. The second longword is returned as 0.

address

Address of the descriptor for the buffer to receive the information. The format of the buffer

depends on the information requested. Each buffer format is described separately in the section

that follows.

If bit 12 (mask 4096) is set in the parameter identifier (PID), the PID is followed by a counted

string. If bit 12 is clear, the PID is followed by a longword value. While MultiNet currently

never returns a counted string for a parameter, this may change in the future.

function

Code that designates the function. The function codes are shown in the below table.

Code Function

1 P1 of the QIO is not used

2 VMS descriptor of the space to put the return information

3 10

4 Not used

5 Not used

6 Not used

7 Read UDP SNMP counters

8 Read routing table

10 Read interface throughput information

line-id

Specify this argument only if you are reading a network device's ARP table function.

Reading Network Device Information

Use IO$_SENSEMODE | IO$M_CTRL with function set to 1 to read network device

information. The information returned in the buffer (specified by address) can consist of

multiple records. Each record consists of nine longwords, and one record is returned for each

device.

When you read network device information, the data in each record is returned in the order

presented below. All are longword values.

1 Line id (see the description of the line-id argument)

2 Line's local internet address

3 Line's internet address network mask

4 Line's maximum transmission unit (MTU) in the low-order word, and the line flags in the

high-order word

5 Number of packets transmitted (includes ARP packets for Ethernet lines)

6 Number of transmit errors

7 Number of packets received (includes ARP and trailer packets for Ethernet lines)

8 Number of receive errors

9 Number of received packets discarded due to insufficient buffer space

Reading the Routing Table

Use IO$_SENSEMODE | IO$M_CTRL with function set to 8 to read the routing table. The

information returned in the buffer (specified by address) can consist of multiple records. Each

record consists of five longwords, and one record is returned for each table entry.

This setting returns full routing information and is a superset of function=2, which was

retained for backwards compatibility with existing programs. function=2 and function=8

return the same table of routing entries, in the following order, except that function=2 does

not return items 7 and 8 (address mask and Path MTU):

1 Destination

internet

address.

Destination host or network to which the datagram is bound. Returned as a

longword value.

2 Gateway

internet

address.

Internet address to which the datagram for this route is transmitted.

Returned as a longword value.

3 Flags. Routing table entry's flag bits. Returned as a word value:

Mask 1, name GATEWAY, if set, the route is to a gateway (the datagram

is sent to the gateway internet address). If clear, the route is a direct route.

Mask 2, name HOST, if set, the route is for a host. If clear, the route is for

a network.

Mask 4, name DYNAMIC, if set, the route was created by a received

ICMP redirect message.

Mask 8, name AUTOMATIC, if set, this route was added by

MULTINET_RAPD process and will be modified or remoted by that

process as appropriate.

Mask 16, name LOCKED, if set, the route cannot be changed by an ICMP

redirect message.

Mask 32, name INTERFACE, if set, the route is for a network interface.

Mask 64, name DELETED, if set, the route is marked for deletion (it is

deleted when the reference count reaches 0).

Mask 128, name POSSDOWN, if set, the route is marked as possibly

down.

4 Reference

count.

Number of connections currently using the route. Returned as a word

value.

5 Use count. Number of times the route has been used for outgoing traffic. Returned as a

longword value.

6 Line ID. Line identification for the network device used to transmit the datagram to

the destination. See the description of the line-id argument later in this

section for the line ID codes. The following table shows the line

identification values.

7 Address mask. Address mask for the destination address. Returned as a longword value.

8 Path MTU. Path maximum transmission unit. Returned as a longword value.

Line ID Line ID Value Line ID Line ID Value Line ID Line ID Value

LO-0 ^X00000001 DN-n ^X00nn0241 PD-n ^X00nn0042

PSI-n ^X00nn0006 PPP-n ^X00nn0341

SL-n ^X00nn0141 SE-n ^X00nn0402

Note: The I/O status block (IOSB) returns routing table entry size information for the

function=8 function to assist in diagnosing buffer overflow situations. See the Status

section for details.

Reading Interface Throughput Information

Use IO$_SENSEMODE | IO$M_CTRL with function=10 to read network device information.

The information returned in the buffer (specified by address) can consist of multiple records.

Each record consists of nine longwords, and one record is returned for each device.

When you read network device information, the data in each record is returned in the order

presented below. All are longword values.

Code Function

1 P1 of the QIO is not used

2 is a VMS descriptor of the space to put the return information

3 10

4 Not used

5 Not used

6 Not used

The returned data is in the following format (all values are integers):

1 Line ID

2 Average Out Bytes (for the last 6 seconds)

3 Average In Bytes

4 Average Out Packets

5 Average In Packets

Reading the ARP Table Function

Use IO$_SENSEMODE | IO$M_CTRL with function=3 to read a network device's ARP table

function. The information returned in the buffer (specified by address) depends on the line id

specified in line-id.

The line-id argument is the line ID and is a longword value. The least significant byte of the

line ID is the major device type code. The next byte is the device type subcode. The next byte is

the controller unit number. The most significant byte is ignored.

The information returned in the buffer can consist of multiple records. Each record consists of 12

bytes, and one record is returned for each ARP table entry.

When reading a table function, the data in each record is returned in the following order:

1. Internet address. Returned as a longword value.

2. Physical address. Returned as a 6-byte value.

3. Flags. Returned as a word value. The ARP table entry’s flag bits are shown in the below

table:

Mask Name Description

1 PERMANENT If set, the entry can only be removed by a NETCU REMOVE ARP

command and if RARP is enabled, the local host responds if a RARP

request is received for this address. If clear, the entry can be removed if

not used within a short period.

2 PUBLISH If set, the local host responds to ARP requests for the internet address

(this bit is usually only set for the local hosts's entry). If clear, the local

host does not respond to received ARP requests for this address.

4 LOCKED If set, the physical address cannot be changed by received ARP

requests/replies.

4096 LASTUSED If set, last reference to entry was a use rather than an update.

8192 CONFNEED If set, confirmation needed on next use.

16384 CONFPEND If set, confirmation pending.

32768 RESOLVED If set, the physical address is valid.

Status

SS$_BADPARAM Code specified in function argument invalid.

SS$_BUFFEROVF Buffer too small for all information

Truncated buffer returned.

SS$_DEVINACT Device not active

Contact your system manager to determine why MultiNet was not started.

SS$_NORMAL Success

Requested information returned.

SS$_NOSUCHDEV Line identification specified in arp argument does not exist.

The byte count for the information or counters buffer is returned in the high-order word of the

first longword of the I/O status block. This can be less than the bytes requested.

• For the function=2 routing table function, in the second longword of the I/O status

block, bit 0 is always set, bit 1 is set if the forwarding capability is enabled, and bit 2 is

set if ARP replies for non-local internet addresses are enabled.

• For the function=8 routing table function, the IOSB contains the following:

Status Code SS$_NORMAL or SS$_BUFFEROVF

Transfer Byte Count Number of bytes of returned information

Entry Size Number of bytes in each entry

Number of Entries Number of entries in the routing table

• If the status is SS$_BUFFEROVF, you can determine the number of routing entries

actually returned by calculating (Transfer Byte Count) DIV (Entry Size) and comparing

that with the Number of Entries value. Be sure to check the Entry Size in the IO status

block. Later versions of MultiNet may return more information for each entry, which will

return a larger Entry Size. Any additional information to be returned in the future will be

added to the end of the returned entry.

Reading the IP SNMP Counters Function

Use IO$_SENSEMODE | IO$M_CTRL with function=4 to read the IP SNMP counters.

The data returned is an array of longwords in the following format:

• Indicates whether or not this entity is acting as an IP router.

• The default value inserted in the IP header's time-to-live field.

• The total number of input datagrams received.

• The number of input datagrams discarded due to errors in their IP headers.

• The number of input datagrams discarded because the IP address in their IP header's

destination field was not a valid address to be received at this entity.

• The number of IP datagrams for which this entity was not their final destination, and for

which forwarding to another entity was required.

• The number of datagrams received but discarded because of an unknown or unsupported

protocol.

• The number of input datagrams received but discarded for reasons other than errors.

• The total number of input datagrams successfully delivered to IP user protocols,

including ICMP.

• The total number of IP datagrams that local IP user protocols (including ICMP) supplied

to IP in request for transmission.

• The number of output IP datagrams that were discarded for reasons other than errors.

• The number of IP datagrams discarded because no route could be found to transmit them

to their destination.

• The maximum number of seconds that received fragments are held while they are

awaiting reassembly at this entity.

• The number of IP fragments received that needed to be reassembled at this entity.

• The number of IP datagrams successfully reassembled.

• The number of failures detected by the IP reassembly algorithm.

• The number of IP datagrams that have been successfully fragmented at this entity.

• The number of IP datagrams that have been discarded at this entity because they could

not be fragmented.

• The number of IP datagrams that have been created as a result of fragmentation at this

entity.

Reading the ICMP SNMP Counters Function

Use IO$_SENSEMODE | IO$M_CTRL with function=5 to read the ICMP SNMP counters.

The data returned is an array of longwords in the following format:

• The total number of ICMP messages received.

• The number of ICMP messages received but determined as having ICMP-specific errors.

• The number of ICMP Destination Unreachable messages received.

• The number of ICMP Time Exceeded messages received.

• The number of ICMP Parameter Problem messages received.

• The number of ICMP Source Quench messages received.

• The number of ICMP Redirect messages received.

• The number of ICMP Echo (request) messages received.

• The number of ICMP Echo reply messages received.

• The number of ICMP Timestamp (request) messages received.

• The number of ICMP Timestamp Reply messages received.

• The number of ICMP Address Mask Request messages received.

• The number of ICMP Address Mask Reply messages received.

• The total number of ICMP messages that this entity attempted to send.

• The number of ICMP messages that this entity did not send because of ICMP-related

problems.

• The number of ICMP Destination Unreachable messages sent.

• The number of ICMP Time Exceeded messages sent.

• The number of ICMP Parameter Problem messages sent.

• The number of ICMP Source Quench messages sent.

• The number of ICMP Redirect messages sent.

• The number of ICMP Echo (request) messages sent.

• The number of ICMP Echo reply messages sent.

• The number of ICMP Timestamp (request) messages sent.

• The number of ICMP Timestamp Reply messages sent.

• The number of ICMP Address Mask Request messages sent.

• The number of ICMP Address Mask Reply messages sent.

Reading the TCP SNMP Counters Function

Use IO$_SENSEMODE | IO$M_CTRL with function=6 to read TCP SNMP counters.

The data returned is an array of longwords in the following format:

• The algorithm used to determine the timeout value for retransmitting unacknowledged

octets.

• The minimum value (measured in milliseconds) permitted by a TCP implementation for

the retransmission timeout.

• The maximum value (measured in milliseconds) permitted by a TCP implementation for

the retransmission timeout.

• The limit on the total number of TCP connections supported.

• The number of times TCP connections have made a transition to the SYN-SENT state

from the CLOSED state.

• The number of times TCP connections have made a direct transition to the SYN-REVD

state from the LISTEN state.

• The number of failed connection attempts.

• The number of resets that have occurred.

• The number of TCP connections having a current state of either ESTABLISHED or

CLOSE-WAIT.

• The total number of segments received.

• The total number of segments sent.

• The total number of segments retransmitted.

Reading the UDP SNMP Counters Function

Use IO$_SENSEMODE | IO$M_CTRL with function=7 to read the UDP SNMP counters.

The data returned is an array of longwords in the following format:

• The total number of IDP datagrams delivered to UDP users.

• The total number of received UDP datagrams for which there was not an application at

the destination port.

• The number of received UDP datagrams that could not be delivered for reasons other

than the lack of an application at the destination port.

• The total number of UDP datagrams sent from this entity.

IO$_SETCHAR
Sets special characteristics that control the operation of the INET: device, rather than the socket

attached to it. These operations are normally used by only the MULTINET_SERVER process to

hand off a connection to a process that it creates to handle the connection.

FORMAT

int SYS$QIOW(Efn, VMS_Channel, IO$_SETCHAR, IOSB, AstAdr, AstPrm,

Flags, 0, 0, 0, 0, 0);

ARGUMENTS

VMS_Channel

A channel to the socket.

Flags

A bit mask of one or more of the following values. If IO$_SETCHAR is not called, all options

are set to OFF.

#define SETCHAR_PERMANENT (1<<0)

#define SETCHAR_SHAREABLE (1<<1)

#define SETCHAR_HANDOFF (1<<2)

If the SETCHAR_PERMANENT bit is set when the last channel to the socket device is deassigned

using the SYS$DASSGN system service, the socket is not closed and the socket device is not

deleted. Normally, the last deassign closes the socket. If this bit has been set, it must be explicitly

cleared before the socket can be deleted.

If the SETCHAR_SHAREABLE bit is set, the socket becomes a shareable device and any process

can assign a channel to it.

If the SETCHAR_HANDOFF bit is set, the socket is not closed and the socket device is not

deleted when the last channel to the socket device is deassigned. After this occurs, the socket

reverts to a normal socket, and if a new channel is assigned and deassigned, the socket is closed.

The SETCHAR_HANDOFF bit is a safer version of the SETCHAR_PERMANENT bit because it

allows a single hand-off to another process without the risk of a socket getting permanently stuck

on your system.

IO$_SETMODE|IO$M_ATTNAST
Enables an AST to be delivered to your process when out-of-band data arrives on a socket. This

is similar to the UNIX 4.3BSD SIGURG signal being delivered. You cannot enable the delivery

of the AST through the socket library functions.

After the AST is delivered, you must explicitly reenable it using this call if you want the AST to

be delivered when future out-of-band data arrives.

FORMAT

int SYS$QIOW(Efn, VMS_Channel, IO$_SETMODE|IO$M_ATTNAST, IOSB, AstAdr,

AstPrm, Routine, Parameter, 0, 0, 0, 0);

ARGUMENTS

Routine

The address of the AST routine to call when out-of-band data arrives on the socket. To disable

AST delivery, set Routine to 0.

Parameter

The argument with which to call the AST routine.

IO$_SETSOCKOPT
Manipulates options associated with a socket. It is equivalent to the setsockopt() socket

library function. Options may exist at multiple protocol levels; however, they are always present

at the uppermost socket level.

When manipulating socket options, you must specify the level at which the option resides and

the name of the option. To manipulate options at the socket level, specify Level as

SOL_SOCKET. To manipulate options at any other level, specify the protocol number of the

appropriate protocol controlling the option. For example, to indicate that an option is to be

interpreted by the TCP protocol, set Level to the protocol number of TCP; see

getprotobyname().

OptName and any specified options are passed without modification to the appropriate protocol

module for interpretation. The include file

multinet_root:[multinet.include.sys]socket.h contains definitions for

socket-level options. Options at other protocol levels vary in format and name.

FORMAT

int SYS$QIOW(Efn, VMS_Channel, IO$_SETSOCKOPT, IOSB, AstAdr, AstPrm,

Level, OptName, OptVal, OptLen, 0, 0);

ARGUMENTS

VMS_Channel

A channel to the socket.

Level

The protocol level at which the option will be manipulated. Specify Level as SOL_SOCKET, or

a protocol number as returned by getprotobyname().

OptName

The option that is to be manipulated. For a description of each of the valid options for IO$_

SETSOCKOPT, see the Socket Option sections.

OptVal

A pointer to a buffer that contains the new value of the option. The format of this buffer depends

on the option requested.

OptLen

The length of the buffer pointed to by OptVal.

IO$_SHUTDOWN
Shuts down all or part of a full-duplex connection on the socket associated with VMS_Channel.

This function is usually used to signal an end-of-file to the peer without closing the socket itself,

which would prevent further data from being received. It is equivalent to the shutdown()

socket library function.

FORMAT

int SYS$QIOW(Efn, VMS_Channel, IO$_SHUTDOWN, IOSB, AstAdr, AstPrm,

How, 0, 0, 0, 0, 0);

ARGUMENTS

VMS_Channel

A channel to the socket.

How

Controls which part of the full-duplex connection to shut down, as follows: if How is 0, further

receive operations are disallowed; if How is 1, further send operations are disallowed; if How is

2, further send and receive operations are disallowed.

IO$_SOCKET
Creates an end point for communication and returns an OpenVMS channel that describes the end

point. It is equivalent to the socket() socket library function.

Before issuing the IO$_SOCKET call, an OpenVMS channel must first be assigned to the

INET0: device to get a new channel to the network.

FORMAT

int SYS$QIOW(Efn, VMS_Channel, IO$_SOCKET, IOSB, AstAdr, AstPrm,

Address_Family, Type, Protocol, 0, 0, 0);

ARGUMENTS

Address_Family

An address family with which addresses specified in later operations using the socket will be

interpreted. The following formats are currently supported; they are defined in the include file

multinet_root:[multinet.include.sys]socket.h:

AF_INET Internet (TCP/IP) addresses

AF_PUP Xerox PUP addresses

AF_CHAOS CHAOSnet addresses

Type

The semantics of communication using the created socket. The following types are currently

defined:

• SOCK_STREAM

• SOCK_DGRAM

• SOCK_RAW

A SOCK_STREAM socket provides a sequenced, reliable, two-way connection-oriented byte

stream with an out-of-band data transmission mechanism. A SOCK_DGRAM socket supports

communication by connectionless, unreliable messages of a fixed (typically small) maximum

length. SOCK_RAW sockets provide access to internal network interfaces. The type SOCK_RAW

is available only to users with SYSPRV privilege.

The Type argument, together with the Address_Family argument, specifies the protocol to

be used. For example, a socket created with AF_INET and SOCK_STREAM is a TCP socket, and

a socket created with AF_INET and SOCK_DGRAM is a UDP socket.

Protocol

A protocol to be used with the socket. Normally, only a single protocol exists to support a

particular socket type using a given address format. However, many protocols may exist, in

which case a particular protocol must be specified by Protocol. The protocol number to use

depends on the communication domain in which communication will take place.

For TCP and UDP sockets, the protocol number MUST be specified as 0. For SOCK_RAW

sockets, the protocol number should be the value returned by getprotobyname().

SYS$CANCEL
Cancels any I/O IOSB status of SS$_CANCEL.

Outstanding I/O operations are automatically cancelled at image exit.

For more information on SYS$CANCEL, see the OpenVMS System Services Reference Manual.

FORMAT

int SYS$CANCEL(VMS_Channel);

SYS$DASSGN
Equivalent to the socket_close() function. When you deassign a channel, any outstanding

I/O is completed with an IOSB status of SS$_CANCEL. Deassigning a channel closes the

network connection.

I/O channels are automatically deassigned at image exit.

For more information on SYS$DASSGN, see the OpenVMS System Services Reference Manual.

FORMAT

int SYS$DASSGN(VMS_Channel);

4. SNMP Extensible Agent
API Routines

This chapter is for application programmers. It describes the Application Programming Interface

(API) routines required for an application program to export private Management Information

Bases (MIBs) using the MultiNet SNMP agent.

To be able to use your private Management Information Base (MIB) with MultiNet's SNMP

agent, develop a shareable image that exports the following application programming interface

routines, in addition to routines you may need to access the MIB variables:

SnmpExtensionInit Called by the SNMPD agent after startup to initialize the MIB

subagent

SnmpExtensionInitEx

Registers multiple subtrees with the subagent (called by the

SNMPD agent at startup only implemented)

SnmpExtensionQuery

Completes the MIB subagent query (called by the SNMPD agent to

handle a get, getnext, or set request)

SnmpExtensionTrap

Sends an enterprise-specific trap (called by the SNMPD agent when

the subagent alerts the agent that a trap needs to be set)

The SNMP shareable images need to be configured for the SNMP agent to interact with them.

See the Configuring MultiNet SNMP Agents chapter of the MultiNet Installation and

Administrator’s Guide for details on configuring the SNMP agent.

SNMP subagent developers should use the include file SNMP_COMMON.H found in the

MULTINET_COMMON_ROOT:[MULTINET.INCLUDE] directory. This file defines the data

structures the API uses.

For details on MultiNet's SNMP agent, see Configuring MultiNet SNMP Agents in the MultiNet

Installation and Administrator’s Guide.

Requirements
You require the following before using the SNMP extensible agent API routines:

• Working knowledge of SNMP; specifically, the following RFCs:

o RFC 1155, Structure and Identification of Management Information for TCP/IP-

based Internets

o RFC 1157, A Simple Network Management Protocol (SNMP)

o RFC 1213, Management Information Base for Network Management of TCP/IP-

based internets: MIB-II

• Working knowledge of OpenVMS shareable images

Linking the Extension Agent Image
To link the extension agent image, you need to create an option file. The two examples below are

for VAX systems and Alpha/Itanium systems, respectively.

VAX
!Note: Exclude SnmpExtensionInitEx if it is not needed.

!See the definition of this routine.

!

UNIVERSAL=SnmpExtensionInit, -

SnmpExtensionQuery, -

SnmpExtensionTrap, -

SnmpExtensionInitEx

SYS$SHARE:VAXCRTL/SHARE

!

!List your object/library files here

Alpha
!Note: Exclude SnmpExtensionInitEx if it is not needed.

!See the definition of this routine.

!

SYMBOL_VECTOR=(SnmpExtensionInit=PROCEDURE, -

SnmpExtensionQuery=PROCEDURE, -

SnmpExtensionTrap=PROCEDURE, -

SnmpExtensionInitEx=PROCEDURE)

!

!List your object/library files here

Your link statement should then look like this:

$ LINK /SHARE=image-name option-file/OPT

image-name is the name of the shareable image you want to build, and option-file is the

option file mentioned above.

Installing the Extension Agent
Image
You should copy the shareable image you build for your SNMP subagent to the SYS$SHARE.

CAUTION! Since the shareable image is loaded into the same process address space as the

SNMPD server, an access violation by the subagent shareable image can crash the server

application. Ensure the integrity of your shareable image by testing it thoroughly. Shareable

image errors can also corrupt the server's memory space or may result in memory or

resource leaks.

Debugging Code
SNMP subagent developers can use a debug logical, MULTINET_SNMP_DEBUG, to set certain

debug masks. Define the logical as follows and use the mask values in the below table:

$ DEFINE MULTINET_SNMP_DEBUG mask

Mask Value Description

0010 Raw SNMP input

0020 Raw SNMP output

0040 ASN.1 encoded message input

0080 ASN.1 encoded message output

1000 SNMP Subagent Developer debug mask (prints events and statuses)

Subroutine Reference
The following pages include the subroutine descriptions.

SnmpExtensionInit
Initializes the SNMP subagent and registers the subagent in the SNMPD agent. The subagent

calls this routine at startup.

Format

int SnmpExtensionInit (trap-alert-routine, time-zero-reference, trap-

event, supported-view);

Arguments

trap-alert-routine

Address of the routine the subagent should call when it is ready to send a trap.

trap-event

Currently unused.

time-zero-reference

Time reference the SNMP agent provides, in hundredths of a second. Use C routines time()

and difftime() to calculate MIB uptime (in hundredths of a second).

supported-view

Prefix of the MIB tree the subagent supports.

Return Values

• TRUE – Subagent initialized successfully

• FALSE - Subagent initialization failed

SnmpExtensionInitEx
Registers multiple MIB subtrees with agent.

This routine is called multiple times, once for each MIB subtree that needs to be registered. If the

routine passes back the first or next MIB subtree, return with TRUE. If all the MIB subtrees were

passed back, return with FALSE.

Note: Only implement this routine if you have multiple MIB subtrees in your extendible

agent. The MultiNet SNMP agent executes this routine if it exists and overwrites MIB

information set by SnmpExtensionInit.

Format

int SnmpExtentionInitEx(supported-view);

Arguments

supported-view

Prefix of the MIB tree the subagent supports.

Example

int SnmpExtensionInitEx(AsnOBJID *supportedView)

{

 int view1[] = {1, 3, 6, 1, 4, 1, 12, 2, 1};

 int view2[] = {1, 3, 6, 1, 4, 1, 12, 2, 2};

 int view3[] = {1, 3, 6, 1, 4, 1, 12, 2, 5};

 static int whichView = 0;

 switch (whichView++)

 {

 case 0:

 supportedView->idLength = 9;

 memcpy(supportedView->ids, view1, 9* sizeof(int));

 break;

 case 1:

 supportedView->idLength = 9;

 memcpy(supportedView->ids, view2, 9* sizeof(int));

 break;

 case 2:

 supportedView->idLength = 9;

 memcpy(supportedView->ids, view3, 9* sizeof(int));

 break;

 default:

 return (0);

 }

 return (1);

}

Return Values

• TRUE – Returning first or next MIB subtree

• FALSE - All MIB subtrees were passed back

SnmpExtensionQuery
Queries the SNMP subagent to get or set a variable in the MIB tree served by the subagent. This

routine is called by the SNMPD agent to handle a get, getnext, or set request.

Format

int SnmpExtensionQuery (request-type, var-bind-list, error-status,

error-index);

Arguments

request-type

Identifies the type of request: GET, SET, or GET NEXT.

var-bind-list

The list of name-value pairs used in the request. For a GET request the value is filled by the

subagent and for a SET request, the value is be used to change the current variable value in the

subagent.

error-status

Status of a failed operation.

error-index

The index of the variable in the variable binding list for which the operation failed.

Return Values

• TRUE - Operation successfully completed

• FALSE - Operation could not be carried out by the subagent; use error-status and

error-index to provide more information

SnmpExtensionTrap
Sends a trap from the subagent. If the subagent wants to send a trap, it must first call the trap-

alert-routine (see the SnmpExtensionInit routine). The trap-alert-routine should be

called with two parameters (objids, idlength). For example:

If the DNS process wants to send trap information to all the communities that are interested then

the DNS server must be running and the object IDs passed are 1, 3, 6, 1, 4, 1, 105, 1, 2, 1, 1, 1, 3,

1, and the length of 14.

• 1,3,6,1,4,1 is the default prefix

• 105 is the enterprise id for Process Software

• 1,2,1,1,1 are the MIB object IDs for the DNS process

• 3,1 are the object IDs for DNSUpTrap

The SNMP agent trap-alert-routine creates a table of all received trap MIBs. For each

of these entries, the agent then calls the subagent's SnmpExtensionTrap routine when it is

ready to send the trap.

Note: The SNMP agent calls the subagent from inside the trap-alert-routine.

Format

int SnmpExtensionTrap (enterprise, generic-trap, specific-trap, time-

stamp, var-bind-list);

Arguments

enterprise

The prefix of the MIB for the enterprise sending the trap.

generic-trap

The generic enterprise trap ID.

specific-trap

The enterprise-specific trap number.

Note: Since an enterprise can have many traps, the combination of enterprise ID, generic

trap, and specific trap should give a unique identification for a trap.

time-stamp

The time at which the trap was generated.

var-bind-list

The list of name-value pairs. This list contains name and value of the MIB variable for which the

trap is generated.

Return Values

• TRUE - More traps to be generated

• FALSE - No more traps to be generated

5. RPC Fundamentals

Introduction
MultiNet RPC Services must be used with the HP C Socket Library.

This chapter is for RPC programmers. It provides basic information you need to know before

using RPC Services to write distributed applications, including:

• What RPC services are

• What components are in RPC services

• How RPC clients and servers communicate

• Important RPC concepts and terms

What Are RPC Services?
RPC Services are a set of software development tools that allow you to build distributed

applications on OpenVMS systems.

MultiNet Implementation
RPC Services are based on the Open Network Computing Remote Procedure Call (RPC)

protocols developed by Sun Microsystems, Inc. These protocols are defined in the following

Requests for Comments (RFCs):

• RPC: Remote Procedure Call Protocol Specification, Version 2 (RFC 1057)

• XDR: External Data Representation Standard (RFC 1014)

Distributed Applications
A distributed application executes different parts of its programs on different hosts in a network.

Computers on the network share the processing workload, with each computer performing the

tasks for which it is best equipped.

For example, a distributed database application might consist of a central database running on an

Alpha server and numerous client workstations. The workstations send requests to the server.

The server carries out the requests and sends the results back to the workstations. The

workstations use the results in other modules of the application.

RPCs allow programs to invoke procedures on remote hosts as if the procedures were local. RPC

services hide the networking details from the application.

RPC services facilitates distributed processing because it relieves the application programmer of

performing low-level network tasks such as establishing connections, addressing sockets, and

converting data from one machine's format to another.

Components of RPC Services
RPC Services comprises the following components:

• Run-time libraries (RTLs)

• RPCGEN compiler

• Port mapper

• RPC information

Run-Time Libraries (RTLs)
RPC Services provides a single shareable RTL. The library contains:

• RPC client and server routines

• XDR routines

The RPC RTL Management Routines, Chapter 10, and the chapters that follow it describe the

RTLs in detail.

RPCGEN Compiler
RPCGEN is a compiler that creates the network interface portion of a distributed application. It

effectively hides from the programmer the details of writing and debugging low-level network

interface code. The RPCGEN Compiler, Chapter 8, describes how to use RPCGEN.

Port Mapper
The Port Mapper helps RPC client programs connect to ports that are being used by RPC servers.

A Port Mapper runs on each host that implements RPC Services. These steps summarize how the

Port Mapper works:

1. RPC servers register with the Port Mapper by telling it which ports they are using.

2. When an RPC client needs to reach a particular server, it supplies the Port Mapper with

the numbers of the remote program and program version it wants to reach. The client also

specifies a transport protocol (UDP or TCP).

3. The Port Mapper provides the correct port number for the requested service. This process

is called binding.

Once binding has taken place, the client does not have to call the Port Mapper for subsequent

calls to the same server. A service can register for different ports on different hosts. For example,

a server can register for port 800 on Host A and port 1000 on Host B. The Port Mapper is itself

an RPC server and uses the RPC RTL. The Port Mapper plays an important role in disseminating

messages for broadcast RPC. The Port Mapper is part of the Master Server Process.

RPC Information
Use the RPC information command to request a listing of all programs that are registered with

the Port Mapper

You enter this command at the DCL prompt. (See RPC Information in Chapter 12, Building

Distributed Applications, for details.)

Client-Server Relationship
In RPC, the terms client and server do not describe particular hosts or software entities. Rather,

they describe the roles of particular programs in a given transaction. Every RPC transaction has a

client and a server. The client is the program that calls a remote procedure; the server is the

program that executes the procedure on behalf of the caller.

A program can be a client or a server at different times. The program's role merely depends on

whether it is making the call or servicing the call.

External Data Representation
(XDR)
External Data Representation (XDR) is a standard that solves the problem of converting data

from one machine's format to another.

RPC Services uses the XDR data description language to describe and encode data. Although

similar to C language, XDR is not a programming language. It merely describes the format of

data, using implicit typing. XDR: External Data Representation Standard (RFC 1014) defines

the XDR language.

RPC Processing Flow
Remote and local procedure calls share some similarities. In both cases, a calling process makes

arguments available to a procedure. The procedure uses the arguments to compute a result, then

returns the result to the caller. The caller uses the results of the procedure and resumes execution.

The below diagram shows the underlying processing that makes a remote procedure call

different from a local call.

The following steps describe the processing flow during a remote procedure call:

1. The client program passes arguments to the client stub procedure. (See Chapter 7,

RPCGEN Compiler, for details on how to create stubs.)

2. The client stub marshals the data by:

• Calling the XDR routines to convert the arguments from the local representation to

XDR

• Placing the results in a packet

3. Using RPC RTL calls, the client stub sends the packet to the UDP or TCP layer for

transmission to the server.

4. The packet travels on the network to the server, up through the layers to the server stub.

5. The server stub un-marshals the packet by converting the arguments from XDR to the

local representation. Then it passes the arguments to the server procedure.

RPC Processing Flow:

Local Calls Versus Remote Calls
This section describes some of the ways in which local and remote procedure calls handle system

crashes, errors, and call semantics.

Handling System Crashes
Local procedure calls involve programs that reside on the same host. Therefore, the called

procedure cannot crash independently of the calling program.

Remote procedure calls involve programs that reside on different hosts. Therefore, the client

program does not necessarily know when the remote host has crashed.

Handling Errors
If a local procedure call encounters a condition that prevents the call from executing, the local

operating system usually tells the calling procedure what happened.

If a remote procedure call cannot be executed for some reason (e.g., errors occur on the network

or remote host), the client might not be informed of what happened. You may want to build a

signaling or condition-handling mechanism into the application to inform the client of such

errors.

RPC returns certain types of errors to the client, such as those that occur when it cannot decode

arguments. The RPC server must be able to return processing-related errors, such as those that

occur when arguments are invalid, to the client. However, the RPC server may not return errors

during batch processing or broadcast RPC.

Call Semantics
Call semantics determine how many times a procedure executes.

Local procedures are guaranteed to execute once and only once.

Remote procedures have different guarantees, depending on which transport protocol is used.

The TCP transport guarantees execution once and only once as long as the server does not crash.

The UDP transport guarantees execution at least once. It relies on the XID cache to prevent a

remote procedure from executing multiple times.

Programming Interface
The RPC RTL is the programming interface to RPC. You may think of this interface as

containing multiple levels.

The RPC RTL reference chapters describe each routine.

High-Level Routines
The higher-level RPC routines provide the simplest RPC programming interface. These routines

call lower-level RPC routines using default arguments, effectively hiding the networking details

from the application programmer.

When you use high-level routines, you sacrifice control over such tasks as client authentication,

port registration, and socket manipulation, but you gain the benefits of using a simpler

programming interface. Programmers using high-level routines can usually develop applications

faster than they can using low-level RPC routines.

You can use the RPCGEN compiler only when you use the highest-level RPC programming

interface.

Mid-Level Routines
The mid-level routines provide the most commonly used RPC interface. They give the

programmer some control over networking tasks, but not as much control as the low-level

routines permit.

For example, you can control memory allocation, authentication, ports, and sockets using mid-

level routines.

The mid-level routines require you to know procedure, program, and version numbers, as well as

input and output types. Output data is available for future use. You can use the registerrpc

and callrpc routines.

Low-Level Routines
The low-level routines provide the most complicated RPC interface, but they also give you the

most control over networking tasks such as client authentication, port registration, and socket

manipulation. These routines are used for the most sophisticated distributed applications.

Transport Protocols
RPC Services uses the transport protocols listed in the below table. The RPC client and server

must use the same transport protocol for a given transaction.

Protocols Characteristics

UDP Unreliable datagram service

Connectionless

Used for broadcast RPC

Maximum broadcast message size in either direction on an Ethernet line: 1500

Execution is guaranteed at least once

Calls cannot be processed in batch

TCP Reliable

Connection-oriented

Can send an unlimited number of bytes per RPC call

Execution is guaranteed once and only once

Calls can be processed in batch

No broadcasting

Note: You must use the HP C Socket Library with RPC Services.

XID Cache
The XID cache stores responses the server has sent. When the XID cache is enabled, the server

does not have to recreate every response to every request. Instead, the server can use the

responses in the cache. Thus, the XID cache saves computing resources and improves the

performance of the server.

Only the UDP transports can use the XID cache. The reliability of the TCP transport generally

makes the XID cache unnecessary. UDP is inherently unreliable.

The below table shows how the XID caches differ for the UDP and UDPA/TCPA transports.

UDP Transport UDPA/TCPA Transports

Places every response

in the XID cache

Allows the server to specify which responses are to be cached, using the

svcudp_enablecache and svctcpa_enablecache routines

XID cache cannot be

disabled

Requires you to disable the XID cache after use

Cache Entries
Each entry in the XID cache contains:

• The encoded response that was sent over the network

• The internet address of the client that sent the request

• The transaction ID that the client assigned to the request

Cache Size
You determine the size of the XID cache. Consider these factors:

• How many clients are using the server.

• Approximately how long the cache should save the responses.

• How much memory you can allocate. Each entry requires about 8Kbytes.

The more active the server is, the less time the responses remain in the cache.

Execution Guarantees
Remote procedures have different execution guarantees, depending on which transport protocol

is used. The XID cache affects the execution guarantee.

The TCP transport guarantees execution once and only once as long as the server does not crash.

The UDP transport guarantees execution at least once. If the XID cache is enabled, a UDP

procedure is unlikely to execute more than once.

Enabling XID Cache
Use the svcudp_enablecache routine to enable the XID cache. This routine is described in

the RPC RTL reference chapters.

Not enabling the XID cache saves memory.

Broadcast RPC
Broadcast RPC allows the client to send a broadcast call to all Port Mappers on the network and

wait for multiple replies from RPC servers.

For example, a host might use a broadcast RPC message to inform all hosts on a network of a

system shutdown.

The below table shows the differences between normal RPC and broadcast RPC.

Normal RPC Broadcast RPC

Client expects one answer Client expects many answers

Can use TCP or UDP Requires UDP

Server always responds to errors Server does not respond to errors; Client does

not know when errors occur

Port Mapper is desirable, but not required if

you use fixed port numbers

Requires Port Mapper services

Broadcast RPC sends messages to only one port - the Port Mapper port - on every host in the

network. On each host, the Port Mappers pass the messages to the target RPC server. The servers

compute the results and send them back to the client.

Identifying Remote Programs and
Procedures
The RPC client must uniquely identify the remote procedure it wants to reach. Therefore, all

remote procedure calls must contain these three fields:

• A remote program number

• The version number of the remote program

• A remote procedure number

Remote Program Numbers
A remote program is a program that implements at least one remote procedure. Remote programs

are identified by numbers that you assign during application development. Use the below table to

determine which program numbers are available. The numbers are in groups of hexadecimal

20000000.

Range Purpose

0 to 1FFFFFFF Defined and administered by Sun Microsystems. Should be identical for all

sites. Use only for applications of general interest to the Internet

community.

20000000 to

3FFFFFFF
Defined by the client application program. Site-specific. Use primarily for

new programs.

40000000 to

5FFFFFFF
Use for applications that generate program numbers dynamically.

60000000 to

FFFFFFFF
Reserved for the future. Do not use.

Remote Version Numbers
Multiple versions of the same program may exist on a host or network. Version numbers

distinguish one version of a program from another. Each time you alter a program, remember to

increment its version number.

Remote Procedure Numbers
A remote program may contain many remote procedures. Remote procedures are identified by

numbers that you assign during application development. Follow these guidelines when

assigning procedure numbers:

• Use 1 for the first procedure in a program. (Procedure 0 should do nothing and require no

authentication to the server.)

• For each additional procedure in a program, increment the procedure number by one.

Additional Terms
Before writing RPC applications, you should be familiar with the terms in the below table:

Term Definition

Channel An OpenVMS term referring to a logical path that connects a process to a physical

device, allowing the process to communicate with that device. A process requests

OpenVMS to assign a channel to a device. Refer to the OpenVMS documentation

for more information on channels.

Client

handle

Information that uniquely identifies the server to which the client is sending the

request. Consists of the server's host name, program number, program version

number, and transport protocol.

See the following routines in the RPC RTL Client Routines:

authnone_create clnt_create

clnt_perror/clnt_sperror authunix_create

clnttcp_create authunix_create_default

clntudp_create/clntudp_bufcreate

Port An abstract point through which a datagram passes from the host layer to the

application layer protocols.

Server

handle

Information that uniquely identifies the server. Content varies according to the

transport being used. See the following routines in RPC RTL Server Routines:

svcudp_create/svctcp_create svc_destroy

svc_freeargs svc_getargs

svc_register svc_sendreply

Socket An abstract point through which a process gains access to the Internet. A process

must open a socket and bind it to a specific destination.

6. Building Distributed
Applications with RPC

Introduction
This chapter is for RPC programmers. It explains:

• What components a distributed application contains

• How to use RPC to develop a distributed application, step by step

• How to get RPC information

Distributed Application
Components
The below table lists the components of a distributed application.

Component Description

Main program

(client)

An ordinary main program that calls a remote procedure as if local

Network interface Client and server stubs, header files, XDR routines for input arguments

and results

Server procedure Carries out the client's request (at least one is required)

These components may be written in any high-level language. The RPC Run-Time Library

(RTL) routines are written in the C language.

What You Need to Do
The following steps summarize what you need to do to build a distributed application:

1. Design the application.

2. Write an RPC interface definition. Compile it using RPCGEN, then edit the output files as

necessary. (This step is optional. An RPC interface definition is not required. If you do

not write one, proceed to step 3.)

3. Write any necessary code that RPCGEN did not generate.

4. Compile the RPCGEN output files, server procedures, and main program using the

appropriate language compiler(s). RPCGEN output files must be compiled using HP C.

5. Link the object code, making sure you link in the RPC RTL.

6. Start the Port Mapper on the server host.

7. Execute the client and server programs.

Step 1: Design the Application
You must write a main (client) program and at least one server procedure. The network interface,

however, may be hand-written or created by RPCGEN. The network interface files contain client

and server stubs, header files, and XDR routines. You may edit any files that RPCGEN creates.

When deciding whether to write the network interface yourself, consider these factors:

Is execution time

critical?

Your hand-written code may execute faster than code that RPCGEN

creates.

Which RPC

interface layer do

you want to use?

RPCGEN permits you to use only the highest layer interface. If you want

to use the lower layers, you must write original code. The RPC

Fundamentals, Chapter 6, describes the characteristics of each RPC

interface layer.

Which transport

protocol do you

want to use?

You may write your own XDR programs, but it is usually best to let RPCGEN handle these.

Step 2: Write and Compile the
Interface Definition
An interface definition is a program the RPCGEN compiler accepts as input. The RPCGEN

Compiler, Chapter 8, explains exactly what interface definitions must contain.

Interface definitions are optional. If you write the all of the network interface code yourself, you

do not need an interface definition.

You must write an interface definition if you want RPCGEN to generate network interface code.

After compiling the interface definition, edit the output file(s).

If you are not writing an interface definition, skip this step and proceed to step 3.

Step 3: Write the Necessary Code
Write any necessary code that RPCGEN did not create for you. The below table lists the texts

you may use as references.

Reference Purpose

RFC 1057 Defines the RPC language. Use for writing interface

definitions.

RFC 1014 Defines the XDR language. Use for writing XDR filter

routines.

The RPC RTL Client Routines

chapter and those that follow

Defines each routine in the RPC RTL. Use for writing

stub procedures and XDR filter routines.

Step 4: Compile All Files
Compile the RPCGEN output files, server procedures, and main program separately.

$ CC /STANDARD=RELAXED /WARNING=DISABLE=(IMPLICITFUNC) filename.C

Step 5: Link the Object Code
Link the object code files. Make sure you link in the RPC RTL. Use the following command.

$ LINK filenames, SYS$INPUT /OPTIONS

TCPIP$RPCXDR_SHR /SHARE

SYS$SHARE:DECC$SHR /SHARE

Ctrl+Z

After entering the command, press Ctrl+Z.

To avoid repetitive data entry, you may create an OpenVMS command procedure to execute

these commands.

Step 6: Start the Port Mapper
The Port Mapper must be running on the server host. If it is not running, use the MULTINET

CONFIGURE/SERVER command to start it.

Step 7: Execute the Client and
Server Programs
Perform these steps:

1. Run the server program interactively to debug it, or using the /DETACHED qualifier.

Refer to HP’s documentation for details.

2. Run the client main program.

Obtaining RPC Information
You can request a listing of all programs registered with a Port Mapper.

To request a listing of all programs that are registered with the Port Mapper, enter the

MULTINET SHOW /RPC_PORTMAP command in the following format at the DCL prompt:

$ MULTINET SHOW /RPC_PORTMAP

If you add /REMOTE_HOST=hostname to this command:

$ MULTINET SHOW /RPC_PORTMAP /REMOTE_HOST=[host-name]

Specify the domain name of the host on which the Port Mapper resides. If you omit this

parameter, RPC uses the name of the local host. Sample RPC information output:

$ MULTINET SHOW/RPC_PORTMAP

 MultiNet registered RPC programs:

 Program Version Protocol Port

 ------- ------- -------- ----

 NLOCKMGR 3 TCP 2049

 NLOCKMGR 1 TCP 2049

 NLOCKMGR 3 UDP 2049

 NLOCKMGR 1 UDP 2049

 NFS 2 TCP 2049

 NFS 2 UDP 2049

 MOUNT 1 TCP 1024

 MOUNT 1 UDP 1028

 STATUS 1 TCP 1024

 STATUS 1 UDP 1024

7. RPCGEN Compiler

Introduction
This chapter is for RPC programmers.

What Is RPCGEN?
RPCGEN is the RPC Protocol Compiler. This compiler creates the network interface portion of a

distributed application, effectively hiding from the programmer the details of writing and

debugging low-level network interface code.

You are not required to use RPCGEN when developing a distributed application. If speed and

flexibility are critical to your application, you can write the network interface code yourself,

using RPC Run-Time Library (RTL) calls where they are needed.

Compiling with RPCGEN is one step in developing distributed applications. See Chapter 7,

Building Distributed Applications, for a complete description of the application development

process.

RPCGEN allows you to use the highest layer of the RPC programming interface. The RPC

Fundamentals, Chapter 6, provides details on these layers.

Software Requirements
The following software must be installed on your system before you can use RPCGEN:

• OpenVMS 5.5 or higher

• HP C compiler V3.2 or later

Input Files
The RPCGEN compiler accepts as input programs called interface definitions, written in RPC

Language (RPCL), an extension of XDR language. RFC 1057 and RFC 1014 describe these

languages in detail.

An interface definition must always contain the following information:

• Remote program number

• Version number of the remote program

• Remote procedure number(s)

• Input and output arguments

Below is a sample interface definition:

/*

** RPCGEN input file for the print file RPC batching example.

**

** This file is used by RPCGEN to create the files PRINT.H and

PRINT_XDR.C

** The client and server files were developed from scratch.

*/

const MAX_STRING_LEN = 1024; /* maximum string length */

/*

** This is the information that the client sends to the server

*/

struct a_record

{

 string ar_buffer <MAX_STRING_LEN>;

};

program PRINT_FILE_PROG

{

 version PRINT_FILE_VERS_1

 {

 void PRINT_RECORD(a_record) = 1;

 u_long SHOW_COUNT(void) = 2;

 } = 1;

} = 0x20000003;

/* end file PRINT.X */

The default extension for RPCGEN input files is .X.

You do not need to call the RPC RTL directly when writing an interface definition. RPCGEN

inserts the necessary library calls in the output file.

Output Files
RPCGEN output files contain code in C language. The below table lists the RPCGEN output files

and summarizes their purpose. You can edit RPCGEN output files during application

development.

File Purpose

Client and server

stub calls

Interface between the network and the client and server programs. Stubs

use RPC RTL to communicate with the network.

XDR routines Convert data from a machine's local data format to XDR format, and vice

versa.

Header Contains common definitions, such as those needed for any structures

being passed.

The Invoking RPC section explains how to request specific output files.

The below table shows the conventions you should use to name output files.

File Output Filename

Client stub inputname_CLNT.C

Server stub inputname_SVC.C

Header file inputname.H

XDR filter routines inputname_XDR.C

inputname is the name of the input file. For example, if the input file is TEST.X, the server

stub is TEST_SVC.C.

When you use the RPCGEN command to create all output files at once, RPCGEN creates the

output filenames listed in the above table by default. When you want to create specific kinds of

output files, you must specify the names of the output files in the command line.

Preprocessor Directives
RPCGEN runs the input files through the C preprocessor before compiling. You can use the

macros listed in the below table with the #ifdef preprocessor directive to indicate that specific

lines of code in the input file are to be used only for specific RPCGEN output files.

File Macro

Client stub RPC_CLNT

Server stub RPC_SVC

Header file RPC_HDR

XDR filter routines RPC_XDR

Invoking RPCGEN
This section explains how to invoke RPCGEN to create:

• All output files at once

• Specific output files

• Server stubs for either the TCP or UDP transport

Creating All Output Files at Once
This command creates all four RPCGEN output files at once:

$ RPCGEN input

where input is the name of the file containing the interface definition.

In the following example, RPCGEN creates the output files PROGRAM.H, PROGRAM_CLNT.C,

PROGRAM_SVC.C, and PROGRAM_XDR.C:

$ RPCGEN PROGRAM.X

Creating Specific Output Files
This command creates only the RPCGEN output file that you specify:

RPCGEN {-c | -h | -l | -m} [-o output] input

-c Creates an XDR filter file (_XDR.C)

-h Creates a header file (.H)

-l Creates a client stub (_CLNT.C)

-m Creates a server stub (_SVC.C) that uses both the UDP and TCP transports

-o Specifies an output file (or the terminal if no output file is given)

output Name of the output file

input Name of an interface definition file with a .X extension

Follow these guidelines:

• Specify just one output file (-c, -h, -l, or -m) in a command line

• If you omit the output file, RPCGEN sends output to the terminal screen

Examples:
$ RPCGEN -h PROGRAM

RPCGEN accepts the file PROGRAM.X as input and sends the header file output to the screen,

because no output file is specified.

$ RPCGEN -l -o PROGRAM_CLNT.C PROGRAM.X

RPCGEN accepts the PROGRAM.X file as input and creates the PROGRAM_CLNT.C client stub

file.

$ RPCGEN -m -o PROGRAM_SVC.C PROGRAM.X

RPCGEN accepts the PROGRAM.X file as input and creates the PROGRAM_SVC.C server stub

file. The server can use both the UDP and TCP transports.

Creating Server Stubs for TCP or UDP
Transports
This command creates a server stub file for either the TCP or UDP transport:

RPCGEN -s {udp | tcp} [-o output] input

-s Creates a server (_SVC.C) that uses either the UDP or TCP transport (with -s, you

must specify either udp or tcp; do not also use -m)

udp Creates a UDP server

tcp Creates a TCP server

-o Specifies an output file (or the terminal if no output file is given)

output Name of the output file

input Name of an interface definition file with a .X extension

If you omit the output file, RPCGEN sends output to the terminal screen.

In this example, RPCGEN accepts the PROGRAM.X file as input and creates the

PROGRAM_SVC.C output file, containing a TCP server stub:

$ RPCGEN -s tcp -o PROGRAM_SVC.C PROGRAM.X

Error Handling
RPCGEN stops processing when it encounters an error. It indicates which line the error is on.

Restrictions
RPCGEN does not support the following:

• The syntax int x, y;. You must write this as int x; int y;

8. RPC RTL Management
Routines

Introduction
This chapter is for RPC programmers. It introduces RPC Run-Time Library (RTL) conventions

and documents the management routines in the RPC RTL. These routines are the programming

interface to RPC.

Management Routines
The RPC RTL contains:

• RPC management routines

• RPC client and server routines for the UDP and TCP transport layers

• On VAX and Alpha systems, RPC provides a single shareable image accessed via the

TCPIP$RPCXDR_SHR logical. This shareable image contains routines for all of the HP

C floating-point types. The correct routines will be called automatically based on the

compiler options used to compile the RPC application. See the Hewlett-Packard C

documentation for how to use the floating-point compiler options.

Chapter 7, Building Distributed Applications with RPC, explains how to link in the RPC RTL.

Routine Name Conventions
In this chapter, all routines are documented according to their standard UNIX names.

Header Files
All RPC programs include the file named RPC.H. Locations for this file are

TCPIP$RPC:RPC.H

The RPC.H file includes the files listed below:

Filename Purpose

AUTH.H Used for authentication.

AUTH_UNIX.H Contains XDR definitions for UNIX-style authentication.

CLNT.H Contains various RPC client definitions.

IN.H Defines structures for the internet and socket addresses (in_addrand and

sockaddr_in). This file is part of the C Socket Library.

RPC_MSG.H Defines the RPC message format.

SVC.H Contains various RPC server definitions.

SVC_AUTH.H Used for server authentication.

TYPES.H Defines UNIX C data types.

XDR.H Contains various XDR definitions.

NETDB.H Defines structures and routines to parse /etc/rpc.

There is an additional header file not included by RPC.H that is used by xdr_pmap and

xdr_pmaplist routines. The file name is pmap_prot.h, and the location is

TCPIP$RPC:PMAP_PROT.H.

Management Routines
RPC management routines retrieve and maintain information that describes how a process is

using RPC. This section describes each management routine and function in detail. The

following information is provided for each routine:

• Format

• Arguments

• Description

• Diagnostics, or status codes returned, if any

get_myaddress
Returns the internet address of the local host.

Format

void get_myaddress(struct sockaddr_in *addr);

Argument

addr

Address of a sockaddr_in structure that will be loaded with the host internet address. The

port number is always set to htons(PMAPPORT).

Description

The get_myaddress routine returns the internet address of the local host without doing any

name translation or DNS lookups.

getrpcbynumber
Gets an RPC entry.

Format

struct rpcent *getrpcbynumber(int number);

Argument

number

Program name or number.

Description

The getrpcbynumber routine returns a pointer to an object with the following structure

containing the broken-out fields of a line in the RPC program number database.

struct rpcent

{

 char *r_name; /* name of server for this RPC program */

 char **r_aliases; /* zero-terminated list of alternate names */

 long r_number; /* RPC program number */

};

The getrpcbynumber routine sequentially searches from the beginning of the file until a

matching RPC program name or program number is found, or until an EOF is encountered.

Returns

A NULL pointer is returned on EOF or error.

getrpcport
Gets an RPC port number.

Format

int getrpcport(char *host, int prognum, int versnum, int proto);

Arguments

host

Host running the RPC program.

prognum

Program number.

proto

Protocol name. Must be IPPROTO_TCP or IPPROTO_UDP.

Description

The getrpcport routine returns the port number for version versnum of the RPC program

prognum running on host and using protocol proto.

It returns 0 if it cannot contact the portmapper, or if prognum is not registered. If prognum is

registered but not with versnum, it still returns a port number (for some version of the

program), indicating that the program is indeed registered. The version mismatch is detected on

the first call to the service.

9. RPC RTL Client
Routines

Introduction
This chapter is for RPC programmers. It documents the client routines in the RPC Run-Time

Library (RTL). These routines are the programming interface to RPC.

Common Arguments
Many client, Port Mapper, and server routines use the same arguments.

The below table lists these arguments and defines their purpose. Arguments that are unique to

each routine are documented together with their respective routines in this and the following

chapters

Argument Purpose

args_ptr Address of the buffer to contain the decoded RPC arguments.

auth RPC authentication client handle created by the authnone_create,

authunix_create, or authunix_create_default routine.

clnt Client handle returned by any of the client create routines.

in Input arguments for the service procedure.

inproc XDR routine that encodes input arguments.

out Results of the remote procedure call.

outproc XDR routine that decodes output arguments.

procnum Number of the service procedure.

prognum Program number of the service program.

protocol Transport protocol for the service. Must be IPPROTO_UDP or IPPROTO_TCP.

s String containing the message of your choice. The routines append an error

message to this string.

sockp Socket to be used for this remote procedure call. If sockp is RPC_ANYSOCK, the

routine creates a new socket and defines sockp. The clnt_destroy routine

closes the socket.

If sockp is a value other than RPC_ANYSOCK, the routine uses this socket and

ignores the internet address of the server.

versnum Version number of the service program.

xdr_args XDR procedure that describes the RPC arguments.

xdrs Structure containing XDR encoding and decoding information.

xprt RPC server handle.

Client Routines
The client routines are called by the client main program or the client stub procedures.

The following sections describe each client routine in detail.

auth_destroy
A macro that destroys authentication information associated with an authentication handle.

Format

void auth_destroy(AUTH *auth)

Argument

auth

RPC authentication client handle created by the authnone_create, authunix_create,

or authunix_create_default routine.

Description

Use auth_destroy to free memory that was allocated for authentication handles. This routine

undefines the value of auth by deallocating private data structures.

Do not use this memory space after auth_destroy has completed. You no longer own it.

authnone_create
Creates and returns a null RPC authentication handle for the client process.

Format

AUTH *authnone_create();

Arguments

None.

Description

This routine is for client processes that require no authentication. RPC uses it as a default when it

creates a client handle.

authunix_create
Creates and returns an RPC authentication handle for the client process. Use this routine when

the server requires UNIX-style authentication.

Format

AUTH *authunix_create (char *host, int uid, int gid, int len, int

gids);

Arguments

host

Address of the name of the host that created the authentication information. This is usually the

local host running the client process.

uid

User ID of the person who is executing this process.

gid

User's group ID.

len

Number of elements in the *gids array.

gids

Address of the array of groups to which the user belongs.

Description

Since the client does not validate the uid and gid, it is easy to impersonate an unauthorized

user. Choose values the server expects to receive. The application must provide OpenVMS-to-

UNIX authorization mapping.

You can use a Socket Library lookup routine to get the host name.

authunix_create_default
Calls the authunix_create routine and provides default values as arguments.

Format

AUTH *authunix_create_default()

Arguments

See below.

Description

Like the authunix_create routine, authunix_create_default provides UNIX-style

authentication for the client process. However, authunix_create_default does not

require you to enter any arguments. Instead, this routine provides default values for the

arguments used by authunix_create, listed in the table below.

Argument Default Value

host local host domain name

uid getuid()

gid getgid()

len 0

gids 0

You can replace this call with authunix_create and provide appropriate values.

Example

auth_destroy(client->cl_auth);

client->cl_auth = authunix_create_default();

This example overrides the authnone_create routine, where client is the value returned by

the clnt_create, clntraw_create, clnttcp_create, or clntudp_create

routine.

callrpc

Format

int callrpc (char *host, u_long prognum, u_long versnum, u_long

procnum, xdrproc_t inproc, u_char *in, xdrproc_t outproc, u_char

*out);

Arguments

host

Host where the procedure resides.

prognum, versnum, procnum, inproc, in, outproc, out

See the Common Arguments table for a description of the above arguments.

Description

The callrpc routine performs the same functions as the clnt_create and

clnt_destroy routines.

Since the callrpc routine uses the UDP transport protocol, messages can be no larger than

8Kbytes. This routine does not allow you to control timeouts or authentication.

If you want to use the TCP transport, use the clnt_create or clnttcp_create routine.

Returns

The callrpc routine returns zero if it succeeds, and the value of enum clnt_stat cast to

an integer if it fails.

You can use the clnt_perrno routine to translate failure status codes into messages.

clnt_broadcast
Broadcasts a remote procedure call to all local networks, using the broadcast address.

Format

enum clnt_stat clnt_broadcast (u_long prognum, u_long versnum, u_long

procnum, xdrproc_t inproc, u_char *in, xdrproc_t outproc, u_char *out,

resultproc_t eachresult);

Arguments

prognum, versnum, procnum, inproc, in, outproc, out

See the Common Arguments table for a description of the above arguments.

eachresult

Each time clnt_broadcast receives a response, it calls the eachresult routine. If

eachresult returns zero, clnt_broadcast waits for more replies. If eachresult

returns a nonzero value, clnt_broadcast stops waiting for replies. The eachresult

routine uses this form:

int eachresult(u_char *out, struct sockaddr_in * addr)

out Contains the results of the remote procedure call, in the local data format.

*addr Is the address of the host that sent the results.

Description

The clnt_broadcast routine performs the same functions as the callrpc routine.

However, clnt_broadcast sends a message to all local networks, using the broadcast

address. The clnt_broadcast routine uses the UDP protocol.

The below table indicates how large a broadcast message can be.

Line Maximum Size

Ethernet 1500 bytes

proNet 2044 bytes

Returns

This routine returns diagnostic values defined in the CLNT.H file for enum clnt_stat.

clnt_call
A macro that calls a remote procedure.

Format

enum clnt_stat clnt_call (CLIENT *clnt, u_long procnum, xdrproc_t

inproc, u_char *in, xdrproc_t outproc, u_char *out, struct timeval

tout);

Arguments

clnt, procnum, inproc, in, outproc, out

See the Common Arguments table for a description of the above arguments.

tout

Time allowed for the results to return to the client, in seconds and microseconds. If you use the

clnt_control routine to change the CLSET_TIMEOUT code, this argument is ignored.

Description

Use the clnt_call routine after using clnt_create. After you have finished with the

client handle, use the clnt_destroy routine. You can use the clnt_perror routine to print

messages for any errors that occurred.

Returns

This routine returns diagnostic values defined in the CLNT.H file for enum clnt_stat.

clnt_control
A macro that changes or retrieves information about an RPC client process.

Format

bool_t clnt_control(CLIENT *clnt, u_long code, void *info);

Arguments

clnt

Client handle returned by any of the client create routines.

code

Code listed in the below table.

Code Type Purpose

CLSET_TIMEOUT struct timeval Set total timeout

CLGET_TIMEOUT struct timeval Get total timeout

CLSET_RETRY_TIMEOUT* struct timeval Set retry timeout

CLGET_RETRY_TIMEOUT* struct timeval Get retry timeout

CLGET_SERVER_ADDR struct sockaddr_in Get server address

* Valid only for the UDP transport protocol.

The timeval is specified in seconds and microseconds. The total timeout is the length of time

that the client waits for a reply. The default total timeout is 25 seconds.

The retry time is the length of time that UDP waits for the server to reply before transmitting the

request. The default retry timeout is 5 seconds. You might want to increase the retry time if your

network is slow.

For example, suppose the total timeout is 10 seconds and the retry time is five seconds. The

client sends the request and waits five seconds. If the client does not receive a reply, it sends the

request again. If the client does not receive a reply within five seconds, it does not send the

request again.

If you use CLSET_TIMEOUT to set the timeout, the clnt_call routine ignores the timeout

parameter it receives for all future calls.

info

Address of the information being changed or retrieved.

Returns

This routine returns TRUE if it succeeds, and FALSE if it fails.

clnt_create
Creates an RPC client handle.

Format

CLIENT *clnt_create(char *host, u_long prognum, u_long versnum, char

*proto);

Arguments

host

Address of the string containing the name of the remote host where the server is located.

prognum, versnum

See the Common Arguments table for a description of the above arguments.

proto

Address of a string containing the name of the transport protocol. Valid values are UDP and TCP.

Description

The clnt_create routine creates an RPC client handle for prognum. An RPC client handle

is a structure containing information about the RPC client. The client can use the UDP or TCP

transport protocol.

This routine uses the Port Mapper. You cannot control the local port.

The default sizes of the send and receive buffers are 8800 bytes for the UDP transport, and 4000

bytes for the TCP transport.

The retry time for the UDP transport is five seconds.

Use the clnt_create routine instead of the callrpc or clnt_broadcast routines if you

want to use one of the following:

• The TCP transport

• An authentication other than null

• More than one active client at the same time

You can also use clntraw_create to use the IP protocol, clnttcp_create to use the

TCP protocol, or clntudp_create to use the UDP protocol.

The clnt_create routine uses the global variable rpc_createerr. rpc_createerr is

a structure that contains the most recent service creation error. Use rpc_createerr if you

want the client program to handle the error. The value of rpc_createerr is set by any RPC

client creation routine that does not succeed.

The rpc_createerr variable is defined in the CLNT.H file.

Returns

The clnt_create routine returns the address of the client handle, or zero (if it could not

create the client handle).

If the clnt_create routine fails, you can use the clnt_pcreateerror routine to obtain

diagnostic information.

clnt_destroy
A macro that destroys an RPC client handle.

Format

void clnt_destroy(CLIENT *clnt);

Argument

clnt

Client handle returned by any of the client create routines.

Description

The clnt_destroy routine destroys the client's RPC handle by deallocating all memory

related to the handle. The client is undefined after the clnt_destroy call.

If the clnt_create routine had previously opened a socket, this routine closes the socket.

Otherwise, the socket remains open.

clnt_geterr
A macro that returns an error code indicating why an RPC call failed.

Format

void clnt_geterr(CLIENT *clnt, struct rpc_err *errp);

Arguments

clnt

Client handle returned by any of the client create routines.

errp

Address of the structure containing information that indicates why an RPC call failed. This

information is the same as clnt_stat contains, plus one of the following: the C error number,

the range of server versions supported, or authentication errors.

Description

This routine is primarily for internal diagnostic use.

Example

#define PROGRAM 1

#define VERSION 1

CLIENT *clnt;

struct rpc_err err;

clnt = clnt_create("server name", PROGRAM, VERSION, "udp");

/* calls to RPC library */

clnt_geterr(clnt, &err);

This example creates a UDP client handle and performs some additional RPC processing. If an

RPC call fails, clnt_geterr returns the error code.

clnt_pcreateerror / clnt_spcreateerror
Return a message indicating why RPC could not create a client handle.

Format

void clnt_pcreateerror(char *s);

char *clnt_spcreateerror(char *s);

Argument

s

String containing the message of your choice. The routines append an error message to this

string.

Description

The clnt_pcreateerror routine prints a message to SYS$OUTPUT.

The clnt_spcreateerror routine returns the address of a string. Use this routine if:

• You want to save the string.

• You do not want to use printf to print the message.

• The message format is different from the one that clnt_perrno supports.

The clnt_pcreateerror routine overwrites the string it returns, unless you save the results.

Use these routines when the clnt_create, clntraw_create, clnttcp_create, or

clntudp_create routine fails.

clnt_perrno / clnt_sperrno
Return a message indicating why the callrpc or clnt_broadcast routine failed to create a client

handle.

Format

void clnt_perrno (enum clnt_stat stat);

char *clnt_sperrno (enum clnt_stat stat);

Argument

stat

Appropriate error condition. Values for stat are defined in the CLNT.H file.

Description

The clnt_perrno routine prints a message to SYS$OUTPUT.

The clnt_sperrno routine returns the address of a string. Use this routine instead if:

• You want to save the string.

• You do not want to use printf to print the message.

• The message format is different from the one that clnt_perrno supports.

To save the string, copy it into your own memory space.

clnt_perror / clnt_sperror
Return a message if the clnt_call routine fails.

Format

void clnt_perror (CLIENT *clnt, char *s);

char *clnt_sperror (CLIENT *clnt, char *s);

Arguments

clnt

See the Common Arguments table for a description of the above argument.

s

String containing the message to output.

Description

Use these routines after clnt_call.

The clnt_perrorc routine prints an error message to SYS$OUTPUT.

The clnt_sperror routine returns a string. Use this routine if:

• You want to save the string.

• You do not want to use printf to print the message.

• The message format is different from the one that clnt_perror supports.

The clnt_sperror routine overwrites the string with each call. Copy the string into your own

memory space if you want to save it.

clntraw_create
Returns an RPC client handle. The remote procedure call uses the IP transport.

Format

CLIENT *clntraw_create (struct sockaddr_in *addr, u_long prognum,

u_long versnum, int *sockp, u_long sendsize, u_long recvsize);

Arguments

addr, prognum, versnum

See the Common Arguments table for a description of the above arguments.

sockp

Socket to be used for this remote procedure call. sockp can specify the local address and port

number. If sockp is RPC_ANYSOCK, then a port number is assigned. The example shown for

the clntudp_create routine shows how to set up sockp to specify a port. See the Common

Arguments table for a description of sockp and RPC_ANYSOCK.

addr

Internet address of the host on which the server resides.

sendsize

Size of the send buffer. If you enter a value less than 100, then 4000 is used as the default.

recvsize

Size of the receive buffer. If you enter a value less than 100, then 4000 is used as the default.

Description

The clntraw_create routine creates an RPC client handle for addr, prognum, and

versnum. The client uses the IP transport. The routine is similar to the clnt_create routine,

except clnttcp_create allows you to specify a socket and buffer sizes. If you specify the

port number as zero by using addr->sin_port, the Port Mapper provides the number of the

port on which the remote program is listening.

The transport used to pass messages to the service is actually a buffer within the process's

address space, so the corresponding RPC server should live in the same address space (see also

svcraw_create). This allows simulation of RPC and getting RPC overheads, such as round-

trip times, without kernel interference.

The clnttcp_create routine uses the global variable rpc_createerr, which is a

structure that contains the most recent service creation error. Use rpc_createerr if you want

the client program to handle the error. The value of rpc_createerr is set by any RPC client

creation routine that does not succeed. The rpc_createerr variable is defined in the

CLNT.H file.

Returns

The clntraw_createroutine returns the address of the client handle, or zero (if it could

not create the client handle). If the routine fails, use the clnt_pcreateerror routine to

obtain additional diagnostic information.

clnttcp_create
Returns an RPC client handle. The remote procedure call uses the TCP transport.

Format

CLIENT *clnttcp_create (struct sockaddr_in *addr, u_long prognum,

u_long versnum, int *sockp, u_long sendsize, u_long recvsize);

Arguments

addr, prognum, versnum

See the Common Arguments table for a description of the above arguments.

sockp

Socket to be used for this remote procedure call. sockp can specify the local address and port

number. If sockp is RPC_ANYSOCK, then a port number is assigned. The example shown for

the clntudp_create routine shows how to set up sockp to specify a port. See the Common

Arguments table for a description of sockp and RPC_ANYSOCK.

addr

Internet address of the host on which the server resides.

sendsize

Size of the send buffer. If you enter a value less than 100, then 4000 is used as the default.

recvsize

Size of the receive buffer. If you enter a value less than 100, then 4000 is used as the default.

Description

The clnttcp_create routine creates an RPC client handle for addr, prognum, and

versnum. The client uses the TCP transport. The routine is similar to the clnt_create

routine, except clnttcp_create allows you to specify a socket and buffer sizes. If you

specify the port number as zero by using addr->sin_port, the Port Mapper provides the

number of the port on which the remote program is listening.

The clnttcp_createroutine uses the global variable rpc_createerr.

rpc_createerr is a structure that contains the most recent service creation error. Use

rpc_createerr if you want the client program to handle the error. The value of

rpc_createerr is set by any RPC client creation routine that does not succeed. The

rpc_createerr variable is defined in the CLNT.H file.

Returns

The clnttcp_create routine returns the address of the client handle, or zero (if it could not

create the client handle). If the routine fails, use the clnt_pcreateerror routine to obtain

additional diagnostic information.

clntudp_create / clntudp_bufcreate
Returns an RPC client handle. The remote procedure call uses the UDP transport.

Format

CLIENT *clntudp_create (struct sockaddr_in *addr, u_long prognum,

u_long versnum, struct timeval wait, int *sockp);

CLIENT *clntudp_bufcreate (struct sockaddr_in *addr, u_long prognum,

u_long versnum, struct timeval wait, int *sockp, u_long sendsize,

u_long recvsize);

Arguments

addr

Internet address of the host on which the server resides.

prognum, versnum, sockp

See the Common Arguments table for a description of the above arguments.

wait

Time interval the client waits before resending the call message. This value changes the

CLSET_RETRY_TIMEOUT code. The clnt_call routine uses this value.

sendsize

Size of the send buffer. If you enter a value less than 100, then 4000 is used as the default.

recvsize

Size of the receive buffer. If you enter a value less than 100, then 4000 is used as the default.

Description

These routines create an RPC client handle for addr, prognum, and versnum. The client uses

the UDP transport protocol.

If you specify the port number as zero by using addr->sin_port, the Port Mapper provides

the number of the port on which the remote program is listening.

Note: Use the clntudp_create routine only for procedures that handle messages

shorter than 8K bytes. Use the clntudp_bufcreate routine for procedures that handle

messages longer than 8K bytes.

The clntudp_create routine uses the global variable rpc_createerr.

rpc_createerr is a structure that contains the most recent service creation error. Use

rpc_createerr if you want the client program to handle the error. The value of

rpc_createerr is set by any RPC client creation routine that does not succeed.

The rpc_createerr variable is defined in the CLNT.H file.

Example

main()

{

 int sock;

 u_long prog = PROGRAM, vers = VERSION;

 CLIENT *clnt;

 struct sockaddr_in local_addr, remote_addr;

 struct timeval timeout = { 35, 0},

 retry = { 5, 0};

 remote_addr.sin_family = AF_INET;

 remote_addr.sin_port = 0; /* consult the remote port mapper */

 remote_addr.sin_addr.s_addr = 0x04030201; /* internet

 addr 1.2.3.4 */

 local_addr.sin_family = AF_INET;

 local_addr.sin_port = 12345; /* use port 12345 */

 local_addr.sin_addr.s_addr = 0x05030201; /* internet addr 1.2.3.5

*/

 sock = socket(AF_INET, SOCK_DGRAM, 0);

 /* bind the socket to the local addr */

 bind(sock, &local_addr, sizeof(local_addr));

 /* create a client that uses the local IA and port given above */

 clnt = clntudp_create(&remote_addr, prog, vers, retry, &sock);

 /* use a connection timeout of 35 seconds, not the default */

 clnt_control(clnt, CLSET_TIMEOUT, &timeout);

 /*call the server here*/

}

This example defines a socket structure, binds the socket, and creates a UDP client handle.

Returns

These routines return the address of the client handle, or zero (if they cannot create the client

handle).

If these routines fail, you can obtain additional diagnostic information by using the

clnt_pcreateerror routine.

10. RPC RTL Port Mapper
Routines

Introduction
This chapter is for RPC programmers. It documents the port mapper routines in the RPC Run-

Time Library (RTL). These routines are the programming interface to RPC.

Port Mapper Routines
Port Mapper routines provide a simple callable interface to the Port Mapper. They allow you to

request Port Mapper services and information about port mappings. The table belowError!

Reference source not found. summarizes the purpose of each Port Mapper routine.

Routine Purpose

pmap_getmaps Returns a list of Port Mappings for the specified host.

pmap_getport Returns the port number on which a specified service is waiting.

pmap_rmtcall Requests the Port Mapper on a remote host to call a procedure on that host.

pmap_set Registers a remote service with a remote port.

pmap_unset Unregisters a service so it is no longer mapped to a port.

Port Mapper Arguments
Port Mapper routines use many of the same arguments as client routines. See the Common

Arguments table in the RPC RTL Client Routines chapter for a list of these arguments.

The following sections describe each Port Mapper routine in detail.

pmap_getmaps
Returns a list of Port Mappings for the specified host.

Format

struct pmaplist *pmap_getmaps (struct sockaddr_in *addr);

Argument

addr

Address of a structure containing the internet address of the host whose Port Mapper is being

called.

Description

The pmap_getmaps routine returns a list of current RPC server-to-Port Mappings on the host

at addr. The list structure is defined in the PMAP_PROT.H file.

The MULTINET SHOW /RPC_PORTMAP command uses this routine.

Returns

If an error occurs (for example, pmap_getmaps cannot get a list of Port Mappings, the internet

address is invalid, or the remote Port Mapper does not exist), the routine returns either NULL or

the address of the list.

pmap_getport
Returns the port number on which a specified service is waiting.

Format

u_short pmap_getport (struct sockaddr_in *addr, u_long prognum, u_long

versnum, u_long protocol);

Arguments

addr

Address of a structure containing the internet address of the remote host on which the server

resides.

prognum, versnum, protocol

See the Common Arguments table in the RPC RTL Client Routines chapter for a list of these

arguments.

Returns

If the requested mapping does not exist or the routine fails to contact the remote Port Mapper, the

routine returns either the port number or zero.

The pmap_getport routine uses the global variable rpc_createerr. rpc_createerr

is a structure that contains the most recent service creation error. Use rpc_createerr if you

want the service program to handle the error. The value of rpc_createerr is set by any RPC

server creation routine that does not succeed.

The rpc_createerr variable is defined in the CLNT.H file.

pmap_rmtcall
Requests the Port Mapper on a remote host to call a procedure on that host.

Format

enum clnt_stat pmap_rmtcall (struct sockaddr_in *addr, u_long prognum,

u_long versnum, u_long procnum, xdrproc_t inproc, u_char *in,

xdrproc_t outproc, u_char *out, struct timeval tout, u_long *portp);

Arguments

addr

Address of a structure containing the internet address of the remote host on which the server

resides.

prognum, versnum, procnum, inproc, in, outproc, out

See the Common Arguments table in the RPC RTL Client Routines chapter for a list of these

arguments.

tout

Time allowed for the results to return to the client, in seconds and microseconds.

portp

Address where pmap_rmtcall will write the port number of the remote service.

Description

The pmap_rmtcall routine allows you to get a port number and call a remote procedure in

one call. The routine requests a remote Port Mapper to call a prognum, versnum, and

procnum on the Port Mapper's host. The remote procedure call uses the UDP transport.

If pmap_rmtcall succeeds, it changes portp to contain the port number of the remote

service.

After calling the pmap_rmtcall routine, you may call the clnt_perrno /

clnt_sperrno routine.

Returns

This routine returns diagnostic values defined in the CLNT.H file for enum clnt_stat.

pmap_set
Registers a remote service with a remote port.

Format

bool_t pmap_set (u_long prognum, u_long versnum, u_long protocol,

u_short port);

Arguments

prognum, versnum, protocol

See the Common Arguments table in the RPC RTL Client Routines chapter for a list of these

arguments.

port

Remote port number.

Description

The pmap_set routine calls the local Port Mapper to tell it which port and protocol the

prognum, versnum is using.

You are not likely to use pmap_set, because svc_register calls it.

Returns

The pmap_set routine returns TRUE if it succeeds, and FALSE if it fails.

pmap_unset
Unregisters a service so it is no longer mapped it to a port.

Format

bool_t pmap_unset (u_long prognum, u_long versnum);

Arguments

prognum, versnum

See the Common Arguments table in the RPC RTL Client Routines chapter for a list of these

arguments.

Description

The pmap_unset routine calls the local Port Mapper and, for all protocols, removes the

prognum and versnum from the list that maps servers to ports.

You are not likely to use pmap_unset, because svc_unregister calls it.

Returns

The pmap_unset routine returns TRUE if it succeeds, FALSE if it fails.

11. RPC RTL Server
Routines

Introduction
This chapter is for RPC programmers. It documents the server routines in the RPC Run-Time

Library (RTL). These routines are the programming interface to RPC.

Server Routines
The server routines are called by the server program or the server stub procedures. The below

table lists each server routine and summarizes its purpose.

Routine Purpose

registerrpc Performs creation and registration tasks for server.

svc_destroy Macro that destroys RPC server handle.

svc_freeargs Macro that frees memory allocated when RPC arguments were

decoded.

svc_getargs Macro that decodes RPC arguments.

svc_getreqset Reads data for each server connection.

svc_register Adds specified server to list of active servers, and registers service

program with Port Mapper.

svc_run Waits for RPC requests and calls svc_getreqset routine to

dispatch to appropriate RPC service program.

svc_sendreply Sends results of remote procedure call to client.

svc_unregister Calls Port Mapper to unregister specified program and version for all

protocols.

svcerr_auth

svcerr_decode

svcerr_noproc

svcerr_noprog

svcerr_progvers

svcerr_systemerr

svcerr_weakauth

Sends error code when server cannot authenticate client.

Sends error code to client if server cannot decode arguments.

Sends error code to client if server cannot implement requested

procedure.

Sends error code to client when requested program is not registered

with Port Mapper.

Sends error code to client when requested program is registered with

Port Mapper, but requested version is not registered.

Sends error code to client when server encounters error not handled

by particular protocol.

Sends error code to client when server cannot perform remote

procedure call because it received insufficient (but correct)

authentication parameters.

svcfd_create Returns address of structure containing server handle for specified

TCP socket.

svctcp_create Returns address of server handle that uses TCP transport.

svcudp_bufcreate /

svcudp_create
Returns address of server handle that uses UDP transport. For

procedures that pass messages longer than 8Kbytes.

svcudp_enablecache Enables XID cache for specified UDP transport server.

xprt_register Adds UDP or TCP server socket to list of sockets.

xprt_unregister Removes UDP or TCP server socket from list of sockets.

The following sections describe each server routine in detail.

registerrpc
Performs creation and registration tasks for the server.

Format

int registerrpc(u_long prognum, u_long versnum, u_long procnum,

u_char *(*procname) (), xdrproc_t inproc, xdrproc_t outproc);

Arguments

prognum, versnum, procnum, inproc, outproc

See the Common Arguments table in the RPC RTL Client Routines chapter for a list of these

arguments.

procname

Address of the routine that implements the service procedure. The routine uses the following

format:

u_char *procname(u_char *out);

out is the address of the data decoded by outproc.

Description

The registerrpc routine performs the following tasks for a server:

• Creates a UDP server handle.

• Calls the svc_register routine to register the program with the Port Mapper.

• Adds prognum, versnum, and procnum to an internal list of registered procedures.

When the server receives a request, it uses this list to determine which routine to call.

A server should call registerrpc for every procedure it implements, except for the NULL

procedure.

Returns

The registerrpc routine returns zero if it succeeds, and -1 if it fails.

svc_destroy
Macro that destroys the RPC server handle.

Format

void svc_destroy (SVCXPRT *xprt);

Argument

xprt

RPC server handle.

Description

The svc_destroy routine destroys xprt by deallocating private data structures. After this

call, xprt is undefined.

If the server creation routine received RPC_ANYSOCK as the socket, svc_destroy closes the

socket. Otherwise, you must close the socket.

svc_freeargs
Macro that frees the memory that was allocated when the RPC arguments were decoded.

Format

bool_t svc_freeargs (SVCXPRT *xprt, xdrproc_t xdr_args, char

*args_ptr);

Arguments

xprt, xdr_args, args_ptr

See the Common Arguments table in the RPC RTL Client Routines chapter for a list of these

arguments.

Description

The svc_freeargs routine calls the xdr_free routine.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

svc_getargs
Macro that decodes the RPC arguments.

Format

bool_t svc_getargs (SVCXPRT *xprt, xdrproc_t xdr_args, u_char

*args_ptr);

Arguments

xprt, xdr_args, args_ptr

See the Common Arguments table in the RPC RTL Client Routines chapter for a list of these

arguments.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

svc_getreqset
Reads data for each server connection.

Format

void svc_getreqset (int rdfds);

Argument

rdfds

Address of the read socket descriptor array. This array is returned by the select routine.

Description

The server calls svc_getreqset when it receives an RPC request. The svc_getreqset

routine reads in data for each server connection, then calls the server program to handle the data.

The svc_getreqset routine does not return a value. It finishes executing after all rdfds

sockets have been serviced.

You are unlikely to call this routine directly, because the svc_run routine calls it. However,

there are times when you cannot call svc_run. For example, suppose a program services RPC

requests and reads or writes to another socket at the same time. The program cannot call

svc_run. It must call select and svc_getreqset.

The svc_getreqset routine is for servers that implement custom asynchronous event

processing, do not use the svc_run routine.

You may use the global variable svc_fdset with svc_getreqset. The svc_fdset

variable lists all sockets the server is using. It contains an array of structures, where each element

is a socket pointer and a service handle. It uses the following format:

struct sockarr svc_fdset [MAXSOCK +1];

This is how to use svc_fdset: first, copy the socket handles from svc_fdset into a

temporary array that ends with a zero. Pass the array to the select() routine. The select()

routine overwrites the array and returns it. Pass this array to the svc_getreqset routine.

You may use svc_fdset when the server does not use svc_run.

The svc_fdset variable is not compatible with UNIX.

Example

#define MAXSOCK 10

int readfds[MAXSOCK+1], /* sockets to select from */

 i, j;

for (i = 0, j = 0; i < MAXSOCK; i++)

 if ((svc_fdset[i].sockname != 0) && (svc_fdset[i].sockname != 1))

 readfds[j++] = svc_fdset[i].sockname;

readfds[j] = 0;

 /* list of sockets ends w/ a zero */

switch (select(0, readfds, 0, 0, 0))

{

 case -1: /* an error happened */

 case 0: /* time out */

 break;

 default: /* 1 or more sockets ready for reading */

 errno = 0;

 ONCRPC_SVC_GET_REQSET(readfds);

 if (errno == ENETDOWN || errno == ENOTCONN)

 sys$exit(SS$_THIRDPARTY);

}

svc_register
Adds the specified server to a list of active servers, and registers the service program with the

Port Mapper.

Format

bool_t svc_register (SVCXPRT *xprt, u_long prognum, u_long versnum,

void (*dispatch) (), u_long protocol);

Arguments

xprt, prognum, versnum

See the Common Arguments table in the RPC RTL Client Routines chapter for a list of these

arguments.

dispatch

Routine that svc_register calls when the server receives a request for prognum,

versnum. This routine determines which routine to call for each server procedure. This routine

uses the following form:

void dispatch(struct svc_req *request, SVCXPRT *xprt);

The svc_getreqset and svc_run routines call dispatch.

protocol

Must be IPPROTO_UDP, IPPROTO_TCP, or zero. Zero indicates that you do not want to

register the server with the Port Mapper.

Returns

The svc_register routine returns TRUE if it succeeds and FALSE if it fails.

svc_run
Waits for RPC requests and calls the svc_getreqset routine to dispatch to the appropriate

RPC service program.

Format

void svc_run();

Description

The svc_run routine calls the select() routine to wait for RPC requests. When a request

arrives, svc_run calls the svc_getreqset routine. Then svc_run calls select() again.

The svc_run routine never returns.

You may use the global variable svc_fdset with svc_run. See the svc_getreqset

routine for more information on svc_fdset.

svc_sendreply
Sends the results of a remote procedure call to the client.

Format

bool_t svc_sendreply (SVCXPRT *xprt, xdrproc_t outproc, caddr_t *out);

Arguments

xprt, outproc, out

See the Common Arguments table in the RPC RTL Client Routines chapter for a list of these

arguments.

Description

The routine sends the results of a remote procedure call to the client.

Returns

These routines return TRUE if they succeed and FALSE if they fail.

svc_unregister
Calls the Port Mapper to unregister the specified program and version for all protocols. The

program and version are removed from the list of active servers.

Format

void svc_unregister (u_long prognum, u_long versnum);

Arguments

prognum, versnum

See the Common Arguments table in the RPC RTL Client Routines chapter for a list of these

arguments.

svcerr_auth / svcerr_decode / svcerr_noproc /
svcerr_noprog / svcerr_progvers /
svcerr_systemerr / svcerr_weakauth
Sends various error codes to the client process.

Format

void svcerr_auth (SVCXPRT *xprt, enum auth_stat why);

void svcerr_decode (SVCXPRT *xprt);

void svcerr_noproc (SVCXPRT *xprt);

void svcerr_noprog (SVCXPRT *xprt);

void svcerr_progvers (SVCXPRT *xprt, u_long low-vers, u_long high-

vers);

void svcerr_systemerr (SVCXPRT *xprt);

void svcerr_weakauth (SVCXPRT *xprt);

Arguments

xprt

RPC server handle.

why

Error code defined in the AUTH.H file.

low-vers

Lowest version number in the range of versions that the server supports.

high-vers

Highest version in the range of versions that the server supports.

Description

svcerr_auth

See svc_getreqset. Calls svcerr_auth when it cannot authenticate a client. The

svcerr_auth routine returns an error code (why) to the caller.

svcerr_decode

Sends an error code to the client if the server cannot decode the arguments.

svcerr_noproc

Sends an error code to the client if the server does not implement the requested procedure.

svcerr_noprog

Sends an error code to the client when the requested program is not registered with the port

mapper. Generally, the port mapper informs the client when a server is not registered. Therefore,

the server is not expected to use this routine.

svcerr_progvers

Sends an error code to the client when the requested program is registered with the Port Mapper,

but the requested version is not registered.

svcerr_systemerr

Sends an error code to the client when the server encounters an error that is not handled by a

particular protocol.

svcerr_weakauth

Sends an error code to the client when the server cannot perform a remote procedure call because

it received insufficient (but correct) authentication parameters. This routine calls the

svcerr_auth routine. The value of why is AUTH_TOOWEAK, which means "access

permission denied."

svcfd_create
Returns the address of a structure containing a server handle for the specified TCP socket.

Format

SVCXPRT *svcfd_create (int sock, u_long sendsize, u_long recvsize);

Arguments

sock

Socket number. Do not specify a file descriptor.

sendsize

Size of the send buffer. If you enter a value less than 100, then 4000 is used as the default.

recvsize

Size of the receive buffer. If you enter a value less than 100, then 4000 is used as the default.

Description

The svcfd_create routine returns the address of a server handle for the specified TCP

socket. This handle cannot use a file. The server calls the svcfd_create routine after it

accepts a TCP connection.

Returns

This routine returns zero if it fails.

svcraw_create
Creates a server handle for memory-based Sun RPC for simple testing and timing.

Format

SVCXPRT svcraw_create();

Description

The svcraw_create routine creates a toy Sun RPC service transport, to which it returns a

pointer. The transport is really a buffer within the process's address space, so the corresponding

client should live in the same address space.

This routine allows simulation of and acquisition of Sun RPC overheads (such as round-trip

times) without any kernel interference.

Returns

This routine returns NULL if it fails.

svctcp_create
Returns the address of a server handle that uses the TCP transport.

Format

SVCXPRT *svctcp_create(int sock, u_long sendsize, u_long recvsize);

Arguments

sock

Socket for this service. The svctcp_create routine creates a new socket if you enter

RPC_ANYSOCK. If the socket is not bound to a TCP port, svctcp_create binds it to an

arbitrary port.

sendsize

Size of the send buffer. If you enter a value less than 100, then 4000 bytes is used as the default.

recvsize

Size of the receive buffer. If you enter a value less than 100, then 4000 bytes is used as the

default.

Returns

The svctcp_create routine returns either the address of the server handle, or zero (if it could

not create the server handle).

svcudp_create / svcudp_bufcreate
Returns the address of a server handle that uses the UDP transport.

Format

SVCXPRT *svcudp_create (int sock);

SVCXPRT *svcudp_bufcreate (int sock, u_long sendsize, u_long

recvsize);

Arguments

sock

Socket for this service. These routines create a new socket if you enter RPC_ANYSOCK. If the

socket is not bound to a UDP port, the routines bind it to an arbitrary port.

sendsize

Size of the send buffer. The minimum size is 100 bytes. The maximum size is 65468, the

maximum UDP packet size. If you enter a value less than 100, then 4000 is used as the default.

recvsize

Size of the receive buffer. The minimum size is 100 bytes. The maximum size is 65000, the

maximum UDP packet size. If you enter a value less than 100, then 4000 is used as the default.

Description

Use the svc_create routine only for procedures that pass messages shorter than 8Kbytes

long. Use the svcudp_bufcreate routine for procedures that pass messages longer than

8Kbytes.

Returns

These routines return either a server handle, or zero (if they could not create the server handle).

svcudp_enablecache
Enables the XID cache for the specified UDP transport server.

Format

bool_t svcudp_enablecache (SVCXPRT *xprt, u_long size);

Arguments

xprt

RPC server handle.

size

Number of entries permitted in the XID cache. You may estimate this number based on how

active the server is, and on how long you want to retain old replies.

Description

Use the svcudp_enablecache routine after a UDP server handle is created. The server

places all outgoing responses in the XID cache. The cache can be used to improve the

performance of the server, for example, by preventing the server from recalculating the results or

sending incorrect results.

You cannot disable the XID cache for UDP servers.

The RPC Fundamentals, Chapter 6, provides more information on the XID cache.

Example

#define FALSE 0

#define UDP_CACHE_SIZE 10

SVCXPRT *udp_xprt;

udp_xprt = svcudp_create(RPC_ANYSOCK);

if (svcudp_enablecache(udp_xprts, UDP_CACHE_SIZE) == FALSE)

 printf("XID cache was not enabled");

else

 printf("XID cache was enabled");

Returns

This routine returns TRUE if it enables the XID cache, and FALSE if the cache was previously

enabled or an error occurs.

xprt_register
Adds a TCP or UDP server socket to a list of sockets.

Format

void xprt_register (SVCXPRT *xprt);

Argument

xprt

RPC server handle.

Description

The xprt_register and xprt_unregister routines maintain a list of sockets. This list

ensures that the correct server is called to process the request. The xprt_register routine

adds the server socket to the svc_fdset variable, which also stores the server handle that is

associated with the socket. The svc_run routine passes the list of sockets to the select()

routine. The select() routine returns to svc_run a list of sockets that have outstanding

requests.

You are unlikely to call this routine directly because svc_register calls it.

xprt_unregister
Removes a TCP or UDP server socket from a list of sockets.

Format

void xprt_unregister (SVCXPRT *xprt);

Argument

xprt

RPC server handle.

Description

This list of sockets ensures that the correct server is called to process the request. See the

xprt_unregister routine for a description of how this list is maintained.

You are unlikely to call this routine directly because svc_unregister calls it.

12. RPC RTL XDR Routines

Introduction
This chapter is for RPC programmers. It documents the XDR routines in the RPC Run-Time

Library (RTL). These routines are the programming interface to RPC.

XDR Routines
This section explains what XDR routines do and when you would call them. It also provides

quick reference and detailed reference sections describing each XDR routine.

What XDR Routines Do
Most XDR routines share these characteristics:

• They convert data in two directions: from the host's local data format to XDR format

(called encoding or marshalling), or the other way around (called decoding or

unmarshalling).

• They use xdrs, a structure containing instructions for encoding, decoding, and

deallocating memory.

• They return a Boolean value to indicate success or failure.

Some XDR routines allocate memory while decoding an argument. To free this memory, call the

xdr_free routine after the program is done with the decoded value.

The below table shows the order in which XDR routines perform encoding and decoding.

Client Server

1. Encodes arguments

2. Decodes results

3. Frees results from memory

1. Decodes arguments

2. Encodes results

3. Frees arguments from memory

When to Call XDR Routines
Under most circumstances, you are not likely to call any XDR routines directly. The

clnt_call and svc_sendreply routines call the XDR routines.

You would call the XDR routines directly only when you write your own routines to convert data

to or from XDR format.

Quick Reference
The below table lists the XDR routines that encode and decode data.

This routine... Encodes and decodes...

xdr_array Variable-length array

xdr_bool Boolean value

xdr_bytes Bytes

xdr_char Character

xdr_double Double-precision floating point number

xdr_enum Enumerated type

xdr_float Floating point value

xdr_hyper VAX quad word to an XDR hyper-integer, or the other way

xdr_int Four-byte integer

xdr_long Longword

xdr_opaque Contents of a buffer (treats the data as a fixed length of bytes and does not

attempt to interpret them)

xdr_pointer Pointer to a data structure

xdr_reference Pointer to a data structure (the address must be non-zero)

xdr_short Two-byte unsigned integer

xdr_string Null-terminated string

xdr_u_char Unsigned character

xdr_u_hyper VAX quad word to an XDR unsigned hyper-integer

xdr_u_int Four-byte unsigned integer

xdr_u_long Unsigned longword

xdr_u_short Two-byte unsigned integer

xdr_union Union

xdr_vector Vector (fixed length array)

xdr_void Nothing

xdr_wrapstring Null-terminated string

The below table lists the XDR routines that perform various support functions.

This routine... Does this...

xdr_free Deallocates a data structure from memory

xdrmem_create Creates a memory buffer XDR stream

xdrrec_create Creates a record-oriented XDR stream

xdrrec_endofrecord Marks the end of a record

xdrrec_eof Goes to the end of the current record, then verifies whether any more

data can be read

xdrrec_skiprecord Goes to the end of the current record

xdrstdio_create Initializes an stdio stream

The below table lists the upper layer XDR routines that support RPC.

This routine... Encodes and decodes...

xdr_accepted_reply Part of an RPC reply message after the reply is accepted

xdr_authunix_parms UNIX-style authentication information

xdr_callhdr Static part of an RPC request message header (encoding only)

xdr_callmsg RPC request message

xdr_netobj Data in the netobj structure

xdr_opaque_auth Authentication information

xdr_pmap Port Mapper parameters

xdr_pmaplist List of Port Mapping data

xdr_rejected_reply Part of an RPC reply message after the reply is rejected

xdr_replymsg RPC reply header; it then calls the appropriate routine to convert the

rest of the message

The following sections describe each XDR routine in detail.

xdr_accepted_reply
Converts an RPC reply message from local format to XDR format, or the other way around.

Format

bool_t xdr_accepted_reply (XDR *xdrs, struct accepted_reply *ar);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

ar

Address of the structure containing the RPC reply message.

Description

The xdr_replymsg routine calls the xdr_accepted_reply routine.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_array
Converts a variable-length array from local format to XDR format, or the other way around.

Format

bool_t xdr_array (XDR *xdrs, u_char **addrp, u_long *sizep, u_long

maxsize, u_long elsize, xdrproc_t elproc);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

addrp

Address of the address containing the array being converted. If addrp is zero, then

xdr_array allocates ((*sizep) *elsize) number of bytes when it decodes.

sizep

Address of the number of elements in the array.

maxsize

Maximum number of elements the array can hold.

elsize

Size of each element, in bytes.

elproc

XDR routine that handles each array element.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_authunix_parms
Converts UNIX-style authentication information from local format to XDR format, or the other

way around.

Format

bool_t xdr_authunix_parms (XDR *xdrs, struct authunix_parms *aupp);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

aupp

UNIX-style authentication information being converted.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_bool
Converts a boolean value from local format to XDR format, or the other way around.

Format

bool_t xdr_bool (XDR *xdrs, bool_t *bp);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

bp

Address of the boolean value.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_bytes
Converts bytes from local format to XDR format, or the other way around.

Format

bool_t xdr_bytes (XDR *xdrs, u_char **cpp, u_long *sizep, u_long

maxsize);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

cpp

Address of the address of the buffer containing the bytes being converted. If *cpp is zero,

xdr_bytes allocates maxsize bytes when it decodes.

sizep

Address of the actual number of bytes being converted.

maxsize

Maximum number of bytes that can be used. The server protocol determines this number.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_callhdr
Encodes the static part of an RPC request message header.

Format

bool_t xdr_callhdr (XDR *xdrs, struct rpc_msg *chdr);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

chdr

Address of the data being converted.

Description

The xdr_callhdr routine converts the following fields: transaction ID, direction, RPC

version, server program number, and server version. It converts the last four fields once, when

the client handle is created.

The clnttcp_create and clntudp_create / clntudp_bufcreate routines call the

xdr_callhdr routine.

Returns

This routine always returns TRUE.

xdr_callmsg
Converts an RPC request message from local format to XDR format, or the other way around.

Format

bool_t xdr_callmsg (XDR *xdrs, struct rpc_msg *cmsg);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

cmsg

Address of the message being converted.

Description

The xdr_callmsg routine converts the following fields: transaction ID, RPC direction, RPC

version, program number, version number, procedure number, client authentication.

The pmap_rmtcall, svc_sendreply, and svc_sendreply_dq routines call

xdr_callmsg.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_char
Converts a character from local format to XDR format, or the other way around.

Format

bool_t xdr_char (XDR *xdrs, char *cp);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

cp

Address of the character being converted.

Description

This routine provides the same functionality as the xdr_u_char routine.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_double
Converts a double-precision floating point number between local and XDR format.

Format

bool_t xdr_double (XDR *xdrs, double *dp);

Arguments

xdrs

Pointer to an XDR stream handle created by one of the XDR stream handle creation routines.

dp

Pointer to the double-precision floating point number.

Description

This routine provides a filter primitive that translates between double-precision numbers and

their external representations. It is actually implemented by four XDR routines:

xdr_double_D Converts VAX D format floating point numbers

xdr_double_G Converts VAX G format floating point numbers

xdr_double_T Converts IEEE T format floating point numbers

xdr_double_X Converts IEEE X format floating point numbers

You can reference these routines explicitly or you can use compiler settings to control which

routine is used when you reference the xdr_double routine.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_enum
Converts an enumerated type from local format to XDR format, or the other way around.

Format

bool_t xdr_enum (XDR *xdrs, enum_t *ep);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

ep

Address containing the enumerated type.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_float
Converts a floating point value from local format to XDR format, or the other way around.

Format

bool_t xdr_float (XDR *xdrs, float *fp);

Arguments

xdrs

Pointer to an XDR stream handle created by one of the XDR stream handle creation routines.

fp

Pointer to a single-precision floating point number.

Description

This routine provides a filter primitive that translates between double-precision numbers and

their external representations. It is actually implemented by four XDR routines:

xdr_float_F Converts VAX F format floating point numbers

xdr_float_S Converts IEEE T format floating point numbers

You can reference these routines explicitly or you can use compiler settings to control which

routine is used when you reference the xdr_float routine.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_free
Deallocates a data structure from memory.

Format

void xdr_free (xdrproc_t proc, u_char *objp);

Arguments

proc

XDR routine that describes the data structure.

objp

Address of the data structure.

Description

Call this routine after decoded data is no longer needed. Do not call it for encoded data.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_hyper
Converts a VAX quad word to an XDR hyper-integer, or the other way around.

Format

bool_t xdr_hyper (XDR *xdrs, quad *ptr);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

ptr

Address of the structure containing the quad word. The quad word is stored in standard VAX

quad word format, with the low-order longword first in memory.

Description

This routine provided the same functionality as the xdr_u_hyper routine.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_int
Converts one four-byte integer from local format to XDR format, or the other way around.

Format

bool_t xdr_int (XDR *xdrs, int *ip);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

ip

Address containing the integer.

Description

This routine provides the same functionality as the xdr_u_int, xdr_long, and

xdr_u_long routines.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_long
Converts one longword from local format to XDR format, or the other way around.

Format

bool_t xdr_long (XDR *xdrs, u_long *lp);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

lp

Address containing the longword.

Description

This routine provides the same functionality as the xdr_u_long, xdr_int, and xdr_u_int

routines.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_netobj
Converts data in the netobj structure from the local data format to XDR format, or the other

way around.

Format

bool_t xdr_netobj (XDR *xdrs, netobj *ptr);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

ptr

Address of the following structure:

typedef struct

{

 u_long n_len;

 byte *n_bytes;

} netobj;

This structure defines the data being converted.

Description

The netobj structure is an aggregate data structure that is opaque and contains a counted array

of 1024 bytes.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_opaque
Converts the contents of a buffer from the local data format to XDR format, or the other way

around. This routine treats the data as a fixed length of bytes and does not attempt to interpret

them.

Format

bool_t xdr_opaque (XDR *xdrs, char *cp, u_long cnt);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

cp

Address of the buffer containing opaque data.

cnt

Byte length.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_opaque_auth
Converts authentication information from the local data format to XDR format, or the other way

around.

Format

bool_t xdr_opaque_auth (XDR *xdrs, struct opaque_auth *ap);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

ap

Address of the authentication information. This data was created by the authnone_create,

authunix_create, or authunix_create_default routine.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_pmap
Converts port mapper parameters from the local data format to XDR format, or the other way

around.

Format

#include "MULTINET_INCLUDE:PMAP_PROT.H"

bool_t xdr_pmap (XDR *xdrs, struct pmap *regs);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

regs

Address of a structure containing the program number, version number, protocol number, and

port number. This is the data being converted.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_pmaplist
Converts a list of port mapping data from the local data format to XDR format, or the other way

around.

Format

#include "TCPIP$RPC:PMAP_PROT.H"

bool_t xdr_pmaplist (XDR *xdrs, struct pmaplist **rpp);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

rpp

Address of the address of the structure containing port mapper data. If this routine is used to

decode a port mapper listing, rpp is set to the address of the newly allocated linked list of

structures.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_pointer
Converts a recursive data structure from the local data format to XDR format, or the other way

around.

Format

#include tcpip$rpc:xdr.h

bool_t xdr_pointer (XDR *xdrs, u_char **objpp, u_long obj_size,

xdrproc_t xdr_obj);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

objpp

Address of the address containing the data being converted. May be zero.

obj_size

Size of the data structure in bytes.

xdr_obj

XDR routine that describes the object being pointed to. This routine can describe complex data

structures, and these structures may contain pointers.

Description

An XDR routine for a data structure that contains pointers to other structures, such as a linked

list, would call the xdr_pointer routine. The xdr_pointer routine encodes a pointer from

an address into a boolean. If the boolean is TRUE, the data follows the boolean.

Example

bool_t xdr_pointer(XDR *xdrs, char **objpp, longw obj_size,

 xdrproc_t xdr_obj)

{

 bool_t more_data;

 //determine if the pointer is a valid address (0 is invalid)

 if (*objpp != NULL)

 more_data = TRUE;

 else

 more_data = FALSE;

 //XDR the flag - if we are decoding, then more_data is overwritten

 if (!xdr_bool(xdrs, &more_data))

 return(FALSE);

 //if there is no more data, set the pointer to 0 (No effect if we

 //were encoding) and return TRUE

 if (!more_data)

 {

 *objpp = NULL;

 return(TRUE);

 }

 //Otherwise, call xdr_reference. The result is that xdr_pointer is

 //the same as xdr_reference, except that xdr_pointer adds a Boolean

 //to the encoded data and will properly handle NULL pointers.

 return(xdr_reference(xdrs, objpp, obj_size, xdr_obj));

}

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_reference
This routine recursively converts a structure that is referenced by a pointer inside the structure.

Format

#include tcpip$rpc:xdr.h

bool_t xdr_reference (XDR *xdrs, u_char **objpp, u_long obj_size,

xdrproc_t xdr_obj);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

objpp

Address of the address of a structure containing the data being converted. If objpp is zero, the

xdr_reference routine allocates the necessary storage when decoding. This argument must

be non-zero when encoding.

When xdr_reference encodes data, it passes *objpp to xdr_obj. When decoding,

xdr_reference allocates memory if *objpp equals zero.

obj_size

Size of the referenced structure.

xdr_obj

XDR routine that describes the object being pointed to. This routine can describe complex data

structures, and these structures may contain pointers.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_rejected_reply
Converts the remainder of an RPC reply message after the header indicates that the reply is

rejected.

Format

#include tcpip$rpc:xdr.h

bool_t xdr_rejected_reply (XDR *xdrs, struct rejected_reply *rr);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

rr

Address of the structure containing the reply message.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_replymsg
Converts the RPC reply header, then calls the appropriate routine to convert the rest of the

message.

Format

#include tcpip$rpc:xdr.h

bool_t xdr_replymsg (XDR *xdrs, struct rpc_msg *rmsg);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

rmsg

Address of the structure containing the reply message.

Description

The xdr_replymsg routine calls the xdr_rejected_reply or xdr_accepted_reply

routine to convert the body of the RPC reply message from the local data format to XDR format,

or the other way around.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_short
Converts a two-byte integer from the local data format to XDR format, or the other way around.

Format

#include tcpip$rpc:xdr.h

bool_t xdr_short (XDR *xdrs, short *sp);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

sp

Address of the integer being converted.

Description

This routine provides the same functionality as xdr_u_short.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_string
Converts a null-terminated string from the local data format to XDR format, or the other way

around.

Format

#include tcpip$rpc:xdr.h

bool_t xdr_string (XDR *xdrs, char **cpp, u_long maxsize);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

cpp

Address of the address of the first byte in the string.

maxsize

Maximum length of the string. The service protocol determines this value.

Description

The xdr_string routine is the same as the xdr_wrapstring routine, except

xdr_string allows you to specify the maxsize.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_u_char
Converts an unsigned character from local format to XDR format, or the other way around.

Format

#include tcpip$rpc:xdr.h

bool_t xdr_u_char (XDR *xdrs, u_char bp);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

bp

Address of the character being converted.

Description

This routine provides the same functionality as xdr_char.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_u_hyper
Converts a VAX quad word to an XDR unsigned hyper-integer, or the other way around.

Format

bool_t xdr_u_hyper (XDR *xdrs, quad *ptr);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

ptr

Address of the structure containing the quad word. The quad word is stored in standard VAX

format, with the low-order longword first in memory.

Description

This routine provides the same functionality as the xdr_hyper routine.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_u_int
Converts a four-byte unsigned integer from local format to XDR format, or the other way

around.

Format

#include tcpip$rpc:xdr.h

bool_t xdr_u_int (XDR *xdrs, int *ip);

Arguments

xdrs

Address of a structure containing XDR encoding and decoding information.

ip

Address of the integer.

Description

This routine provides the same functionality as xdr_int, xdr_long, and xdr_u_long.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_u_long
Converts an unsigned longword from local format to XDR format, or the other way around.

Format

#include tcpip$rpc:xdr.h

bool_t xdr_u_long (XDR *xdrs, u_long *lp);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

lp

Address of the longword.

Description

This routine provides the same functionality as xdr_long, xdr_int, and xdr_u_int.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_u_short
Converts a two-byte unsigned integer from the local data format to XDR format, or the other

way around.

Format

#include tcpip$rpc:xdr.h

bool_t xdr_u_short (XDR *xdrs, u_short *sp);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

sp

Address of the integer being converted.

Description

This routine provides the same functionality as xdr_short.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_union
Converts a union from the local data format to XDR format, or the other way around.

Format

#include tcpip$rpc:xdr.h

bool_t xdr_union (XDR *xdrs, enum_t *dscmp, u_char *unp, xdr_discrim

*choices, xdrproc_t dfault);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

dscmp

Integer from the choices array.

unp

Address of the union.

choices

Address of an array. This array maps integers to XDR routines.

dfault

XDR routine that is called if the dscmp integer is not in the choices array.

Description

The xdr_union routine searches the array choices for the value of dscmp. If it finds the value,

it calls the corresponding XDR routine to process the remaining data. If xdr_union does not

find the value, it calls the dfault routine.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_vector
Converts a vector (fixed length array) from the local data format to XDR format, or the other

way around.

Format

#include tcpip$rpc:xdr.h

bool_t xdr_vector (XDR *xdrs, u_char *basep, u_long nelem, u_long

elmsize, xdrproc_t xdr_elem);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

basep

Address of the array.

nelem

Number of elements in the array.

elmsize

Size of each element.

xdr_elem

Converts each element from the local data format to XDR format, or the other way around.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdr_void
Converts nothing.

Format

#include tcpip$rpc:xdr.h

bool_t xdr_void (XDR *xdrs, u_char *ptr);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

ptr

Ignored.

Description

Use this routine as a place-holder for a program that passes no data. The server and client expect

an XDR routine to be called, even when there is no data to pass.

Returns

This routine always returns TRUE.

xdr_wrapstring
Converts a null-terminated string from the local data format to XDR format, or the other way

around.

Format

#include tcpip$rpc:xdr.h

bool_t xdr_wrapstring (XDR *xdrs, char **cpp);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

cpp

Address of the address of the first byte in the string.

Description

The xdr_wrapstring routine calls the xdr_string routine. The xdr_wrapstring

routine hides the maxsize argument from the programmer. Instead, the maximum size of the

string is assumed to be 232 - 1.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdrmem_create
Creates a memory buffer XDR stream.

Format

#include tcpip$rpc:xdr.h

void xdrmem_create (XDR *xdrs, u_char *addr, u_long size, enum xdr_op

op);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

addr

Address of the buffer containing the encoded data.

size

Size of the addr buffer.

op

Operations you will perform on the buffer. Valid values are XDR_ENCODE, XDR_DECODE, and

XDR_FREE. You may change this value.

Description

The xdrmem_create routine initializes a structure so that other XDR routines can write to a

buffer.

xdrrec_create
Creates a record-oriented XDR stream.

Format

#include tcpip$rpc:xdr.h

void xdrrec_create (XDR *xdrs, u_long sendsize, u_long recvsize,

u_char *tcp_handle, int (*readit)(), int (*writeit)();

Arguments

xdrs

Address of the structure being created. The xdrrec_create routine will write XDR encoding

and decoding information to this structure.

sendsize

Size of the send buffer in bytes. The minimum size is 100 bytes. If you specify fewer than 100

bytes, 4000 bytes is used as the default.

recvsize

Size of the receive buffer in bytes. The minimum size is 100 bytes. If you specify fewer than 100

bytes, 4000 bytes is used as the default.

tcp_handle

Address of the client or server handle.

readit

Address of a user-written routine that reads data from the stream transport. This routine must use

the following format:

int readit(u_char *tcp_handle, u_char *buffer, u_long len)

*tcp_handle is the client or server handle

*buffer is the buffer to fill

len is the number of bytes to read

The readit routine returns either the number of bytes read, or -1 if an error occurs.

writeit

Address of a user-written routine that writes data to the stream transport. This routine must use

the following format:

int writeit(u_char *tcp_handle, u_char *buffer, u_long len)

*tcp_handle is the client or server handle.

*buffer is the address of the buffer being written.

len is the number of bytes to write.

The writeit routine returns either the number of bytes written, or -1 if an error occurs.

Description

The xdrrec_create routine requires one of the following:

• The TCP transport.

• A stream-oriented interface (such as file I/O) not supported by MultiNet. The stream

consists of data organized into records. Each record is either an RPC request or reply.

The clnttcp_create and svcfd_create routines call the xdrrec_create routine.

xdrrec_endofrecord
Marks the end of a record.

Format

#include tcpip$rpc:xdr.h

bool_t xdrrec_endofrecord (XDR *xdrs, bool_t sendnow);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

sendnow

Indicates when the calling program will send the record to the writeit routine (see

xdrrec_create).

If sendnow is TRUE, xdrrec_endofrecord sends the record now. If sendnow is

FALSE, xdrrec_endofrecord writes the record to a buffer and sends the buffer when it

runs out of buffer space.

Description

A client or server program calls the xdrrec_endofrecord routine when it reaches the end

of a record it is writing. The program must call the xdrrec_create routine before calling

xdrrec_endofrecord.

Returns

This routine returns TRUE if it succeeds and FALSE if it fails.

xdrrec_eof
Goes to the end of the current record, then verifies whether any more data can be read.

Format

#include tcpip$rpc:xdr.h

bool_t xdrrec_eof (XDR *xdrs);

Argument

xdrs

Address of the structure containing XDR encoding and decoding information.

Description

The client or server program must call the xdrrec_create routine before calling

xdrrec_eof.

Returns

This routine returns TRUE if it reaches the end of the data stream, and FALSE if it finds more

data to read.

xdrrec_skiprecord
Goes to the end of the current record.

Format

#include tcpip$rpc:xdr.h

bool_t xdrrec_skiprecord (XDR *xdrs);

Argument

xdrs

Address of the structure containing XDR encoding and decoding information.

Description

A client or server program calls the xdrrec_skiprecord routine before it reads data from a

stream. This routine ensures that the program starts reading a record from the beginning.

The xdrrec_skiprecord routine is similar to the xdrrec_eof routine, except that

xdrrec_skiprecord does not verify whether any more data can be read.

The client or server program must call the xdrrec_create routine before calling

xdrrec_skiprecord.

Returns

This routine returns TRUE if it has skipped to the start of a record. Otherwise, it returns FALSE.

xdrstdio_create
Initializes a stdio XDR stream.

Format

#include tcpip$rpc:xdr.h

void xdrstdio_create (XDR *xdrs, FILE *file, enum xdr_op op);

Arguments

xdrs

Address of the structure containing XDR encoding and decoding information.

file

File pointer FILE *, which is to be associated with the stream.

op

An XDR operation, one of: XDR_ENCODE, XDR_DECODE, or XDR_FREE.

Description

The xdrstdio_create routine initializes a stdio stream for the specified file.

